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Abstract.
This paper presents an integration of the well known Temporal

Constraint Networks representation into a causal approach for rea-
soning about actions calledAL2 [9]. As a result, temporal constraints
are allowed in the conditions of the causal rules that describe the do-
main behavior. We show the adequacy of the AL2 understanding of
causation (based on the concept of pertinence) for naturally intro-
ducing the set of time points used in constraints, including not only
action occurrences, but also the instants of relevant changes in flu-
ents.

1 Introduction

Temporal Reasoning has historically represented one of the main ar-
eas inside Artificial Intelligence from its very beginning, not only as a
research field by itself, but also affecting other areas that usually need
to deal with temporal domains. Unfortunately, research in temporal
reasoning has evolved into independent and, sometimes, diverging
trends, which have grown motivated by different goals. Among these
branches, perhaps the most differentiated ones are: nonmonotonic
temporal reasoning – action formalisms –, temporal modal logic and
temporal constraints. Although considerable effort has been done in
mixing action formalisms and temporal modal logic [13, 1, 2], there
is not much work combining action based approaches with temporal
constraints (as an exception, see [12]).

In this paper we introduce an integration of Temporal Constraint
Networks (TCN) [3] into a nonmonotonic logic for reasoning about
actions and change called AL2 [9]. Our aim is to focus on the repre-
sentational aspects, trying to bridge the gap between the clearly dif-
ferent aims of both orientations. On the one hand, quantitative tem-
poral constraints are concerned with solving temporal numerical re-
lations among a given set of events, provided that they have actually
occurred. Each event “expresses” by itself all the needed knowledge
for describing a particular situation. So, the stress is laid on solving,
in the most efficient way, the restrictions about temporal distances
among events. On the other hand, action formalisms are thought for
describing the behavior of a dynamic system, paying more attention
to the quality of the used representation — usually, a nonmonotonic
logical approach. The system is described in terms of the properties
that can be identified on it (fluents), especially focusing on the way
in which these properties evolve along time, rather than on temporal
distances among events.

We show how the obtained result provides an expressivity en-
hancement, both from an action formalism point of view and for a
temporal constraint representation. As a main contribution, we show
how the AL2 treatment of causality (based on the concept of perti-
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nence) naturally allows the introduction of temporal constraints, fix-
ing the set of “events” to be used for measuring temporal distances.
In this way, we are able to express constraints, not only among ac-
tion occurrences, but also among relevant changes for the same or for
different fluents.

The paper is organized as follows. In the next section we recall the
usual TCN definitions, but under a logical model-based terminology.
Section 3 introduces the basic definitions of the nonmonotonic action
logic AL2, which are extended in the next section for dealing with
temporal constraints. In the last two sections, we establish compar-
isons to related work and draw some conclusions and directions for
future work.

2 Model based Temporal Constraint Networks

Since we are interested in introducing TCN into a logical formal-
ism, we will first propose a rephrasing of TCN definitions under a
logical model-based terminology. We define a logic for TCN, called
LTC , describing its syntax and semantics in the following way.
The language of LTC consists of a finite set of time point names,
TP = ft1; :::tng, an infinite set of non-nested binary connectors Dd
(where d is an integer number) and the propositional connectives (^,
_ and :). We will also handle the usual derived operators � and �
standing for material implication and classical equivalence. We de-
fine an atomic constraint as any formula of the shape

t1 Dd t2 (1)

where t1; t2 2 TP and d is any integer number. Intuitively, this con-
straint points out that the elapsed time from t1 to t2 is, at most, d
temporal units. We define an LTC well formed formula as any propo-
sitional combination of atomic constraints. A theory is then defined
as a set of well formed formulas.

The semantics of LTC relies on assigning an integer value to each
time point name. Thus, an interpretation M will be a mapping from
the set of time points TP to the integer numbers M : TP �! Z. We
say that an interpretation M satisfies an atomic formula t1 Dd t2,
written M j= t1 Dd t2, iff M(t2) �M(t1) � d. Satisfaction for
general propositional formulas is defined in the usual way.

As we can see, an atomic constraint t1 Dd t2, with d > 0, fixes
a maximum value for the elapsed time between t1 and t2. When
distance is negative, requiring M j= t1 D�jdj t2 is equivalent to
M(t1)�M(t2) � jdj, that is, jdj becomes a minimum for the con-
verse distance time from t2 to t1.

