
A Graph-based Approach for POCL Planning1

Laura Sebastia, Eva Onaindia and Eliseo Marzal 2

Abstract. In this paper, we show that despite the great success of
some planning approaches, partial-order planning is still an efficient
and valid approach for tackling planning problems. The goal of this
paper is to show that the effort needed by of a partial-order planner
(POP) to solve a problem can be dramatically reduced. By properly
exploiting the problem knowledge, it is possible to obtain an approx-
imate plan which is afterwards used as initial plan input to a POP.
This plan will always contain actions which must necessarily appear
in a valid solution and, therefore, the task of the POP will be sim-
ply to add the missing actions thus leading to a significant reduction
in search space. In this paper, we will focus on the modifications
achieved on a standard partial-order planner to adapt it to this new
planning approach.

1 INTRODUCTION

Over the last few years, the use of Partial-Order Causal Link (POCL)
planners has been relegated in favour of more efficient plannning ap-
proaches such as Graphplan [3] or SATPLAN [8]. This new tendency
is totally justified as it has been shown that both approaches highly
outperform POCL planners. However, a recent study has shown that
POCL planning can compete with other planning approaches. Specif-
ically, UCPOP [1] has shown to outperform BlackBox [9], IPP [10],
SGP [14] and STAN [5] for certain domains [11]. Consequently,
there is no planner that has yet demonstrated to be superior.

The main limitation of POCL planning is well known: the size
of the search space in a plan generation process can be very large.
However, Graphplan-like expansion can also be so great as to make
the problem insolvable [11]. We have tested BlackBox v3.6 [2] and
IPP v4.0 [7] on large blocksworld problems and both were unable to
solve problems involving more than fifteen blocks.

Moreover, recent works on planning are devoted to the design of
new techniques to exploit domain knowledge for efficient planning
[6]. This is a very relevant issue as the planning process can benefit
from a significant search space reduction.

In this paper, we present a new planning system, GPOP (Graph
analysis Partial Order Planner). We use a preprocessing technique
based on graph analysis which is able to obtain an approximative
graph. This basic graph will comprise a set of actions that belong
to a valid solution plan. From this basic graph, the system builds a
basic plan, which is used as input to a partial order planner (BP-POP,
Basic Plan Partial Order Planner). BP-POP works on this basic plan,
which:

1. can contain ALL of the actions needed to solve the problem. In
this case, BP-POP only has to sort them.
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2. can contain LESS actions than needed to solve the problem. In
this case, BP-POP adds the missing actions.

The following section gives an overview of the creation of the ba-
sic graph. Section 3 shows the process to obtain a basic plan from
a basic graph. Section 4 focuses on the modifications achieved on
a standard partial order planner in order to adapt it to this process.
Section 5 shows the results we have obtained and, finally, section 6
draws conclusions from this work and summarizes some directions
for further work.

2 PREPROCESSING TECHNIQUE

Our preprocessing technique consists of two stages:

1. First, a problem graph (PG) is generated. This graph contains two
types of nodes (literals and actions) and two types of edges (pre-
condition and add edges). It is organized in levels, alternating ac-
tion levels and literal levels. This is not a planning graph [3] since
this process does not take into account the delete effects of the
actions. Thus, mutual exclusion relationships among nodes are ig-
nored. Another difference is that an action level does not stand for
a time step, but for a instantiation step: an action level contains all
action instantiations which are applicable from the previous lit-
eral level and do not appear in a previous action level, ignoring
the possible incompatibilities among nodes.

2. Afterwards, the process obtains a more refined graph which only
contains a subset of actions which necessarily appear in a correct
solution. This set of actions forms the basic graph.

2.1 Obtaining a Basic Graph

The basic graph (BG) is a directed, layered graph of action nodes,
with two more levels than the PG, both comprising only one action.
The former contains an initial action A0 having only effects (the lit-
erals in the initial situation). The latter includes a final action An

with only preconditions (the goal literals). An edge or causal link
Ai !

p Aj denotes that the precondition p of Aj is solved by means
of an add effect of Ai.

