Turning High-L evel Plansinto Robot Programsin
Uncertain Domains

Henrik Grosskreutz and Gerhard Lakemeyer!

Abstract. The actions of a robot like lifting an object are often bestis flawed because the two are initially perfectly correlated. The use
thought of as low-level processes with uncertain outcome. A highef inspect is complicated by two things, however. {igpect is not

level robot plan can be seen as a description of a task which conperfect: if the widget is blemished then 90% of the time it reports
bines these processes in an appropriate way and which may involve€K, but 10% of the time it erroneously repof@K. If the widget
nondeterminism in order to increase a plan’s generality. In a giveis not blemished, howeveimspect always report$OK. (2) Painting
situation, a robot needs to turn a given plan into an executable prohe widget removes a blemish but not a flaw, so execuitiggect af-

gram for which it can establish, through some form of projection, thater the widget has been painted no longer conveys information about
it satisfies a given goal with some probability. In this paper we willwhether it is flawed.

show how this can be achieved in a logical framework. In particular, All actions are always possible, but may result in different effects.
low-level processes are modelled as prograng3®LOG, a prob- paint makes PArue (and BLfalse) with probability 0.95 if the wid-
abilistic variant of the action languageOLOG. High-level plans get was not already processed. Otherwise, it causes an execution er-
are like ordinaryGOLOG programs except that during projection ror (ER).ship andreject always make PRrue, ship makes ER true

the names of low-level processes are replaced by &OLOG- if FL holds, andreject makes ERrueif FL does not hold.

definitions. In this examplepaint, ship, reject, andinspect are considered low-
) level processes which we assume the robot is able to perform, subject
1 Introduction to the uncertainties as outlined above. Also, during execution we as-

The actions of a robot like lifting an object are often best thoughfUMe the robot has direct access to the value of OK, which is set
of as low-level processes with uncertain outcome. For example, tHgy inspect. We call OK directly observable. Suppose we hand the
lifting action may only succeed 80% of the time. A high-level robotoPot the following nondeterministic, high-level plafor an arbi-

plan can be seen as a description of a task which combines the§g"y number of times either paint or inspect; if OK holds afterwards
processes in an appropriate way. An elegant way to obtain plar{§en ship else reject. The question we want to answer is the follow-
which are applicable in many circumstances is to allow (a limited"d: how can the robot turn this plan into a program, which we take
amount of) nondeterminism such as “either do this or do that.” Fof0 be a deterministic variant of the pfafior which it can guarantee

a particular circumstance, it is then up to the robot to turn such at after execution of the program the gbal A PR A —ER holds

plan into a suitable executable program. By suitable we mean th#fith probability 0.957? _

the robot is able, through some form of projection, to determine that 10 attack this problem, we first model the low-level processes by
executing the program will satisfy a given goal with a sufficient de-M€ans of procedures in a probabilistic action language, which we
gree of probability. In this paper we will show how this can be done@ll PGOLOG. In a nutshell pGOLOG s the deterministic frag-

in a logical framework, in particular, by suitably modifying the ac- ment of GOLOG augmented with a new construct, which allows us
tion languagesOLOG [10], which has many desirable features sucht© express_that aprogram is gxecuted only with a certain prc_Jbablllty.
as nondeterminism and control structures familiar from conventiondpVen a faithful characterization of the low-level processes in terms
programming languages, yet does not address actions with uncerthRPGOLOG procedures, we can thenoject the effect of the activa-
outcomes. tion of these processes using their correspong@PLOG models.