As usual, we say that an interpretation M is a model of a theory
T iff it satisfies all the formulas in T . In the same way, a theory T is
said to entail a formula � iff all the models of T are models of �.

An interesting property verified by LTC , is the transitivity of con-
straints. Thus, it can be easily seen that the following formula:

t1 Dd t2 ^ t2 De t3 � t1 Dd+e t3 (2)



is a tautology, for any t1; t2; t3 2 TP and any pair of integer numbers
d; e.

In order to relate this logical reformulation of Temporal Con-
straints to their original terminology [3], we establish some direct
correspondences. An LTC theory only consisting of atomic con-
straints receives the name of Simple Temporal Problem (STP), and
corresponds to what is called a distance graph. In this graph, each
constraint t1 Dd t2 is represented as an arc from t1 to t2 with dis-
tance d. A model of a theory T is also known as a solution for the
corresponding graph.

Sometimes, arcs in distance graphs are labeled by an interval, in-
stead of a single distance. This can also be directly represented as an
STP in LTC by defining the derived operator:

t1
[a;b]
�! t2

def
= t1 Db t2 ^ t2 D�a t1

A typical task in STPs is to check the consistency of a graph, that
is, checking the existence of a model. We will show that the well
known consistency checking method introduced in [3] is also sound
and complete with respect to LTC . In short, the method lies in look-
ing for negative cycles inside the distance graph. When translated
into LTC terms, this means looking for a particular kind of subthe-
ory (the negative cycle) inside an STP theory.

Let us introduce first some definitions. Given an STP theory T , we
define a path between t and t0, as a subtheory of T consisting of a
sequence of constraints like: ft Dd1 t1; t1 Dd2 t2; : : : ; tn�1 Ddn

t0g. A cycle is a non-empty path from t to t. Given a path p, we define
its distance as the summation of all the di in p.

Theorem 1 An STP theory T is inconsistent iff it contains a cycle p
with negative distance dist(p) < 0.

Proof
“(=” (Soundness)

Let p be a negative cycle in T . By iterative application of transitiv-
ity to the constraints in p, any model of T should satisfy t Ddist(p) t,
that is, M(t) � M(t) � dist(p), which is not possible, since
dist(p) < 0.
“=)” (Completeness)

For a proof sketch, assume that T does not contain negative cycles.
Then it is always possible to construct an interpretation M which is
a model of T , what contradicts the initial assumption of inconsis-
tence of T . For constructing such an M it suffices with identifying
the first “layer” of time points, TP0 (those that do not occur in the
right side of any constraint) or, if they do not exist, an arbitrary el-
ement of each first layer -strongly connected components in the dis-
tance graph. Then, it is always possible to establish a model mapping
which assigns, for any t 2 TP0, M(t) = 0, and for those t 62 TP0,
the minimal distance among the paths from some t0 2 TP0 to t.
Notice that this minimal distance is computable provided that all the
cycles are of nonnegative distance. 2

As we can see, STP theories have a strong expressive limitation,
since they practically do not allow any kind of disjunctive knowl-
edge. The unique way of expressing uncertainty is by imposing min-
imum and maximum bounds to temporal differences. In fact, in [3],
the STPs are generalized into a more expressive representation: Tem-
poral Constraint Networks (TCN). A TCN is a graph where each arc
(t1; t2) is labeled now by a set of intervals fI1; : : : ; Ing, meaning
that the elapsed time from t1 to t2 must be contained in at least one
of the Ij .

This same definition can be also done in LTC terms, so that a

theory T is said to be a TCN if all its formulas have the shape:
_

i2[1;n]

(t1 Dbi t2 ^ t2 D�ai t1) (3)

being t1; t2 2 TP and the ai; bi a sequence of n > 0 arbi-
trary pairs of integer numbers. It can be easily seen that each
clause like (3) corresponds to an arc (t1; t2) labeled with intervals
[a1; b1]; : : : ; [an; bn].

Although TCNs make use of disjunction (as clearly expressed
in their LTC representation) they do not fully cover the expres-
sive range of LTC . Think, for instance, in the simple introduc-
tion of negation for atomic constraints: M j= :(t1 Dd t2), i.e.,
M(t2) � M(t1) > d. Negating an atomic constraint allows rep-
resenting strict inequalities that, otherwise, should have to be in-
troduced by defining new constraint operators (some kind of strict
t2 Bd t1). But, in fact, we can even go further and represent prob-
lems which cannot be encoded into a TCN. Think for instance in the
example theory:

T = f(t1
[0;0]
�! t2 ^ t3

[0;0]
�! t4) _ (t1

[0;0]
�! t3 ^ t2

[0;0]
�! t4)g

This kind of expressions cannot be translated into a TCN, since
the disjunction affects to the whole structure of the network, and not
only to the possible combinations of intervals for a fixed set of arcs.

