An Embedding of ConGolog in 3APL

Koen V. Hindriks ! and Yves Lesgrance and Hector Levesqué

Abstract. Severa high-level programming languages for program-
ming agents and robots have been proposed in recent years. Each of
these languages has its own features and merits. It is till difficult,
however, to compare different programming frameworks and evalu-
ate the relative benefits and disadvantages of these frameworks. In
this paper, we present a general method for comparing agent pro-
gramming frameworks based on a notion of bisimulation, and use it
to formally compare the languages ConGolog and 3APL.

1 Introduction

A number of proposals for agent programming languages exist in the
literature. Some of these languages are based on a notion of agent
that associates a mental state consisting of beliefs and goals with
the agent [11, 10, 5]. Although on first sight these languages may
seem quite different, in[2, 4] it isshown that they are closely related.
An interesting alternative for agent programming, based on alogical
perspective, is offered by the concurrent language ConGolog [1]. In
this paper, we present a formal comparison of ConGolog with the
agent language 3APL.

ConGolog is a language for high-level robot programming. Con-
Golog, likeits predecessor Golog [6], is an extension of the situation
calculus that supports complex actions as well as a logic program-
ming language for agents and robots. 3APL isan agent programming
language and its semantics offers a more operationa perspective on
agents. The language is a combination of logic and imperative pro-
gramming and provides operators for beliefs, goals and plans of an
agent. We show that ConGolog and 3APL are closely related lan-
guages by constructing an embedding of ConGolog in 3APL. This
embedding shows how ConGolog programs can be trandated into
equivalent 3APL programs. A number of interesting issues need to
be resolved to construct the embedding. These include a compari-
son of statesin 3APL with situations in ConGolog, the form of basic
action theories, complete vs. incomplete knowledge, and execution
models specifying the flow of control in agent programs.

2 The Situation Calculus

ConGolog is a programming language specified in and based upon
the situation calculus [8]. ConGolog can be viewed upon as an ex-
tension of basic action theories in the situation calculusto area pro-
gramming language, in the sensethat it allowsfor more complex pro-
gram structures built from basic actions. We do not present a detailed

L Ingtitute of Information & Computing Sciences, University Utrecht, Pad-
ualaan 14, De Uithof, Postbus 80 089, 3508 TB Utrecht, Holland, email:
koenh@cs.uu.nl

2 Department of Computer Science, York University, 4700 Keele Strest,
North York, Ontario, Canada M3J 1P3, email: lesperan@cs.yorku.ca

3 Department of Computer Science, 6 King’s College Road, Pratt Building,
Room PT290C, University of Toronto, Toronto, Ontario M5S 3H5, email:
hector@cs.toronto.edu

overview of the situation calculus here (see[9]), but only give an out-
line of itsmain features. The situation calculusisathree-sorted, first-
order logical theory (extended with some second order features). The
language of the situation calculus Lsicac has three sorts: situations,
actions, and objects. The intended interpretation of situations is that
they are action histories. Actions are deterministic transitions from
one situation to the next. The sort object is a catch-all sort for every-
thing that is not a situation or an action. A constant § of sort situa-
tion is used to denote the initial situation, and a function do(a, s) of
sort : action x situation — situation is used to denote the successor
situation resulting from performing action a in situation s. A special
predicate Poss(a, s) is used to state that a can be executed in s. Predi-
cate symbols of sort object” x situation whose truth values may vary
from situation to situation are called relational fluents. In this paper,
we do not allow functional fluents, i.e. functions whose values varies
from situation to situation.

In the sequel, we will often be interested in the formulas that hold
in the ‘current’ situation. To identify the formulas that talk about a
particular situation, we introduce the notions of a uniform term and
uniform formula. A term or formulathat is uniform in a situation S
only refersto thissituation S.

Definition 2.1 Let Sbe any term of sort situation. Then the set Ts of
terms uniformin Sisinductively defined by: (i) S € Ts, (ii) if aterm
t does not mention aterm of sort situation, thent € Ts, (iii) if f isan
n-ary function symbol other thando and t;, ..., t, € Ts whose sorts
are appropriate for f, then f (t1, ..., t) € Ts.