To get a better feel for what we are aiming at, let us consider th&0reover, this projection mechanism allows us to assess the degree
following ship/reject-example (adapted from [3]), which we follow of belief in sentences like the above goal after the execution of a
throughout the paper: We are given a manufacturing robot with theGOLOG program. _
goal of having a widget painted (PA) and processed (PR). Processing N€Xt we introduce the languageGOLOG, which allows us to
widgets is accomplished by rejecting parts that are flawed (FL) oformulate nondetermlnlst_lc hlgh-lgvgl plans such as the one above.
shipping parts that are not flawed. The robot also has an action paifif’® Syntax oimGOLOG is very similar to the originaGOLOG,
that usually makes PA true. Initially, all widgets are flawed iff they With the names of low-level processes modelleg®OLOG tak-
are blemished (BL), and the probability of being flawed is 0.3. ing on the role_ of primitive actions. A robot who wants to a_lchleve a

Although the robot cannot tell directly if the widget is flawed, the C€ain goal _W|th a given plan considers deterministic variants P of
actioninspect can be used to determine whether or not it is blem-the plan, which areGOLOG programs, and does the following: (1)
ished.inspect reports-OK if the widget is blemished an@K ifnot. ~ USINg projection it deterr_nlnes v_vhether th_e goal is achievable with
The inspect action can be used to decide whether or not the widggtfficiently high probability; (2) in case this succeeds use P as the

1 Department of Computer Science, Aachen University of Technology, D2 One deterministic variant is tmspect, thenpaint, followed by the condi-
52056 Aachen, Germanygrosskreutz,gerhaj@cs.rwth-aachen.de tional.

program to be executed, otherwise consider a different P. Note that In order to specify that processes ligaint may result in different

the resulting P, if it exists, only mentions processes which we assunpossible outcomeq®GOLOG provides a new probabilistic branch-
the robot is able to initiate likpaint. P may also contain conditionals ing instruction, that did not exist iIGOLOG: prob(p, o1, 02). Its

like if OK then ship else rgject. We require that the condition - intended meaning is to execute programwith probability p, and
rectly observable by the robot, as is the case for OK, but not for BL, o2 with probability 1 — p. This allows us to specify a probabilis-
for example. (We remark that our approach captures a restricted fortit process as pGOLOG program, where the different probabilis-

of sensing. In the example, sensing happens through the activationtid branches of the program correspond to different outcomes of the
theinspect process, which has the effect of providing the executiorprocess. We only consider the following deterministic fragment of

system with arOK or —OK answer.) GOLOG together with the newrob-instruction.

The rest of the paper is organized as follows. After a very brief in- o primitive action
troduction to the situation calculus, we defip@OLOG and show, #? waitftest action
starting from a probabilistic model of what the world looks like seq(o1,02) sequence
initially, how projection works inpGOLOG. Next we introduce if (6, 0’1702) conditional
mMGOLOG and the mapping from a nondeterministitGOLOG while(¢, o) loop

plan into an appropriate deterministic program. After briefly touch-

;) . . g prob(p,o1,02) probabilistic execution
ing on experimental results, the paper ends with a discussion of re-

lated work and concluding remarks. Besides these instructions, we provide a restricted notion of proce-
dures inpGOLOG, where procedure names can be used like atomic
2 The Situation Calculus actions. To do so, we use a special function symbelk: and write

axioms of the formproc(3) = o to express that there is a procedure
One increasingly popular language for representing and reasonifgmed3 whose body consists of tiESOLOG programo. Note that
about the effects of actions is the situation calculus [13]. We will onlythjs necessitates the reification of programs as first order terms in the
go over the language briefly here: all terms in the language are of SQEnguage, an issue we gloss over completely h&w. the purpose
ordinary objects, actions, situations, or réal$iere is a special con- of this paper, we do not allow (recursive) procedure calls within pro-
stantSy used to denote thigitial situation, namely that situation in cedure bodies and restrict to procedures that take no arguments.
which no actions have yet occurred; there is a distinguished binary sing theprob instruction, it is possible to model processes with
function symboHo wheredo(a, s) denotes the successor situation of yncertain effects asGOLOG procedures. The following procedure

s resulting from performing actioa in s; relations whose truth val- models thepaint process informally described in the introductfon.
ues vary from situation to situation are calfagnts, and are denoted

by predicate symbols taking a situation term as their last argument; PT?C(Pai"t) = _ .
finally, there is a special predicaess(a, s) used to state that action if (PR, stER, prob(0.95, seq(setPA, clipBL)))

a is executable in situatios . . .) .
Within this language, we can formulate theories which describe0rmal Semantics - The semantics GOLOG is defined using a

how the world changes as the result of the available actions. OrgP-called transition semantics similar @nGolog [3]. It is based
possibility is abasic action theory of the following form [11]: on d_eflnlng single ste_ps of pomputano_n_ and, as we use a proba-
bilistic framework, their relative probability. We define a function

