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Abstract. This paper presents GRT-R, an enhanced version of the
GRT planner capable of explicitly handling resources. GRT is a
domain independent heuristic STRIPS planner, which works in the
space of the states. The heuristic computes off-line, in a pre-
processing phase, estimates for the distances between the domain's
facts and the goals. These estimates are utilized during the search
process, in order to obtain values for the distances between the
intermediate states and the goals.

We propose an explicit representation of resources in a
numerical way. There are two kinds of resources: the consumable
and the allocable ones. In the pre-processing phase, GRT-R assigns
to the domain's facts vectors of costs. The first cost is an estimate
of the distance between a fact and the goals, while the remaining
costs estimate the amount of consumable resources needed to
achieve that fact. GRT-R assigns each fact with a set of such
vectors, each one of them corresponding to a different way of
achieving the fact. During the search process, GRT-R assigns
similarly each intermediate state with such a vector, based on the
vectors of the state's facts, with the intention to minimize the
distance between the state and the goals, without exceeding the
available resources. Allocable resources are taken into account
only while searching, in order to preserve the validity of the states.
Performance results show that GRT-R copes well in domains that
embody resources.
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1 INTRODUCTION

Resource handling is a vital issue in every real-world planning
problem, demanding usually a special treatment. However, most of
the known planners do not cope with resources, or, in the best case,
they treat them within the poor STRIPS formalism. Recent
examples are the "Mystery" and "MPrime" domains introduced in
the AIPS-98 planning competition [13], where resources have been
encoded as atoms.

What is needed is a different treatment of resources. This
concerns both the representation of the problems and the
algorithms used to solve them. In this paper we tackle with the
resources in the framework of heuristic state-space planning. We
concentrate on the GRT planner [15], a domain-independent
heuristic state-space planner for STRIPS worlds. GRT is a
descendant of the ASP/HSP planners ([2], [3], [4]).

GRT planner works as follows: Before the search phase, in a

pre-processing phase, it computes estimates for the distances of all
the facts of a domain from the goals. These distances are utilized
during the search process, in order to obtain estimates for the
distances of the intermediate states from the goals. GRT proceeds
forward, using a typical best-first search strategy. GRT takes into
account the positive interactions that arise while trying to achieve
several facts simultaneously, producing quite accurate estimates.
This does not happen with its ancestors, which consider the various
facts of a domain as strictly independent, resulting usually in
overestimates.

Performance results show that GRT performs quite competitive
against other planners of the GRAPHPLAN [1] and SATPLAN [9]
style, in domains like the blocks world, the logistics and the
gripper. However, GRT, as also ASP/HSP, cannot tackle
effectively other domains, like the "Mystery" or the "Mprime". In
[14] two main inefficiencies of heuristic state-space planners have
been identified. The first is that they often fall in local optimal
states, which is difficult to overcome. The second inefficiency is
that resources cannot be handled effectively within the pure
STRIPS formalism. As it is proposed in [14], local optimality can
be faced with the exploitation of XOR-constraints. Another
approach that overcomes local optimal states, by combining hill-
climbing and breadth first search strategy, has been recently
proposed [8].

In this paper we confront resources in the context of heuristic
planning. We extend the STRIPS formalism so as to explicitly
represent resources in a numerical way. We distinguish two kinds
of resources: the consumable resources and the allocable ones.
Consumable resources are those that monotonically decrease, i.e.
the fuel of a truck. Allocable resources are those the availability of
which can both decrease and increase by an agents's actions, i.e.
the free volume in a truck. We introduce the GRT-R planner, an
extension of the GRT planner, which is capable of handling
explicitly represented resources. In the pre-processing phase, GRT-
R assigns vectors of costs to the facts. The first cost estimates the
distance between a fact and the goals, while the remaining costs
estimate the amount of consumable resources needed to achieve
that fact starting from the goals. GRT-R assigns each fact with a
number of such vectors, each one of them corresponding to an
alternative way of achieving the fact. During the search process,
each intermediate state is assigned similarly with a vector of costs,
based on the vectors of the state's facts, with the intention to
minimize the distance between the state and the goals, without
exceeding the available resources. Allocable resources are also



taken into account during the search process, in order to preserve
vent the validity of the states. Performance results show that GRT-
R performs quite satisfactory in domains that embody resources,
like the Mystery one.