3 AL
2 syntax and semantics

The causal logic AL2, introduced in [9], is intended for describing
narrative-based actions domains. Its syntax is fixed by a parameter
n which delimits the length of the narratives, and by two disjoint
sets: the action names, A, which describes all the actions that can
be performed, and the fluent names, F , containing all the (boolean)
properties that we identify for describing each system situation. We
will use the letter q to denote any action or fluent name, and letters f
and a to denote fluents and actions respectively.

An atom has the shape qi where i 2 [0; n] is a non-negative inte-
ger, pointing out a situation along the narrative. ByAtoms(A;F ; n)
we denote the set of all possible atoms. We call a literal to any atom
qi or its negation :qi. GeneralAL2 formulas may be of two possible
types:

i) non-causal formulas: defined as combinations of atoms with the
classical propositional connectives (^, _,:). We will also include
a new type of atomic construction, (prev q)i, which will almost
stands for qi�1 excepting for its causal behavior (as we will see
later).

ii) causal rules: with shape F ( � where F is a literal for some
fi and � is a non-causal formula such that, for any subindex j
occurring in �, j � i.

The restrictions imposed on causal rules intuitively say that ac-
tions are never “concluded” as a result of a rule (we will be only
interested in concluding fluent literals) and that the condition of the
rule must refer to the same or to previous situations, with respect to
the situation of the conclusion.

The semantics of AL2 has as main feature the introduction of an
extra valuation of formulas, called pertinence, parallel to the clas-
sical truth valuation. This additional valuation points out whether a
formula has been affected by change, i.e., if it has been caused to take
a new value. Informally speaking, a formula will be pertinent if ei-
ther it is a direct observation of an action occurrence, or it is directly
or indirectly affected by an action (through chaining of causal rules).



Formally, an interpretation in AL2 will assign a pair of values to
each formula. Apart from the usual truth value (true or false, ft;fg),
a formula will also be assigned a pertinence value: “pertinent” or
“non-pertinent”, denoted respectively as p and n. An AL2 interpre-
tation I is a mapping I : Atoms(A;F ; n) �! ft;fg � fp;ng
assigning truth and pertinence to each atom. In this way, we can con-
sider a four-valued logic with the combinations ftp;tn;fp; fng.
An interpretation I may be alternatively described by a pair hS; P i
of sets of atoms for representing truth and pertinence respectively, so
that, given an atom qi: qi 2 S iff I(qi) 2 ftp;tng; whereas qi 2 P
iff I(qi) 2 ftp;fpg.

There are, however, two particular restrictions depending on the
type of the atom qi. First, when the atom is placed in the initial situa-
tion, i = 0, it will always be non-pertinent – there does not exist any
q0 2 P . This restriction will avoid application of rules at the initial
state. Second, when the atom is an action, ai, it will be assigned to be
pertinent iff it is assigned to be true, that is, ai 2 P iff ai 2 S. This
restriction intuitively points out that an action is pertinent iff it has
occurred and, together with the first restriction, that no action may
occur at the initial situation.

Interpretations are extended in order to assign a truth and a perti-
nence value to each possible formula, following the rules in Figure 1.

I((prev q)i) =

�
tn if I(qi�1) 2 ftp;tng
fn if I(qi�1) 2 ffp;fng

I(:�) =

�
t� if I(�) = f�
f� if I(�) = t�

I( ( �) =

8<
:

tn if I(�) 6= tp
fp if I(�) = tp and I( ) 6= tp
tp otherwise

I(� ^  ) fn fp tn tp
fn fn fp fn fp
fp fp fp fp fp
tn fn fp tn tp
tp fp fp tp tp

I(� _  ) fn fp tn tp
fn fn fp tn tp
fp fp fp tp tp
tn tn tp tn tp
tp tp tp tp tp

Figure 1. Interpretation of a formula.