* Axioms describing the initial situatiorfp. _ transPr(o, 5,8, s") which, roughly, yields the transition probability
. ACtIO_n precondltlon axioms, one for each primitive actigrthar- associated with a given prograsnand situations as well as a new
acterizingPoss(a, s). situations’ that results from executing's first primitive action ins,

e Successor state axioms, one for each fluénstating under what and a new prograni that represents what remainsoffter having
conditionsF (7, do(a, s)) holds as a function of what holds in sit- performed that action. Letil be the empty programy a primitive
uations. These take the place of the so-called effect aXiomS, buaction' andﬂ a procedure name. Throughout the paper we assume
also provide a solution to the frame problem [15]. that free variables are universally quantified, unless stated otherwise.

e Domain closure and unique names axioms for the primitive ac- . ,
tions, as well as unique names axioms for situations. transPr(nil, s,6,5') =0

transPr(a,s,d,s') =
if Poss(a,s) Ad = nil As' = do(a, s) then 1 else 0
3 pGOLOG - modelling low-level processes. transPr(¢?,s,8,s') =

Most processes in real-world applications need to be described at if ¢(s) A6 =nil A s’ = s then 1 else 0’

a level of detail involving many atomic actions interacting in com-transPr(if(¢,01,02),5,0,5") =

plicated ways. To describe such processes, we introdGLOG, if ¢(s) then transPr(o1,s,d,s') else transPr(o2,s,d,s")

a probabilistic descend_ant of the_ hlgh-_level programming languagg-ansPr(seq(o1,02),s,8,s') =

GOLOG [10]. GOLOG is a special action programming language if § = seq(¢', o2) then transPr(oy,s,d',s")

which offers constructs such as sequences, iterations and recursiveelse if Final(o1,s) then transPr(os,s,d,s') else 0

procedures to d'efln(_a complex actlon_s. Most importantly, _|t is entlrel)émns Pr(B,s,8,s') = transPr(proc(8), s, 8, s')

based on the situation calculus, which allows us to project the out-

come of a program, that is, reason about how the world evolves whensee [5] for details. The reification @iGOLOG programs is also necessary

a program is executed. for the definition of the semantics pfSOLOG as done below.

5 We assume successor state axioms that ensure that the truth vatueisf

3 While the reals are not normally part of the situation calculus, we need themonly affected by the primitive actiorsetPA andclipPA, whose effect is to
to represent probabilities. For simplicity, the reals are not axiomatized and make ittrue resp.false. Similarly for the other fluents.

we assume their standard interpretations together with the usual operatidh#/e writeprob(p, o) as a shorthand forrob(p, o, nil). Similarly, we write
and ordering relations. if(¢,) forif(¢, a,nil) andseq(a, 3,7v) for seq(a, seq(B,7)).

transPr(while(p, o), s,0,5') = 4 Probabilistic projectionsin pGOLOG
if ¢(s) A d = seq(8', while(p, o))

then transPr(c, s, 8, s') else 0 So far the language allows us to talk only about how the actual world