The rest of the paper is organized as it follows: Section 2 briefly
presents the original GRT planner. Section 3 extends the STRIPS
formalism, so as to explicitly represent resources in a numerical
way. Section 4 presents in detail the GRT-R planner. Section 5
outlines how resources can be combined with XOR-constraints.
Section 6 presents comparative results for the GRT-R and other
state-of-the art planners. Finally section 7 summarizes the paper
and poses future directions.

2 THE GRT PLANNER

In STRIPS [5], each ground action a is represented by three sets of
facts: the precondition list Pre(a), the add list Add(a) and the delete
list Del(a), where Del(a) ⊂ Pre(a). A state s is defined as a
collection of ground facts and an action á determines a mapping
from a state s to a new state s'=res(s,a). In the formalization used
henceforth, the set of constants is assumed to be finite and no
function symbols are used, so that the set of ground actions is
finite. An action á can be applied to a state s, if Pre(a) ⊆ s. Then,
the new state s' is defined as:

s' = res(s,a) = s - Del(a) + Add(a) (1)

GRT computes, in a pre-processing phase, estimates for the
distances between the domain's facts and the goals, i.e. the number
of actions that should be applied to the goals, in order to achieve
backwards the various facts of the domain.

In order to apply operators to the goals, the domain operators
have to be inverted. Suppose that we have an operator á and two
states s and s', such that á is applicable in s and s' = res(s,a). The
inverted operator a' of á is an operator, such that s = res(s', a'). The
inverted operator is defined from the original operator as it follows:

Pre(a')=Add(a) + Pre(a) - Del(a)
Del(a')=Add(a)
Add(a')=Del(a) .

(2)

If case where the goals do not constitute a complete state
description, it is impossible to apply the inverted operators to it.
The solution adopted is to enrich the goals with all the facts that are
not in contradiction with the goals. The new goal set constructed in
this way is called the enriched goal state. The enriched goal state
can be constructed either manually [15], or in an algorithmic way
[16], or finally by exploiting domain dependent knowledge [6].

As mentioned above, in the preprocessing phase GRT assigns to
each fact p of the domain an estimate for the number of backwards
actions needed to achieve this fact starting from the goals.
Moreover, each fact is also assigned with a list of other facts {r1,
r2, ..., rN}, denoted as the related facts. These are facts that are
added by some action among those achieving p and are not deleted
by any subsequent action. The related facts are potentially co-
achieved while trying to achieve p and are taken into account when
estimating distances.

We can outline the way in which GRT computes the above
estimates with the following rules:

1) All the facts of the enriched goal state are assigned zero
distances and empty lists of related facts.

2) If a fact p can be achieved by an (inverted) action a, then:
a) The cost of achieving p is a function of the costs and the

lists of related facts of a's preconditions.
b) The list of related facts assigned to fact p is defined as:
rel(p)= Pre(a) ∪irel(qi:qi∈Pre(a))

∪Add’(a)-{Del(a),p}
(3)

where rel(f) denotes the related facts of any fact f and
Add'(a) denotes the facts that are first achieved by a
(Add'(a) ⊆ Add(a)).

All the information obtained by the GRT algorithm in the pre-
processing phase is stored in a table. Since this table is obtained
through greedy regression of the goals, it is called the "Greedy
Regression Table" of each problem, thus coming up the acronym
GRT. During the search process, the distances between the
intermediate states and the goals are estimated as a function of the
costs and the lists of related facts of the state's facts (it is about the
same function as the one mentioned in rule 2a above). A detailed
presentation of GRT algorithm can be found in [15], while
extensions concerning the manipulation of local optimal states with
the use of state constraints can be found in [14].

3 REPRESENTING RESOURCES

We propose the explicit representation of resources in the most
natural format, which is the numerical one. Let us consider the
"Mystery" domain, firstly introduced in the AIPS-98 planning
competition [13]. This domain consists of a number of cities,
connected via edges, a number of packages that have to be
transferred from their initial locations to their destinations and of a
number of trucks. Each city has an initial amount of fuels. A truck
can only move from city c1 to an adjacent city c2, if c1 has at least
one unit of fuels. During the movement the truck consumes this
unit.