The backward chaining process starts with the preconditions of
An and attempts to find a set of actions in the same or any previ-
ous action level having these goals as add effects. The preconditions
of these actions form a new set of subgoals and this operation is re-
peated until each literal has been processed.

In order to find a consistent causal link for each subgoal, the search
method applies the following property:

Property 1 (literal consistency) A literal p required by an action
Ak (p 2 Pre(Ak)) is said to be consistent if these two requirements
hold:



� There is a sequence of actions Ai ! Ai+1 : : : Ak�1 ! Ak such
that p 2 AddE�(Ai) and p =2 DelE�(Aj) 8j 2 [i + 1; k � 1].

� For each action Ai such that p 2 DelE�(Ai) there is a sequence
Ai ! Ai+1 : : : Ak�1 ! Ak with an action Aj , j 2 [i+1; k�1],
such that p 2 AddE�(Aj).

Definition 1 (Basic Graph) Let S be the set of actions that consti-
tute a solution plan for a given problem. A basic graph is a pair of
elements G(N ; E), where:

� N is the set of graph nodes, so that N � S .
� E is the set of graph edges that represent causal links between the

actions in N . Suppose that ni; nj 2 N and p is a precondition of
ni. e(nj ; ni; p) 2 E if and only if p is an add effect of nj and it is
used to achieve the precondition p of ni.

The achievement of the literal consistency property guarantees
that, when a problem is solvable, all of the actions in the BG be-
long to a correct solution. However, it is not possible to prove that
such a solution exists or that the set of actions in the BG yields an
optimal solution plan (the shortest). In spite of this, for most of the
tested cases, the obtained solution was the optimal one.

Basically, the BG comprises optimal sequences of actions to
achieve each subgoal literal independently. When property 1 does
not hold for all of the action preconditions it means that some of the
subgoal literals cannot be satisfied and, consequently, the BG is not
created.

The process to create the BG is very fast as it is only necessary to
satisfy property 1 for all of the literals. However, interactions among
actions of different sequences 3 are not taken into account and, there-
fore, it might be impossible to set a logical order for all of the actions
in the BG. In this case, the POP must introduce new actions to solve
these conflicts between actions. Thus, two different types of basic
graphs can be obtained:

� complete basic graphs, whereN = S. In this case, a logical order
can be established among all the actions in N .

� incomplete basic graphs, where N � S. In this case, there are
inconsistencies between actions of different sequences. Therefore,
the POP would need to add new actions.

3 FROM A BASIC GRAPH TO A BASIC PLAN

In this section, the process of building an input plan to the POCL
planner from the generated basic graph is explained. Let G(N ; E) be
a basic graph.

Definition 2 (Basic plan) A basic plan is a tuple �(�;�;�;�;�),
where:

� � = N is a set of actions that belong to the basic plan.
� � = E is a set of causal links between the actions in �.
� � is a set of ordering constraints between the actions in �, re-

sulted from the causal links in �.
� � is a set of non-satisfied preconditions of the actions in �

(agenda) which in the case of a basic plan is an empty set.
� � is a set of conflicts between the actions in�. 
(An; Aa; At) 2 �

if Aa !
� An 2 �, � codesignates with a negative effect of At

and At can occur between An and Aa.

3 Two actions are in different sequences when there is no explicit order be-
tween them.

As we said above, there are two different types of graphs, complete
or incomplete basic graphs. This difference is specially important
from the point of view of BP-POP. In the case of complete basic
graphs, BP-POP only has to sort the actions in the basic plan, whereas
in the case of incomplete basic graphs, some actions have to be added
by BP-POP, that is, some of the causal links in� need to be modified.
In both cases, the remaining operations (ordering between actions
and addition of new actions) are detected through the existence of
threats in �.

If a plan is built using the actions inN , we can assure that this plan
will lead to a valid solution provided that such a solution exists, be-
cause a POP cannot guarantee terminating on unsolvable problems.

4 BP-POP

BP-POP is based on a POCL planner [13], which has similar char-
acteristics as UCPOP [12]. The main features of BP-POP are the
following:

� It is implemented in C.
� It uses a structured planning language based on frames to facilitate

the definition of planning domains.
� It uses the concept of variable domains, which permit a reduction

of the search space.