The set Ls of formulas uniform in Sisinductively defined by: (i) if
t1,t2 € Ts are of the same sort, thent; = t; € Ls, (ii) if Pisan
n-ary predicate symbol, other than Poss, and ti, ...,tn € Ts are of
the appropriate sorts, then P(t1,...,tn) € Ls (iii) if p1,p2 € Ls,
then -1, o1 A p2 € Ls(iv) if ¢ € Lsand xisavariable not of sort
situation, then V x(¢) € Ls.

Weintroduce aspecial constant now of sort situation and denote by
Lnow the set of formulas uniform in now. Theintended interpretation
of this constant isthat it denotes the current situation. If o isany (set
of) formula(s) that is uniform in now, we denote by o[g the (set of)
formula(s) that is obtained by substituting Sfor now in o. Note that
o[gisuniforminS.

3 Basic Action Theories

The basic intuitions associated with situations are captured by anum-
ber of foundational axioms (cf. [9]), but these are not discussed here
since they do not play an important role in this paper. We are inter-
ested in the situation calculus as a framework for specifying actions,
and we will use theories of a particular type for this. Axioms of the
form Poss(A(X), s) = IIa(X, s) define the predicate Poss and specify

when an action is enabled, i.e. can be executed. They are called ac-
tion precondition axioms. The formula IIa(X, s) must be uniform in
s to make sure that the preconditions of an action A(f) depend only
on the current situation s . Successor state axioms relate the value
of fluents in the situation that results from doing an action to their
value in the previous situation, and define the effects of executing an
action. They also provide asolution for the frame problem. These ax-
ioms are of the form F(X, do(a, s)) = ®r(X, a, s), where ®¢(X, a, S)
is aformula uniform in s. The uniformity condition on ®¢(X, a, s)
guarantees that the successor state (the database of formulasthat hold
in a situation) can be computed from the the previous state. Finally,
unique names axioms for actions are introduced to make sure that ac-
tion names refer to different actions and include axioms of the form
A(X) # B(Y) for any two action symbols A and B and axioms of the
form A(X) = A(Y) — X = ¥ for all action symbols A.

A basic action theory is a collection of these axioms. Our defini-
tion of abasic action theory dightly differs from the onein [7]. The
main difference is that we do not include the initial situation axioms
or initial database in the action theory.

Definition 3.1 A basic actiontheoryisaset A =X U AsU Az U
Auna Where X is a set of foundational axioms, Ag a set of successor
state axioms for relational fluents, one for each fluent, Aq a set of
action precondition axioms, one for each action symbol, and Auna @
set of unique names axioms for actions.

An initial database is a finite set of (first-order) formulas from
Lsitcalc that are uniformin .

One of the moreimportant reasons for excluding functional fluents
isthat in the presence of functional fluentsthe restriction that precon-
ditions depend only on the current state is easily violated. Substitu-
tion of functional fluents T for some of the parameters of an action
A(X) that refer to other situations than the ‘current’ situation S may
result in a precondition IIa(T, S) that is not uniform. For example,
by substituting the term loc(Ball, do(throw(Ball), §)) for x and sit-
uation § for sin Poss(goto(x), s) = reachable(x, s) we obtain the
precondition reachable(loc(Ball, do(throw(Ball), $)), &) which is
not uniformin &.

There is an important difference between situations in the
situation calculus and states in a state-based approached. The
difference is due to certain logical features of the situation calculus,
like quantification over situations and functional fluents. The main
characteristic of a state-based approach is that the action that is
performed and the current state completely determine the next state.
In contrast, successor state axioms and a database associated with a
situation S may not be enough to compute the database associated
with a successor situation do(A,S). As an example, consider:
corner (loc(Robot, do(goto(loc(Ball, do(trow(Ball), $)), S)))).
Thisformulaisuniformin do(goto(loc(Ball, do(trow(Ball), $)), S),
but cannot be evaluated by inspection of a single situa
tion. Informaly, the formula states that Robot is at location
loc(Ball, do(throw(Ball), S)), which is a corner, after going to
that location in situation . This formula, however, can only
be evaluated by inspecting the would-be situation resulting from
throwing the Ball in situation &, and checking whether the location
of the Ball in that situation is a corner, assuming that a goto action
alway's succeeds.