In the original domain representation, the various quantities of
fuels are represented by relations of the form:

(fuel fuel0)
(fuel fuel1)
(fuel fuel2)
etc.

while the relations between the various fuel quantities are
represented also by relation as:

(adjacent_fuel fuel0 fuel1)
(adjacent_fuel fuel1 fuel2)
etc.

and the initial amount of resources in each city as1:

(city_fuel city1 fuel3)
etc.

Finally, actions that consume resources, e.g. moving a truck, are
represented like the next one:

                                                            
1 Note that in the AIPS-98 competition there have been used different

predicate and atoms names, however in this paper we translated them in
more meaningful ones for simplicity.



(:action move
:parameters (?tr ?c1 ?c2 ?f1 ?f2)
:precondition (and (truck ?tr) (city ?c1)
(city ?c2) (adjacent_cities ?c1 ?c2)
(fuel ?f1) (fuel ?f2) (adjacent_fuel ?f1 ?f2)
(at ?tr ?c1) (city_fuels ?c1 ?f2))
:effect (and (not (at ?tr ?c1)) (at ?tr ?c2)
(not (city_fuel ?c1 ?f2))
(city_fuel ?c1 ?f1)))

The above representation formalism does not distinguish
resources from other kind of state description information, thus
preventing planners from exploiting special resource management
techniques. Moreover, the number of ground actions increases
according to the number of different resource availability levels,
thus making harder both the preprocessing and the search phase of
the planning process.

In the formalism used in GRT-R resources are explicitly
declared as a special kind of state description information. So, we
add declarations of the following form in each problem's definition:

(resource R1)
(resource R2)
...
(resource RN)

where Ri are the various resources. Furthermore we add to the
initial state description declarations of the form:

(amount R1 V1)
(amount R2 V2)
...
(amount RN VN)

denoting the initial availability of each resource.
Next, we permit that resources can be used in relations with

other atoms. Finally, we enhance operator definitions with explicit
declarations of the resources consumed by them.

For example, consider the STRIPS-MYSTY-X-1 problem of the
"Mystery" domain [13]. This problem has six cities and one truck,
so we declare seven resources, corresponding to the fuel of the
cities and the volume of the truck:

(resource r1)
(resource r2)
...
(resource r6)
(resource v1)

We relate these resources with their corresponding objects:

(city_fuel city1 r1)
(city_fuel city2 r1)
...
(city_fuel city6 r6)
(truck_volume truck1 v1)

We include in the initial state propositions for the initial
availability of each resource:

(amount r1 1) (amount r2 2) (amount r3 4)
(amount r4 6) (amount r5 5) (amount r6 3)

(amount v1 3)

Finally we declare the three operators of this domain, i.e. move,
load and unload, by separating the resource requirements from the
precondition and the effect lists. The definitions of operators move

and unload follow:

(:action move
:parameters (?tr ?c1 ?c2 ?f)
:precondition (and (truck ?tr) (city ?c1)
(city ?c2) (adjacent_cities ?c1 ?c2)(at ?tr
?c1) (resource ?f) (city_fuel ?c1 ?f))
:effect (and (not (at ?tr ?c1)) (at ?tr ?c2))
:resources (amount ?f 1))

(:action unload
:parameters (?tr ?c ?p ?v)
:precondition (and (truck ?tr) (city ?c)
(resource ?v) (package ?p) (at ?tr ?c)
(in ?p ?tr) (truck_volume ?tr ?v))
:effect (and (not (in ?p ?tr)) (at ?p ?c))
:resources (amount ?v -1))

Note that it is not necessary to determine which of the resources
are consumable and which are allocable. This discrimination can be
performed automatically, taking into account the ground actions of
the domain, i.e. resources appearing with negative cost in at least
one ground action are allocable, the others are consumable.