evolves, starting in the initial situatiofy. But in scenarios like the
. f ship/reject-example, there is uncertainty about the initial situation.
1f§ =01As 5 do(tOSSHead} s) then p else To take this into account, we opt for a probabilistic characterization
if § = 02 A 5" = do(tossTail(start, s) then 1 —pelse 0 of an agent’s epistemic state. More specifically, we characterize an
Intuitively, a program that consists of a single atomic actiore- epistemic state by set of situations considered possible, and theike-
sults in the execution of and an empty remaining program with |ihood assigned to the different possibilities. We thereby follow [1],
probability 1 iff o is executable. The execution &fq(o1,02) in's who introduce a binary functional fluepts’, s) which can be read
may result in any successor situation that could be reached by thg «in situations, the agent thinks that is possible with probability
execution ofoy, with a remaining programeq(¢', o2), whered’ is (s’ 5) 719 All weights must be non-negative and situations consid-
what remains of ; or, if o, is final, it just corresponds to the execu- ered impossible will be given weight 0. Note that we are restricting
tion of 7. A procedure namg is simply replaced by its body, which gurselves to discrete probability distributions. To keep things simple,
is the value ofroc(/3). Finally, the execution ofrob(p,o1,02) re- we additionally require that the probabilities of all situations consid-
sults in the execution of a dummy acfiolwssHead or tossTail ered possible ifS, sum to 1, that is, we need the following axid:
with probability p resp.1 — p with remaining prograna, resp.os.°
Besides the specification of which transitions are possible, we ZP(S’SO) =1 ©)
have to define which configuratiogs, s) are final, meaning that the s o L. o
computation can be considered completed when a final configuration S 8N €xample, we describe the initial belief in the ship/reject do-
is reached. This is denoted by the predicAt@#@al(o, s). Here we main. Here, th_e world IS |_n|t|ally in one of two_stateﬂ an_d 52
only consider some of the definitions, wherés a primitive action. which occur with probability0.3 and0.7, respectively. In this sim-

transPr(prob(p,o1,02),s,0,8') =

Final(a,s) = FALSE Final(nil, s) = TRUE ple §cenar|o, these are _the on_Iy p055|b|I|t|es_, all other situations have
. _ likelihood 0. The following axiom makes this precise together with

Final(prob(p, o1, 02, 5)) = FALSE what holds and does not hold in each of the two stat

Final(while(p,a), s) = ¢(s) A Final(o, s) V —é(s) atholds a oes notho each ofthe two states.

So far, we have only defined which successor configurations can Js1,82Vs.5 # st As# s2 Dp(s,50) =0A
be reached through a single transition. Next, we definens- Ap(s1,S0) = 0.3 A p(s2,S0) = 0.7
Pr*(5,s,68',s'), which represents the probability to reach a configu- ~ AFL(s1) A BL(s1) A =PA(s1) A =PR(s1) A =ER(s1)
rations(d', s') by a sequence of transitions, starting in configuration =~ A7FL(s2) A "BL(s2) A 7PA(s2) A 2PR(s2) A 2 ER(sz2)

(0, s), that is, the transitive closure ofansPr. Now that we have defined which situations may result from the
transPr*(8,s,8',s') = p = Vi[... D t(8,s,0',s') = p]V execution of apGOLOG program, and which situations the agent
p=0A-3p Vi[...Dt(d,s,8,s)=p] considers possible initially, we turn our attention to another question:

where the ellipsis stands for the universal closure of the followin

d;ow probable, from the point of view of an agent with a probabilistic
formulas:

elief state, is it thap will hold after the execution of pGOLOG
#(5,5,8,5) = 1 @ programa_’? Tq determ_ine this pr_obability, we project a'pro_gram
T wrt each situation considered possible, weighted by the likelihood
) assigned by.
p1,p2 > 0D t(6,5,0',5") = p1*p2 Formally, we make use of the special situation tewmw. Let
Basically, this formula says that i) if there is a path of nonzero tran¢[now] be a formula whose only term of sort situationnisw. We
sitions from(d, s) to (&', s, thentransPr*(§,s,8',s') is equal to write Bel(¢[now], s, o) to denote the belief that holds after the
the product of the transition probabilitigsalong this path (which —execution ofo in situations. Note that this is merely a projection of
we call its weight), otherwise it is zero; and i) there are no two pathghe effects o, no action actually gets executeBlel (¢[now], s, o)
from one configuration to another with different weights. is an abbreviation for the following term expressible in second-order
If there is a path of nonzero transitions, then (i) obtains, roughlyjogic.
by “iterating” through Formula 2, making use of the reflexivitytof S, s pinai(sr sy npnow|s3P(8', 8) * transPr*(a,s', 8", s")
(Formula 1) for the case where the_re is exactly one trqq3|t|on from Bel(¢[now], s, o) is defined to be the weight of all paths that
(6, 8) to (¢', s"). If_there is no path_wnhoqt nonzero transitions, then raach a final configuratiof”, ") that fulfills [now|s"'] (= ¢ with
one can always find a functian which satisfies the ellipsis such that ,, ., replaced bys”), starting from a possible initial configuration

t1(d,5,8',s") = 0. HencetransPr*(4,s,4", s') = 0. (o,s"), weighted by the agent’s belief il. Note that for all situa-