Atomic expressions of shape (prev q)i are used just to check the
previous truth value of some symbol q without regarding its per-
tinence. For this reason, a prev expression is never assigned to
be pertinent. Truth for propositional formulas is valuated as usual,
maintaining pertinence valuation completely independent. A propo-
sitional formula is pertinent iff at least one of the atomic expressions
occurring in the formula is pertinent. Finally, causal formulas are the
only way of relating truth and pertinence. A causal formula will be
true when: if its condition is true and pertinent, then its consequent
is also true and pertinent.

Typically, an AL2 domain description will consist of two sets of

formulas hB;Oi: the set B called background knowledge, which
contains causal rules, and the set O of observations, containing non-
causal formulas. Since causal rules should be satisfied for any situa-
tion in the narrative, we will use abbreviations like fi ( ai ^ gi�1

to stand for the set of rules instantiating i = 1 : : : n.
An interpretation I is said to be a model of a theory T iff it assigns

to each formula � 2 T any value from ftp;tng. The set of models
of T induces a monotonic entailment relation that is not expressive
enough for representing the default rule of inertia: “under no evi-
dence on the contrary, everything remains unchanged.” The absence
of an inertia default rule directly leads to the well-known frame prob-
lem [8, 14], unnaturally forcing us to represent what things do not
change. To solve this problem, AL2 introduces a models selection
process, which also implements the causal behavior of the condi-
tional expressions F ( � (solving, as explained in [9], the so-called
ramification problem [16, 6, 7, 4, 15]). This models selection has two
steps: first, we minimize pertinence among models (selected models)
and, second, we require all the models to satisfy an a posteriori con-
dition related to inertia (causal models).

Definition 1 (�p) Given two AL2 interpretations I = hS; P i and
I 0 = hS0; P 0i, we say that I is lower than I0, I �p I 0, iff S = S0

and P � P 0. 2

Definition 2 (AL2 selected model)A model I = hS; P i of a the-
ory T is said to be a selected model iff it is a minimal model, with
respect to the �p ordering relation. 2

Definition 3 (Causal model) A selected model I = hS; P i of a the-
ory T is said to be causal iff satisfies the condition: for any i > 0,
and any fi, if fi 62 P then (fi 2 S iff fi�1 2 S). 2

Intuitively, selected models impose the condition that things are
nonpertinent by default, whereas causal models add to this require-
ment that any fluent nonpertinent should maintain its previous truth
value. The entailment relation induced by causal models, j=c, is now
nonmonotonic. Let us see an example:

Example 1 (Yale Shooting scenario)We have a gun for killing a
turkey. To this aim, we may perform an action load that makes the
gun become loaded, and an action shoot that kills the turkey if the
gun was loaded. Initially, the gun is loaded, the turkey is alive and
we perform action shoot. 2

Let A = fload; shootg;F = floaded; aliveg and n = 1. The
domain description for the example could be simply formulated in
AL2 by the theory T containing the causal rules:

loadedi ( loadi (4)

:alivei ( shooti ^ (prev loaded)i (5)

and the observations: falive0; loaded0; shoot1;:load1g. It can be
easily checked that the unique causal model of T is hS; P i with S =
falive0; loaded0; loaded1; shoot1g and P = fshoot1; alive1g.
Notice that our background knowledge does not specify what hap-
pens to loaded when we shoot, and so, inertia takes charge of keep-
ing loaded true, as in the initial situation. Let us see what happens if
we add a rule stating that the shot unloads the gun:

:loadedi ( shooti ^ (prev loaded)i (6)

Now, the extended theory has a unique causal model (in fact, it is
the unique AL2 model) in which the gun is finally unloaded. This
example shows the nonmonotonic property of the j=c entailment, as
we had that T j=c loaded1, whereas, by adding the new rule, T [
(6) 6j=c loaded1 (in fact, T [ (6) j=c :loaded1).



4 Adding temporal constraints toAL2

In this section, we extend AL2 into a new logic called AL2
TC

which incorporates temporal constraints. The syntax will include
new atomic expressions (the already seen atomic constraints) to be
freely combined in any noncausal formula. The intended utility of
the temporal constraints will be to impose or test conditions on the
elapsed number of situations that have occurred between two given
events 3. However, this immediately gives rise to a question: what is
considered to be an event in an action-based formalism? or, in other
words, which will be the set of time points, TP for the atomic con-
straints?

A first natural answer to this question is thinking on action oc-
currences as events, and on the situations in which they occur as time
points. However, inAL2 it is possible to go further, and consider also
as an event the moment in which any atom, action or fluent, becomes
pertinent. This results in a richer expressivity, allowing temporal con-
straints to relate instants that depend on fluents.