4 THE GRT-R HEURISTIC

For each fact of a domain, in the pre-processing phase, GRT-R
computes an estimate not only for the number of backwards actions
needed to achieve it starting from the goals, but also for the amount
of consumable resources needed. Thus each fact p is assigned with
a vector of costs of the form:

<Actions, R1, R2, ..., RN>

where N stands for the number of the consumable resources.
We denote henceforth as vector(p) the above vector and as

dist(p) the estimate for the number of actions needed to achieve p
(i.e. dist(p) is the first element of vector(p)). vector(p) could be
computed by the following rules:

<0,0,...0>, if p ∈ Goals'

AGGREGATE(q1, q2,..., qM) + <1,r1,...,rN>,
if there is an action a, such that for each
qi ∈ Prec(a), i=1, 2, ..., M, dist(qi)< ∝.
ri's, i=1,..,N, are the resources consumed
by a.

vector(p)= {
<∝, ∝, ..., ∝> otherwise

(4)

where Goals' denotes the enriched goal state. Function AGGREGATE

estimates the total cost (actions and consumable resources) for
achieving a set of facts simultaneously, based on the costs of
achieving them individually and their lists of related facts. The list
of related facts of p are still computed by formula 3. Next, function
AGGREGATE is presented in detail.



Function AGGREGATE

Description: The function estimates the cost of achieving a set of
facts simultaneously, based on the costs of
achieving them individually and on their lists of
related facts.

Input: A set of facts {q1, q2, ..., qM }, their vectors
vector(qi) and their lists of related facts rel(qi).

Output: An estimate for the cost of achieving the facts
simultaneously.

1. Let M1={q1,q2,...,qM}. Let Vector=
<0,0,...,0>  (1 + N elements).

2. While (M1 ≠ ∅) do:
a) Let M2 be the set of facts qi ∈ M1 that

are not included in any list of
related facts of another fact qj of M1,
without qj being also included in
their list of related facts. More
formally:

M2={q:q ∈M1, ∀ q'∈ M1, q ∈ rel(q') ⇒
q' ∈ rel(p) }

b) Let M3 be the set of those facts of M1
that are not included in M2, but are
included in at least one of the lists
of related facts of the elements of
M2.
M3 = {p: p ∈ M1 - M2, ∃ q ∈ M2, p ∈

rel(q) }
c) Sum the vectors of the facts of M2.

For equivalence classes of facts where
each one is included in the list of
related facts of the others, consider
their common vector once. Add the
result to the Vector.

d) Let M1 = M1 - M2 - M3.
3. Return Vector

Function AGGREGATE does not simply add the vectors of qi's. In
each iteration facts are partitioned in equivalence classes, such that
the facts of each class contain one another in their lists of related
facts. The facts in each class have all been achieved by the same
inverted action and they have the same vectors. So, step 2c sums
the costs of these classes. The number of iterations performed by
AGGREGATE is bounded by the initial size of M1, but usually a
single iteration is performed.

It is obvious that a fact p can be achieved in several ways, since
it is possible for more than one inverted actions to have p in their
add lists. The approach adopted by the GRT planner (also by ASP
and HSP) was to consider only the minimum distance costs.
However, when resources are taken into account, the notion of the
minimum cost is vague. There is a minimum cost for the number of
actions needed to achieve p, while there are also minimum costs for
each one of the consumable resources.

GRT-R faces this problem by assigning each fact not only with
a single vector of costs but with a set of such vectors. A cost vector
is considered, if there is not any other vector with equal or better
values in all of its elements. A separate list of related facts is also
kept for each vector.

If each fact can be assigned with a set of vectors and lists of
related facts, then formula 4 should be modified. More specifically,
function AGGREGATE should be applied to any combination of
different vectors of the qi's, resulting in more than one vectors for
fact p. From the resulted vectors, those that are totally surpassed by
other vectors are rejected. Similarly, formula 3 is also applied to
any combination of lists of qi's related facts.

However, by taking into account all the possible combinations
of vectors, this approach faces the risk of combinatorial explosion.
This risk depends on the number of vectors per fact and the number
of preconditions per action. Our experience with the mystery
domain is that in average there are two vectors per fact and one or
two preconditions per action, so the overhead is tractable. In
addition, this overhead is totally compensated by the reduced
number of ground actions.