BP-POP takes a basic plan instead of an empty initial plan as input.
This fact has two main effects:

1. We are able to get dramatical reductions in terms of search space,
which is the main drawback in POCL planning.

2. The completeness of a POP is guaranteed when starting from an
empty initial plan. However, additional operations are necessary
to guarantee the completeness of our BP-POP.

Generally speaking, the planning algorithm for BP-POP is very
similar to the planning algorithm for standard POCL planners. How-
ever, there are some important differences that we will point out in
this section.

4.1 Dealing with threats

4.1.1 Symmetrical threats

Definition 3 (Symmetrical threats) Let be 
i(Ani
; Aai ; Ati) and


j(Anj
; Aaj ; Atj ) two threats in �. 
i and 
j are symmetrical

threats if Ani
= Atj ^Anj

= Ati ^Aai = Aaj .

As we explained above, when the basic graph is being created,
the process does not take into account possible interactions between
actions in different sequences. This is the reason why some links
between actions in the basic graph are incorrect. For example, let’s
suppose that the system obtains a graph like the one shown in Figure
1. Actions A1 and A2 are in different sequences. Therefore, the pos-
sible inconsistencies between them are not taken into account while
creating the basic graph.

However, when BP-POP builds the basic plan, it is able to detect
inconsistencies between A1 and A2 by means of the existence of
symmetrical threats. That is, in the basic plan in Figure 1, we find the
threats:

� 
(A1; A3; A2)
� 
(A2; A3; A1)



Figure 1. Symmetrical threats

It is obvious that A1 and A2 interfere with each other. Therefore,
the causal link A3 !

p A1 or the causal link A3 !
p A2 must be

modified.
This is one of the main differences of BP-POP with respect to a

standard POP. In a POP, the existence of symmetrical threats means
that the current plan is inconsistent and it is pruned. In contrast, in
BP-POP, it implies the existence of incorrect causal links that need
to be restored. This happens when the POP deals with an incomplete
graph.

The existence of symmetrical threats represents a severe conflict in
the current plan, as they represent an incorrect relationship between
two actions. Therefore, symmetrical threats must be solved as soon
as they appear in a partial plan.

The technique for solving symmetrical threats is based on the
white-knight concept developed by Chapman in [4]. Our white-
knight technique consists of deleting the threatened causal link and
inserting the precondition associated to that causal link into the
agenda (which in turn will be satisfied by another existing or new
action). The following process is used to solve symmetrical threats:

1. Select one of the symmetrical threats and solve it by promotion
and/or demotion

2. Select the other threat and use the white-knight technique (it can-
not be solved by using promotion nor demotion)

3. Repeat this process inverting the order in which the threats have
been selected

It is clear that all the choices available for restoring the non-correct
causal link are taken into account in this process. Whether the cor-
rect action to satisfy a literal is an action in the basic plan or a new
action, this will be discovered in step 2 when BP-POP generates all
of the possibilities available for achieving a precondition (as a stan-
dard POP). Thus, the lack of completeness due to the preprocessing
technique is recovered during the planning process carried out by the
POP by using a white-knight-based technique. Figure 2 shows two
plans that would be generated when solving the symmetrical threat
in Figure 1 (inverting the threat order selection).

Figure 2. Solving symmetrical threats

In both plans in Figure 2, an extra ordering constraint has been
added. Let’s focus on the plan in figure 2(left). If we follow the pro-

cess given above step by step, after step 1, we will have an ordering
constraint between A1 and A2 (A1 < A2). As a result of the applica-
tion of the white-knight technique to restore the causal link between
A2 and A3, A4 is added. It is obvious that at that moment, there is
a conflict between A1 and the new causal link between A4 and A2.
An extra ordering constraint between A1 and A4 is added in order to
avoid this conflict.