_To see why ii) holds, let us assume that there are two paths Witlons 5, there is at most one final configuration reachable by a path
different weights from(d, s) to (&', s"). Then no functiont ex- ity positive weight. Through this definition we are restricting our-
ists that fat'Sf'e,S F,ormula 2; therefard]...] is vacuouslytrue, and gg|yes to discrete probability distributions, where the probability of a
transPr”(4,s,6',s") = pforall p, a contradiction. Note thatto pre- et can be computed as the sum of the probabilities of the elements
vent this from happening when executingrab even ifo; = o2, we of the set.
introduce the dummy actiortsss Head andtossT ail which ensure For example, let us calculate the belief that the widget is painted,
that the situations associated withando are different. processed and no execution error occureeds() after the execution
7 ¢ is a situation calculus formula with all situation arguments suppresse®f oronby1 = seq(paint, ship). Here is the specification of tship

¢(s) is obtained from¢ by restorings as the situation argument in all process as pGOLOG procedure:

fluents ofep.
8 tossHead or tossT'ail have no effects and are always possible. 10 Having more than one initial situation means that Reiter’s induction axiom
9 The reader familiar with [5] might wonder why we don’t define a synchro- for situations [11] no longer holds, just as in [1].

nized version oprob. The reason is explained when we definensPr*. 11 see [1] for how to characterize such equations in second-order logic.

t(d,s,6%,5") = p2 AtransPr(6*,s",8' ") = p1 A

Now that we have explained the restricted form of sensing that we
consider, we turn back to the definitionmafGOLOG. An mGOLOG

Let AX be the set of foundational axioms of Section 2 togetherprogram consists gGOLOG procedure nam&s testsconcerning
with the definitions oftransPr, Final, transPr* and Axiom 3. only directly observable fluents, sequencing, conditionals and nonde-
Further, lefl" be the set of axioms AX together with successor statéderministic instructions.

proc(ship) = seq(if(F L, setER), setPR))

axiom for the fluents, precondition axioms stating that all set and clip 8 pGOLOG procedure name
actions are always possible, the definitions ofplOLOG-proc’s #? directly observable test

used and the above axiom describing the initial situations. Then, seq(o1,02) sequence

T |= Bel(¢,[now], So, Oropsy1) = 0.665 if(¢,01,02) conditional (directly obs.)

o) or(o1,02) nondeterministic choice
This is determined as follows: o* nondeterministic iteration
If the world is as described is;, the only final configurations that (v, o) nondeterministic argument choice

can be reached along a path of transitions with positive weight con- Itin th ti f “ signifi
sist of the situations|[tossHead, setPA, clipBL, setER, setPR, 51]'2 or 37"(;71, (.72.) {na)t/ reiu m& € execu I(?[n otamy. o signiles Pon-
[tossTail, s=tER, setPR, s1] with remaining programil. If the world is as eterministic iteration o, 1.€. €xeculey Zero, one or more imes.

described irs2, the possible results afss Head, setPA, clipBL, setPR, s] Tr(y, U? means thab is to he executed with an arbltra_ry = but f'xef’

(= s,x) OF [tossTail, PR ss], again with remaining pro- binding forv. As tests, we only allow Boolear_1 comblnapons of di-

gram nil. The situation s, is the only one that fulfils¢y, and rectly observable f_Iuents. That means that durlng execution, the rqbot

transPr(0yoppy1 Sos nil, sox) iS qual 100.95 % 0.7 = 0.665, has access tp their truth value t_hrough appropriate means. Addition-
ally, we require that initially all directly observable fluents &ase.