Function AGGREGATE is also used during the search process, in
order to provide estimates of the distances between the
intermediate states and the goals. In this case, the input is the facts
of a state, with their sets of vectors and lists of related facts.
However, due to the potential large number of facts in a state, all
the combinations of facts' vectors are not taken into account.
Instead, a greedy approach has been adopted, which tries to find
the vectors with the minimal distances for the state's facts. If the
resulting vector exceeds the available resources, a limited search is
performed, trying to compromise the steps with the resources.

5 RESOURCES AND XOR-CONSTRAINTS

In [14], the notion of the XOR constraints was introduced in GRT,
in order to cope with the problem of local optimal states. XOR
constraints are relations between sets of ground facts, where
exactly one of them can hold in each state. State constraints are
used in the pre-processing phase, in order to decompose a planning
problem in a sequence of sub-problems that have to be solved in
serial. Generally, these sub-problems are easily solvable by
heuristic planners; thus the total time needed to solve them is
substantially shorter than the time needed to solve the original
problem.

The decomposition of a problem into sub-problems is based on
identifying chains of actions linking the initial state facts with the
goals. With the introduction of resources, for each initial state fact
there are more than one chains of actions that link it with a goal
fact, each one having its own cost vector. In this case, we can select
this combination of vectors, i.e. a vector for each initial state fact,
which leads to the minimum distance, without exceeding the
available resources. Then, the decomposition is identical to that
presented in [14].

6 PERFORMANCE RESULTS

A prototype of GRT-R has been implemented using C++. We ran
the planner in some of the Mystery problems introduced in the
AIPS-98 competition. The test platform was identical to the one
used in the competition, i.e. Pentium II 300 MHz having 128 MB.
Table 1 presents comparative results between GRT-R and
BLACKBOX, HSP, IPP and STAN ([3], [10], [11], [12])

GRT-R performed well, solving the problems in quite
competitive times. Note that the rest of the Mystery problems are
either unsolvable or particularly hard.



For the above problems we used an algorithmic approach to
compute the enriched goal state [16]. Mutual exclusive relations
between the facts of the domain are computed in the pre-processing
phase, in order to determine the feasibility of achieving (and co-
achieving) facts. Consumable resources are taken into account in
an admissible way. The application of this algorithm to each
problem produces an overhead in the total processing time.

7 SUMMARY AND FUTURE WORK

In this paper we presented a new approach of handling
resources in the framework of heuristic state-space planning. We
introduced GRT-R, an evolution of the GRT planner, being
enhanced with the ability to manipulate resources. GRT-R adopts
an extended STRIPS representation, where resources are explicitly
expressed in a numerical format. In a pre-processing phase, GRT-R
assigns to the facts of a domain vectors, which estimate the number
of backwards actions and the amount of consumable resources
needed to achieve the facts starting from the goals. These vectors
are utilized during the search process, in order to obtain estimates
for the cost (actions plus resources) of achieving the goals from
each intermediate state. Performance results show that GRT-R
performs quite competitive in domains that embody resources.

The main drawback of the above approach and concurrently the
most promising challenge is the utilization of an admissible
heuristic for the estimation of the resource consumption. In such a
case the planner would be able to prune states during search, since
it would be certain that these states will not lead to the goals, due to
lack of resources. A first attempt to have admissible state-space
heuristics can be found in [7]. However, it remains to be
investigated the applicability of this (or any other) approach to the
resources framework.
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BLACKBOX HSP IPP STAN GRT-RProblems actions time actions time actions time actions time actions time
prob01 5 111 5 2233 5 100 5 40 5 200
prob02 9 6122 22 67303 9 12500 9 409 9 6590
prob03 4 615 4 3948 4 1220 4 197 4 990
prob09 8 1436 8 7275 8 1930 8 165 8 1470
prob11 7 742 12 4489 7 390 7 109 7 280
prob17 4 3484 10 86878 4 20640 4 1746 4 3940
prob25 4 117 4 2275 4 110 6 46 4 160
prob27 7 598 5 4279 7 1020 7 281 5 330
prob28 7 545 18 2746 7 260 7 64 7 220
prob29 4 507 5 3360 4 890 4 107 4 550
prob30 12 5642 18 100143 13 10020 12 7729 12 28180

Table1. Performance results for the Mystery domain (time in msecs)