4 ConGolog

ConGolog is a logic programming language based on the situation
calculus. It extends basic action theories of the previous section with

operators for constructing complex actions. We discuss a subset of
al the programming constructs in [1]. Parallel and prioritised par-
alel composition are dealt with in [3]. Most of the programming
constructs listed below are well-known. The pick operator 7x.d is
an operator that nondeterministically selects a value for x and then
continues with the execution of §.

Definition 4.1 The set of open programs P isinductively defined by:

primitive actionsa € P,

tests ¢? € P, for ¢ € Lnow,

sequential composition (d1; d2) € Pif 1,02 € P,

nondeterministic choice (61 | §2) € Pif 61,02 € P,
nondeterministic choice of arguments

wX.0 € Pif § € Pand xisavariable of sort object,
procedure calls P(f),

e procedure definitions proc P(X) dp end.

By definition, the set of ConGolog programsis the set of closed pro-
gramsin P.

The meaning of these constructs is specified using a transition
semantics presented in a non-standard way. A new predicate Trans
is added to the language of the situation calculus. The predicate
Trans(d, s, d’,s) expresses that program § can perform a compu-
tation step in situation s resulting in a new situation s where §' is
the remaining program for execution. The semantics of ConGolog
programs is specified by means of a set of axioms for the predicate
Trans. The expression nil below denotes the ‘empty’ program, and
is used as an auxiliary construct in the definition of the semantics.
In the definition of the semantics, the predicate Final (4, s) is used to
express that program ¢ may legally terminate in situation s.

Definition 4.2 Trans and Final are axiomatised by:*

The Empty Program:
Trans(nil, s, §’,s') = False,
Final (nil, s) = True
Basic Actions:
Trans(a, s,d’,s) = Poss(a, s) A &' = nil AS = do(a, s),
Final(a, s) = False
Tests:
Trans(¢?,s,8",S) = p[s] Ad =nil Ad =5,
Final(¢?,s) = False
Sequential Composition:
Trans(d1; 62,5,8',8) =
37.0" = (y; 62) A Trans(d1, s,7,9)V
Final(81,s) A Trans(d2,s,d',S),
Final(§1; d2,5) = Final(d1,s) A Final(d2,s)
Nondeterministic Choice:
Trans(d; | d2,5,d',5) =
Trans(d1,s,d’,5) V Trans(d2, s, 8, S),
Final (01 | d2,s) = Final(d1,s) V Final (42, s)
Nondeterministic Choice of Argument:
Trans(nx.4,s,46',9) = Ax.Trans(d, s,4', 9),
Final (mx.d,s) = Ax.Final (4, s),
Procedure Calls:
Trans(P(), s, ¢,) = Trans((dp)%, 5,0,),
Final (P(T),s) = Final((dp)?, 9).

4 Formally, an encoding of ConGolog programs into terms of the first-order
language Lgicalc iSrequired, asisdonein [1]. However, since the detailsin
this paper are amost completely the same, for notational convenience we
use the programs themselves in the definitions bel ow.

where dp isthe body of the procedure P and (e)? is the program &p
with variables X simultaneously substituted with .

The definition of Trans with respect to procedure calls requires
some explanation. The definition differs from the second-order defi-
nition given in[1], but is based on the first-order version presented in
that same paper. Procedure definitions are assumed to be global, and
we do not allow nesting of such definitionsin this paper. A first-order
definition of the procedure semantics only works for the restricted
type of procedure definitions that are guarded. A formal definition
of thisnotion is presented in [1]. Informally, a guarded procedure is
a procedure that never does more than a fixed number of procedure
callsbefore executing an action or test. From now on, we assume that
all procedure definitions are guarded. Also note that no transition is
associated with the expansion of aprocedure call into its body, afea
ture of both the second-order and the first-order definition.

5 The Agent Programming Language 3APL

3APL (pronounced "triple-a-p-1") is an agent programming language
and is acombination of imperative programming and logic program-
ming. We want to emphasise that 3APL is a programming language,
and not alogical language like the situation calculus.