Let us introduce the formal definitions. Given a set of actions A,
a set of fluents F and the fixed length n, we define the set of time
point names, TP (A;F; n) as all those t(q)i, for any q 2 A[F and
i 2 [0; n]. Notice that time point names have also a subindex, that is,
they depend on the situation in which they are placed. The intuitive
meaning of t(q)i is that it represents, at situation i, the number of the
latest situation, j � i, in which q became pertinent. In other words,
the last time in which q was affected by change.

The syntax of AL2
TC is the same one of AL2 but allowing a new

type of atomic expression called atomic constraint with shape:

t(q)i Dd t(q
0)i (7)

Notice that the set of events we are handling introduces a new
feature not considered in traditional temporal constraint problems:
an event may have not occurred. As we will see, we consider that
the satisfaction of any temporal constraint like (7) implies that both
q and q0 have actually occurred in the past. For this reason, we will
call strong to these kind of constraints and, for the expressivity sake,
we will define the dual weak constraints:

t(q)i �d t(q
0)i (8)

that will allow q or q0 not to occur.
The semantics of AL2

TC is defined in the following way. An
AL2

TC interpretation I is defined as a triple I = hS; P;Mi, where
S and P have the same meaning as in AL2 and M is a mapping
from TP(A;F; n) to the nonnegative integer numbers [0; n], satisfy-
ing M(t(q)i) � i, for any qi. An assingment M(t(q)i) = 0 will
point out that qi has never become pertinent. For satisfaction of for-
mulas in AL2

TC , we just add the following rules:

I(t(q)i Dd t(q
0)i) =

8>><
>>:

tn if M(t(q)i) 6= 0 and
M(t(q0)i) 6= 0 and
M(t(q0)i)�M(t(q)i) � d

fn otherwise

I(t(q)i �d t(q
0)i) =

8>><
>>:

tn if M(t(q)i) = 0 or
M(t(q0)i) = 0 or
M(t(q0)i)�M(t(q)i) � d

fn otherwise

to the already introduced in Figure 1. As we can see, temporal con-
straints are never assigned a pertinence value (they behave in a simi-
lar way to the prev expression). Besides, strong constraints require

3 In fact, a direct extension for real time labels could easily be proposed.

both compared instants to be different from 0, whereas weak con-
straints will be directly true when any of those instants happen to be
0.

We directly recall the definition of model in AL2, using now this
extended definition of interpretation. As for selected models, we only
need to redefine the ordering relation in the following way:

Definition 4 (�p) Given two AL2
TC interpretations I = hS; P;Mi

and I0 = hS0; P 0;M 0i, we say that I is lower than I0, written I �p
I 0, iff S = S0, M =M 0 and P � P 0. 2

That is, in order to minimize pertinence, we fix not only the truth S,
but also the time points assignment M .

Definition 5 (Causal model) A selected model I = hS; P;Mi of a
theory T is said to be causal iff it satisfies the conditions:

1. For any fi 62 P , fi 2 S iff fi�1 2 S
2. For any M(t(q)i) = 0, there is no qj 2 P , j � i

3. For any M(t(q)i) 6= 0,
M(t(q)i) = maxfj � i such that qj 2 Pg

2

The two new conditions fix the meaning of time points with re-
spect to the pertinences occurring in the selected model. For time
points t(q)i assigned to 0, we require that q has never been pertinent
up to situation i. For time points different from 0, the value must
coincide with the last recent situation j before i in which q was per-
tinent.

Notice that, until this step of models selection, we had not imposed
any relation between the assigned number to a time point t(q)i and
the information about qi contained in the model. This means that, for
AL2

TC models and selected models, the assigned numbers to time
points are completely arbitrary with respect to pertinence of fluents
and actions.

We will illustrate how temporal constraints can be mixed with an
usual action theory by an elaboration of example 1.