4.1.2 Selection order

We have observed that the system performance depends on the order
in which threats are selected to be solved. If we use a logical order
to select threats, we will build the correct plan more easily. More
specifically, let 
(An; Aa; At) be a threat in �. The threats are or-
dered according to the place that An ocuppies in the current plan.
That is, the order for solving threats follows the execution order of
the actions in the plan. In this way, we assure that the plan is being
built correctly from the beginning. In other words, if the system se-
lects 
, it means that there is no threat over predecessor actions of
An.

4.1.3 Threat resolution

Let �b(�b;�b;�b;�b;�b) be a basic plan and �i be the set of ac-
tions of the current plan. We can distinguish two types of actions:

� An action Aj 2 �i is a basic action if Aj 2 �b.
� An action Aj 2 �i is an added action if Aj =2 �b.

If a threat 
(An; Aa; At) cannot be solved by promotion or de-
motion, we have to take into account the nature of An:

� If it is a basic action and the causal link involved in the threat has
not been previously restored, the white-knight technique can be
applied. This is a case of modification of a wrong causal link.

� If it is a basic action and the causal link involved in the threat
has been restored, the plan is pruned because all the possibilities
that exist to satisfy the precondition were taken into account at the
moment of the application of the white-knight technique.

� If it is an added action, all the possibilities were considered when
solving the corresponding precondition. Therefore, in the case of
unresolvable conflict, the plan is pruned.

4.2 Establishing preconditions

As we defined above, a basic plan has no preconditions in the agenda
because the preconditions of all of the actions in the basic graph have
been solved. However, new preconditions can be added to the agenda
as the solution plan is being built. There are two ways of adding
preconditions:

� as a result from the application of the white-knight technique, be-
cause the precondition associated to the threatened link is added
to the agenda to be satisfied.

� once we have preconditions in the agenda, we can choose a new
action to solve it. Therefore, its preconditions will be added to the
agenda as well.

Preconditions in the agenda have priority over threats, so, if there
is a precondition in the agenda, the system will select it in detriment
of the threats.



As we said above, BP-POP is building a correct plan starting from
the first action. If the system is working on action Ai, any action pre-
vious to action Ai has no conflicts, that is, we have a correct subplan.
Therefore, when choosing an existing action to solve a precondition
of Ai, we can use this situation in the following way:

1. Each action in the plan previous to Ai is assigned a value, depend-
ing on the distance between that action and Ai.

2. This value is used to give priority according to the nearness of that
action to Ai.

3. It is obvious that the nearest actions have a greater probability of
solving a precondition correctly.

For example, in Figure 3, action A4 attemps to satisfy its precon-
dition p. Both A1 and A3 produce p. If we use the distance concept,
it is clear than A3 is better than A1, since there is a greater probabil-
ity that there is an action between A1 and A4 that negates p. If A2

negates p, A1 could not be the producer for A4.

Figure 3. Example. Establishing preconditions

In order to assure completeness, the system will create all possi-
ble plans, but it will use the distance between actions to give more
priority to the plan that uses the nearest action.

4.3 An example

In this section, we show an example of how GPOP works. Suppose
that we have to solve the following problem:

Operators Preconditions Effects
O1 a, b d, :a
O2 b, c, d e, f, :c
O3 f g, :f
O4 f c, :f
O5 g f
Initial Situation a, b, c
Goal c, g

After applying our preprocessing technique, the basic plan shown
in Figure 4 is obtained. A0 and AN stand for initial situation and
goal, respectively, Ai is an instantiation of the operator Oi. The fol-
lowing threats will be found:

� 
1(A3; A2; A4)
� 
2(A4; A2; A3)

As they are symmetrical threats, we use the technique explained
above to eliminate that conflict. By solving 
1 and then 
2, the plan
in Figure 5 is obtained. If 
2 was solved before, the same plan would
be obtained but inverting A4 and A3.

The precondition f of A4 is achieved by inserting a new action
A5, because there is no other action in the plan that can satisfy f for

Figure 4. Basic plan

Figure 5. Symmetrical threats solved

A4. The plan obtained is shown in Figure 6. As A5 is a new action,
its precondition g is inserted into the agenda.

The extra ordering constraint between A3 and A5 is added in order
to avoid the conflict between them, as we explained above.