Theorem 1 For all g[now] and o: AX = Bel(¢[now], So, o) < 1. The semantics of nondeterministic plans is defined by specifying

Proof: The proof relies on the fact tha s sytransPr(o,s,d,s') <1, which determistiq:)GOLOQ programs are Iggedeterministic vari-.
i.e. for each configuration the set of directly reachable configurations hasaits of the plan. To specify this relationship, we use the predicate

total probability that is no more than 1. Additionally, if a configuration is ¢€t(IN P, o), meaning that isale_ggl deterministic program wrt plan
final it has no successor configuration. N P. Note that through the restriction of tests to directly observables

all deterministic variants are executable: all tests can be evaluated,
they do not mentioprob instructions and each corresponds to the
activation of a low-level process.

One of the key features of high-level programming is the ability to det(3, 3) for procedure names and tests
make use of nondeterministic instructions. It is then the task of an det(seq(01,02), seq(51,62)) = det(o1,01) A det(o2, 52)
interpreter to determine the appropriate actions to perform, thereby

5 Nondeter ministic high-level plans

making reasoned decisions. To this end, we define the nondetermin-dd(lfw’ 01,02),if($,01,02)) = det(o1,01) A det (o, 62)
istic high-level plan languagmGOLOG. Although anmGOLOG det(or(01,02),0) = det(o1,0) V det(02,0)

plan looks like aGOLOG plan, there are differences. First, while ~ det(c”,d) =6 = nil V det(seq(c”, o), d)

aGOLOG program is made up of atomic actionsmMGOLOG the det(mw(v,0),d) = Jz.det(oy, d)

names of low-level processes take their role. Second, the fluents men-
tioned in anmGOLOG program are restricted, as we will explain

below.
. . . with success probability 0.95, using the high-level plaiP =
One of our goals is that amGOLOG interpreter determines a seq(or(paint, inspect)” i f(OK, ship, reject)).ls To do so, we

program that can branch on a sensed value during execution. In con- / S) .
trast, aGOLOG plan is mapped to a fixed sequence of primitive make use of the predicatéan which is defined as follows:
actions. At this point, we have to explain what we mean by sensing. plan(¢,p,s, NP,o) = det(NP,o) A Bel(¢,s,0) > p

To us, sensing means: activate a sensor. This “activation” has as gt " be defined as above andX,.; be the axiomatization afet.

effect a sensor reading. In the example, sensing happens through g existence of a feasibiESOLOG program can now be stated as:
activation of theinspect process, whose effect is to provide @K
I'U AXyet = Jo.plan(GOAL, p, So, NP, o)

or =OK answer. This answer is captured by setting the value of the
fluent OK. Arguably, there is no uncertainty about the value of this Inour exampleseq(inspect, paint, paint,if (OK, ship, reject)
answer. Therefore, we distinguish such fluents from other fluents ajould be a feasible program. Note that this solution, like every
call themdirectly observable. Directly observable fluents are such Program derived from amGOLOG plan, only mentions directly
that the agent always has perfect information about them - like th@bservable fluents and low-level procedures, and therefore is
display of one’s watch or a fuel gauge in the Car. assumed to be executable. Again, we stress that during the actual
While, during real execution, the actual low-levekpect process ~ €xecution the procedurepdint, inspect etc) are treated as atomic.
provides the answer, for the task of projection we model the behavidpdeed, their procedure body cannot be executed, because we have
of the sensor by means of a probab”is’[ic program. Here, the effect ¢f0 evidence Concerning the value of non-observable fluents like BL.
inspect is to set the directly observable fluent OK correctly with These procedure definitions are part of the agent’s model of the
high probability, as discussed in the introduction. world, only intended to project the prograsm During execution the

. | low-level i .
proc(inspect) = i f(BL, prob(0.9, dipOK, sOK), sstOK)) actual low-level processes are activated

Using the predicatedet and Bel we can now ask for a deter-
ministic varianto that achieves3OAL = PA AN PR A —-ER

14 \We assume that for each low-level process, theri8@LOG procedure

12 we write a1, ...an , 8] instead ofdo(ay, , do(..., do(a1, 5)...). that models how it affects the world.
13 For those familiar with [1], note that we do not model how the epistemic'® Note that, as explained in [3], without making use of some kind of sensing
state of the sensing agent, which is characterized by the fiyettanges. it would be impossible to come up with a plan that has a success probability

In particular, we have no successor state axionpfor >0.7.