3APL agents or programs are built from similar constructs as the
program constructs used in ConGolog programs, apart from some
minor differences in the naming of these constructs. 3APL has facil-
ities corresponding to basic actions A(T), tests ¢?, sequential compo-
sition ; , nondeterministic choice + and parallel composition. 3APL
has similar facilities for recursive procedures as ConGolog, but also
allowsfor more general rulesto modify programsor plans of an agent
in arbitrary ways.

One of the more important differences between ConGolog and
3APL is the presence of the wx operator in ConGolog and the ab-
sence of such aconstruct in 3APL which gives rise to quite different
parameter mechanisms in the two programming languages. Whereas
in ConGolog the 7x operator is used to nondeterministically ‘guess
values for variables bound by the operator, in 3APL tests are used to
compute values for free variables. Moreover, whereas the 7 operator
provides for an explicit scoping mechanism, the use of free variables
in 3APL is based on implicit scoping. To facilitate the construction
of an embedding of ConGolog in 3APL and to accommaodate for this
difference, below we introduce a construct random(x) which corre-
sponds to the nondeterministic guessing of avalue for variable x.

An agent in the language 3APL is defined as a tuple (w, o, R),
where 7w is a goal, o is a set of beliefs drawn from some knowl-
edge representation language £, and R is a set of rules of the form
m <+ ¢ | « wheren, " aregoasand p isabelief. A goa m
is an imperative-like program built from basic actions and tests just
like a ConGolog program. 3APL does not make any commitment to
a specific knowledge representation language £, but only assumes a
consequence relation = is associated with £ for deriving facts from
a belief base. For the purpose of simulating ConGolog, the knowl-
edge representation language L is specidised to Lnow, the language
of formulas uniform in now of the situation calculus, and = is the
usual consequence relation of first-order logic.

5.1 Semantics of 3APL

The operational semantics of 3APL isdefined by means of aPlotkin-
style transition system. A transition system inductively defines a
transition relation —» which is the analogue of the Trans predicate

of the ConGolog semanticsfor 3APL. It consists of aset of transition
rules which specify possible computation steps, denoted by —, that
are associated with each of the constructs of the language.

One of the differences between ConGolog and 3APL, as we will
see below, is that in ConGolog only the execution of basic actions
or tests give rise to a transition, whereas in 3APL the expansion of
aprocedure into its body also corresponds to a transition. To distin-
guish these types of transitions in 3APL, we define a labelled tran-

sition relation —», where the label | isA(Y) in case abasic action is
executed, | is e (the empty sequence) in case atest is executed, and |
isiinall other cases. Thelabel i is associated with the execution of a
random action and the expansion of a procedure into its body. From
the perspective of ConGolog, these transitions are not visible but are
considered implementation details and therefore labelled withi toin-
dicate that aso called internal or silent step has been performed. The
labelling of transitions of complex programs is derived from the ba-
sic ones. Labels are also used to keep track of the sequence of basic
actions that is executed during a computation of a 3APL program.

Thetransition relation —» isarelation on pairs (m, o) where r is
the current program or plan of the agent and o is the current belief
base. In the transition rules below, we use E to denote successful
termination, and we identify E; = with 7.

The programming language 3APL does not fix a specific set of ba-
sic actions, but allows a programmer to define its own set of actions.
In the semantics, only the type of actions is specified by a function
T. T isapartial function mapping basic actions and belief basesinto
belief bases and defines basic actions as belief updates. The seman-
tics thus abstracts from any particular specification of actions.

A test ¢7 allows an agent to introspect its beliefs. A test is evalu-
ated relative to the current beliefs of an agent and can aso be used to
compute bindings for free variables in the test as in logic program-
ming. These bindings are recorded in a substitution ~, and used to
instantiate variables for which a binding has been computed in the
remaining program. Technically this is implemented by associating
~ with — (notation: —»,). Substitutions implement the parameter
mechanism of 3APL. & isused to denote the empty substitution.