At this moment, the precondition g of A5 is selected. Two plans
will be created: one using A3 and another one inserting a new action.
The first one is shown in Figure 7. This plan is the solution to the
problem given, because there are no preconditions or threats to be
solved.

5 RESULTS

All the planners tested were run on a Sun Ultra 10 machine. We run
GPOP, BlackBox v3.6 [2] and IPP v4.0 [7]. The results 4 are clas-
sified into two groups: when the obtained basic graph in GPOP was
complete (table 1) and when it was incomplete (table 2).

Table 1. Performance (in secs.) of GPOP (complete graph), IPP and
BlackBox on different problems

Problem GPOP IPP BlackBox
Sussman 0.006 0.02 0.02
Reversal Tower4 0.011 0.03 0.03
Reversal Tower5 0.033 0.03 0.06
Tower4 0.013 0.03 0.07
Tower5 0.025 0.05 0.21
Tower6 0.046 0.12 0.6
Tower9 0.221 3.7 111
T LargeA 0.07 0.5 0.82
T LargeB 0.276 2.21 4.34
T LargeC 1.446 37.68 –
T LargeD 3.954 – –
Flat-tire1 0.006 0.02 –
Flat-tire2 0.006 0.02 0.03
Flat-tire4 0.007 0.01 –

In most of the problems where GPOP was able to obtain a com-
plete graph, the CPU time was reduced by more than 50% compared

4 We have used a blocksworld domain with 3 operators.



Figure 6. New action added

Figure 7. Solution plan

to IPP and BlackBox. For example, in the blocksworld domain, as
the number of blocks increased, this difference was greater. This
is specially noteworthy in TowerLarge problems: GPOP solved the
TowerLargeD problem that neither IPP nor BlackBox were able to
solve. For those problems with an incomplete graph, GPOP behaved
slightly worse than IPP and BlackBox, although this difference was
not as significant as in the previous case. As the average and stan-
dard deviation results show (Table 3) GPOP behaviour was much
more stable.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented our system GPOP. It uses a prepro-
cessing technique based on graph analysis that obtains a basic graph
composed of actions that belong to a solution for a given problem.
This basic graph is used to build a basic plan, which is the input of
a modified POCL planner. This planner will complete that plan (if
necessary) in order to obtain a solution plan.

We have shown how the performance of POCL planners can be
dramatically improved by using proper preprocessing techniques. We
have also shown that GPOP obtains better averages than other plan-
ners such as IPP and BlackBox.

This is a first prototype. We are now working on improving the BP-
POP performance since the obtained results indicate that our system
has a bottleneck in BP-POP. On the other hand, we are also working
on adapting the basic graph to problem domains with special fea-
tures. These domains (logistics-like domains) have several solutions
for the same problem, depending on which object is selected to exe-
cute an action (for example, which plane is selected to go from city A

Table 2. Performance (in secs.) of GPOP (incomplete graph), IPP and
BlackBox on different problems

Problem GPOP IPP BlackBox
Hanoi3d 0.176 0.04 0.11
Hanoi4d 1.811 0.13 1.41
Ferry 0.073 0.02 0.04
Monkeyt1 0.079 0.03 0.11
Monkeyt2 0.212 0.04 0.26
Flat-tire3 0.026 0.03 0.1
Fixit 0.405 0.03 –

Table 3. Average and Standard Deviation of GPOP, IPP and BlackBox of
solved problems

GPOP IPP BlackBox
Average 0.454 2.238 7.034
Standard Deviation 1.017 8.393 26.812

to city B). We are working on an extended version of the basic graph
to arbitrarily select an object. We think that this approach will allow
us to obtain nearly all the actions in a valid solution.

As we have explained, our system is not able to detect when a
problem is not solvable. Additionally, even though for most of the
tested cases GPOP was able to obtain the optimal solution, this can-
not be guaranteed. For these reasons, we are working on improving
the preprocessing technique in order to obtain basic graphs that will
yield optimal solutions or report that the basic graph cannot be ob-
tained when the problem is not solvable.
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