We have implemented anGOLOG interpreter in PROLOG, and we introducednGOLOG, a high-level plan language that provides
applied it to some probabilistic domains (see [5] for subtle differ-nondeterministic instructions. UnlikBOLOG, whose primitive ac-
ences between an implementation and the theory due to PROLO@sens are those of the situation-calculus domain theory, the primitive
closed world assumption). Using this interpreter, we were able tactions ofmGOLOG are the names of low-level processes. Addi-
solve the above example in 0.13 seconds. Of course, we have to atbnally, tests inmGOLOG programs are restricted to directly ob-
mit that the amount of nondeterminism that can effectively be hanservable fluents. We show thaGOLOG can be used to determine
dled within our approach is limited. That means that the programmea pGOLOG program that has a sufficient probability to achieve a
must carefully consider the use @f, = andx* instructions. given goal through projection of the deterministic variants of the
mGOLOG plan, whereas the effects of the activation of low-level
processes is simulated using the correspon@iB@®LOG models.

The resulting program is directly executable and branches on the an-
Within the situation calculus Levesque [9] considers plans with loopswers of the sensor processes activated.

and conditionals which are also assumed to be directly executable. Finally, a promising property of our framework is that it is eas-
Lakemeyer [8] proposes to map nondeterministic plans to conditionaly amenable to Monte-Carlo methods for the estimation of the suc-
action trees, which allows for branching during execution. In bothcess probability of @GOLOG program (unless, of course, exact as-
cases, uncertainty is not considered. Acting under uncertainty lieSessment is required). In a nutshell, Monte-Carlo simulation can be
at the heart of POMDPs and they deal with these aspects in a mogghieved by pursuing only one of the branches pfeb instruction
exhaustive way, but the computational cost is prohibitive already if@jepending on the outcome of a random number toss. The appealing
relatively small domains (e.g. [4]). Note that unlike POMDPs andproperty of Monte-Carlo methods is that the number of samples to
probabilistic planners like C-Buridan [3] our framework is fully logic be considered depends only on the desired precision of the estimate,

6 Conclusionsand related work

based and much more expressive since we are not restricted to prop@t on the length of the program.

sitional representations. RecentlyTGolog [2] has been proposed
as a way to integrate the theory of MDPs within B®LOG frame-
work. The integration of decision theory into the situation calculus
has also been investigated in [14]. [1]

The work of [1] on noisy sensors and effectors may seem like an
alternative to our treatment of probabilistic outcomes. However, th >
topic of our approach and theirs is different. While they are con-
cerned about how the epistemic state (i.e. the flp¢ichanges as a
result of the execution of noisy actions and the perception of noisyi3l
sensor readings, we completely ignore this aspect. Instead, we model
sensors as probabilistic procedures that are activated and whose g
fect is to set some directly observable fluents. These procedures are
intended to be used only for the task of projection. During execu-
tion, their activation is replaced by the actual activation of the robotst®!
low-level processes. For this task, our approach has the advantage
of being simpler than [13® Last but certainly not least, [1] does not
even consider projections of programs ap@GOLOG.