Example 2 (Spoiling Yale Shooting Scenario)Assume now that a
shot only kills the turkey if we performed a load at most two situa-
tions before (otherwise, the gunpowder in the bullet spoils). Initially
the turkey is alive and the gun unloaded. We load the gun and after
two situations without performing any action, we shoot. 2

The domain description Tspoil for this scenario consists of the set
B of causal rules:

loadedi ( loadi

:alivei ( shoot ^ (prev loaded)i ^ (t(load)i D2 t(shoot)i)

:loadedi ( shoot ^ (prev loaded)i

and the set O of observations:

falive0;:loaded0; :shoot1; load1; :shoot2;:load2;
:shoot3;:load3; shoot4;:load4g

After applying the model selection process, it can be checked that
the unique causal model of Tspoil is I = hS; P;Mi where:

S = falive0; load1; loaded1; alive1; loaded2; alive2;
loaded3; alive3; shoot4; alive4g

P = fload1; loaded1; shoot4; loaded4g

Mni 0 1 2 3 4
t(alive)i 0 0 0 0 0
t(loaded)i 0 1 1 1 4
t(shoot)i 0 0 0 0 4
t(load)i 0 1 1 1 1



In a similar way, if we load the gun and we shoot two situations
later, then, the only AL2

TC model corresponds to:

S0 = falive0; loaded1; alive1; loaded2; alive2g
P 0 = fload1; loaded1; shoot3; loaded3; alive3g

M 0ni 0 1 2 3
t(alive)i 0 0 0 3
t(loaded)i 0 1 1 3
t(shoot)i 0 0 0 3
t(load)i 0 1 1 1

5 Related work

Few bibliography can be found relating temporal constraints with
action-based formalisms. The most relevant existing approach is per-
haps the language HOT introduced in [12], which introduces tem-
poral constraints into the Event Calculus [5]. Language HOT han-
dles the Event Calculus usual predicates Holds(�;E1; E2) (as-
serting that fact � permanently holds between events E1; E2), and
Occurs(E) (asserting that event E has occurred). Besides, a new
function T ime(E) is used for associating to each event a real num-
ber that represents the instant in which E occurred. Apart from
propositional formulas for Holds and Occurs, HOT allows defin-
ing both qualitative and quantitative constraints, being the shape of
the latter:

T ime(E)� T ime(E0) 2 I1 [ I2 [ : : : [ Ik (9)

where Ii are intervals over real numbers. As we can see, points
T ime(E) bear a strong resemblance to t(q)i (excepting that the for-
mer refers to real time instead of a situation). However, the t(q)i
points are more expressive, since they also allow relating instants
about fluents, using their pertinence for that purpose. Another com-
mon problem that also arises in HOT is the possibility of non-
occurrence of events. In fact, HOT constraints directly correspond
to what we have called strong temporal constraints in AL2TC (they
always require the occurrence of the related events).

The major advantage of AL2TC with respect to HOT is that the
latter does not provide an appropriated solution to the frame and
ramification problems4, and so, our approach means, in this sense,
a significative advance.

6 Conclusions

We have presented a logical approach, AL2TC , which combines in-
teresting representational features from a causal formalism for rea-
soning about actions, AL2, and from Temporal Constraint Networks
representation. From theAL2 point of view, the new features provide
a first natural step towards the introduction of continuity in the time
basis. Our approach differs, in this sense, from the usual treatment
given to continuity in action based approaches [11, 10], which han-
dles fluents with a real domain that evolve continuously, while the
number of situations or the distances among them are kept constant.
From the temporal constraints point of view, the features provided by
AL2 constitute a significative increase in representational power. We
have avoided two strong restrictions that are implicit assumptions in
TCN problems: (1) events are always known to have occurred and
cannot be repeated and (2) each event contains all the information
about the system state (we cannot express things in terms of system

4 Notice that, for instance, the study on how to solve ramification problem for
the Event Calculus is still a topic of current research [15].

properties). Besides, this is done simultaneously providing the solu-
tion to the frame and ramification problems, already present in AL2.

As future work, we will study how the existing TCN techniques
can be used for improving inference in particular kinds of AL2TC
theories. For instance, if we restrict the use of constraints for limit-
ing the instants in which actions can be performed this directly cor-
responds to a STP, a well-known kind of problems for which there
exist much work on efficient algorithms.
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275–291, (1997).

[14] M. Shanahan, Solving the Frame Problem, The MIT Press, 1997.
[15] M. Shanahan, ‘The ramification problem in the event calculus’, in Proc.

of the Intl. Joint Conference on Artificial Intelligence (IJCAI), ed., C. S.
Mellish, pp. 140–146. Morgan Kaufmann, (1999).

[16] Michael Thielscher, ‘Ramification and causality’, Artificial Intelligence
Journal, (1997). (To appear. A preliminary version is available as Tech-
nical Report TR-96-003, ICSI, Berkeley, CA).