As for the connection to probabilistic planning without sensing,
we compared our approach with Buridan [7] and MAXPLAN [12] (7]
with persuasive resulté The comparision with state-of-the-art prob- 8
abilistic planners that accounts for sensing (cf [6, 16]) is difficult
becausenGOLOG does not provide means to automatically synthe-
size branch conditions. (9]

Summarizing, we have proposp@&OLOG, a probabilistic exten- [10]
sion of GOLOG. UsingpGOLOG, we were able to model low-level
processes with uncertain outcome as probabilistic programs. We have
then shown how to characterize the epistemic state of an agent aid!
have provided a projection mechanism that allows us to assess h%]
probable itis that a sentence holds after the executiorp&@LOG
program. Having definedGOLOG and the projection mechanism, [13]

(6]

16 While [1] makes use of nondeterministicinstructions, action-likelihood
axioms () and observation-indistinguishability axiom®1) in order to
deal with noisy sensors and effectop§&GOLOG manages solely with the
prob instruction.

17 We used the BMB/TOILET and S.Ip. GRIPPERSCeENarios to compare [15]
the implementations on Pentium 111 500 Mhz Linux workstation. Buridan
solved the problems in 0.21 to 41 seconds (depending on the assessment
algorithm used) resp. 0.41 to 682 seconds, while MAXPLAN took 0.4 resp.
0.3 seconds to solve the problems. Even though we didn’t make use of an]
domain knowledge and used (action,,action,)* asmGOLOG
plans, our implementation outperformed the other implementations by an
order of magnitude: it solved the problems in 0.022 resp. 0.0097 seconds.

[14]

REFERENCES

F. Bacchus, J.Y. Halpern, and H. Levesque, ‘Reasoning about noisy
sensors and effectors in the situation calculdstificial Intelligence
111(1-2), (1999).

C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun, ‘Decision-
theoretic, high-level agent programming in the situation calculus’, in
AAAI’' 2000, (2000).

D. Draper, S. Hanks, and D. Weld, ‘Probabilistic planning with in-
formation gathering and contingent execution’, Rroc. of AIPS 94,
(1994).

H. Geffner and B. Bonet, ‘High-level planning and control with incom-
plete information using pomdps’, iRroc. Fall AAAI Symposium on
Cognitive Robotics, (1998).

Guiseppe De Giacomo, Yves Lesperance, and Hector J Levesque,
‘Congolog, a concurrent programming language based on the situa-
tion calculus: foundations’, Technical report, University of Toronto,
http://ww. cs.toronto. edu/ cogrobo/,(1999).

Emmanuel Guere and Rachid Alami, ‘A possibilistic planner that deals
with non-determinism and contingency’, [8CAI’ 99, (1999).

N. Kushmerick, S. Hanks, and D. Weld, ‘An algorithm for probabilistic
planning’, Artificial Intelligence, 76, 239-286, (1995).

G. Lakemeyer, ‘On sensing and off-line interpreting in golog’Log-

ical Foundations for Cognitive Agents, eds., H. Levesque and F. Pirri,
Springer, (1999).

H. J. Levesque, ‘What is planning in the presence of sensing’, in
AAAI' 96, (1996).

Hector J. Levesque, Raymond Reiter, Yves Lesprance, Fangzhen Lin,
and Richard Scherl, ‘Golog: A logic programming language for dy-
namic domains’Journal of Logic Programming, 31, 59-84, (1997).

F. Lin and R. Reiter, ‘State constraints revisitedburnal of logic and
computation, 4(5), 655-678, (1994).

Stephen M. Majercik and Michael L. Littman, ‘Maxplan: A new ap-
proach to probabilistic planning’, iAIPS 98, (1998).

J. McCarthy, ‘Situations, actions and causal laws’, Technical report,
Stanford University. Reprinted 1968 in Semantic Information Process-
ing (M.Minske ed.), MIT Press, (1963).

David Poole, ‘Decision theory, the situation calculus and conditional
plans’,Linkoping Electronic Articlesin Computer and Information Sci-

ence, 3(8), (1998). URL: http://www.ep.liu.se/eal/cis/1998/008/.

Ray Reiter, ‘The frame problem in the situation calculus: a simple solu-
tion (sometimes) and a ccompleteness result for goal regressiolm’, in
Artificial Intelligence and Mathematic Theory of Computation: Papers

in Honor of John McCarthy, (1991).

D. Weld, C. Anderson, and D. Smith, ‘Extending graphplan to handle
uncertainty and sensing actions’,AMAIl’ 98, (1998).