Definition 5.1
T(A®),0) =o' o | ¢y, dom(y) = free(¢)
(A®), o) 255 (,07) ($7,0) <, (E,0)

A random(x) action always succeeds and nondeterministically re-
turns an arbitrary binding for x. random(x) can be defined by the test
(P(x) V =P(x))?. The random action is labelled as a silent step, be-
cause we want to use it to simulate the pick operator 7, which in the
ConGolog semantics does not give rise to atransition.

Definition 5.2 Let t be aground term.
X isavariable

(random(x), o) — ey (E,0) (random(t), o) —+5 (E, o)

A sequence of two programs is executed by executing the first
program and passing bindings v computed by this program on to the
remaining program by applying ~y to it. The execution of a nondeter-
ministic choice goal consists in selecting one of the subgoals that is
enabled, executing this goal, and dropping the other. Only the rule
for the selection of the left subgoal is given.

Definition 5.3

(m1,0) =y (m,0") (m1,0) = (n,0")

(m1; mo,0) =5y (m); may,07) (m A+ w2, 0) =y (T, 07)

3APL practical reasoning rules operate on the goals of an agent. In
this paper, we only consider rulesof theform P(') « ¢ | m which
are similar to the recursive procedure definitions of ConGolog. For an
explanation of more general rules which allow arbitrary modification
of aprogram and not just body replacement as with procedure calls,
we refer the reader to [5]. A computation step due to an achievement
goal P(f) consistsin the replacement of P(T) with the body of therule
and the correct instantiation of the formal parameters with the actual
parameters T. Technically, this is implemented by means of a substi-
tution for unifying the procedure call with the head of the rule. In
contrast to ConGolog procedures definitions, rules are guarded and
may compute appropriate values given the current context of compu-
tation to further instantiate the body of the rule.

-,

Definition 5.4 Let 5 be amost general substitution s.t P(f) = P(t')n

o = ¢y, dom(y) = free(q)
(P(D),0) —5y (mony,)

where P(f') « ¢ | mpisaruleintherulebase R of the agent.

5.2 Silent Steps

Because the semantics for ConGolog abstracts from silent steps,
which are present in the semantics of 3APL, weintroduce anew com-
putation step relation = for 3APL which also abstracts from these
steps. The relation —> is derived from — and used to construct an
embedding of ConGolog into 3APL. — steps are complex steps,

composed of an arbitrary number of silent steps — and a single
step that involves the execution of abasic action or atest. From now
on, we just write — without mentioning substitutions anymore.

Definition 5.5 (abstracting from silent steps)

The transition relation :'>, where iseither A(f') or ¢, is defined by:
| df i * I « " .
—=—» - — where™ denotesthetransitive closure of arelation.

6 Issues in Embedding ConGolog in 3APL

In this section, we discuss some distinguishing features of ConGolog
and 3APL. To be able to construct an embedding of ConGolog into
3APL, a number of issues have to be dealt with. These include (1)
requirements on the database or belief base, (2) a domain closure
assumption, and (3) deriving an update semantics for 3APL actions
from abasic action theory A. A trandation function 7 isthen defined
which maps ConGolog programs to equivalent 3APL programs.

Operationalising Tests A particularly interesting difference be-
tween ConGolog and 3APL concerns the semantics of tests. Whereas
the semantics of atest in 3APL is defined in terms of entailment by
the current beliefs, in ConGolog atest is defined in terms of truth in
the current situation. The difference can be illustrated with the pro-
gramd = ¢7?; 01 | ~¢7; 2. In 3APL, § is not dways enabled since
neither ¢ nor —¢ need to be entailed by the current beliefs. In Con-
Golog, however, ¢ is always enabled simply because either ¢ or —¢
must hold in the current situation. The axiomatic definition of Trans
thusimpliesthat 6 can perform a computation step.

A problem with the ConGolog semantics of tests, however, is how
to implement it. As illustrated by the example program 4, it is in
genera not possible to decide which branch to execute for arbitrary
tests ¢ due to incomplete databases. It is possible to avoid this prob-
lem by requiring that the (initial) database be complete. A database

o C Lnow is caled complete iff for every sentence ¢ in Lnow €ither
o | ¢ oro |E . For complete databases o, the difference be-
tween the ConGolog and 3APL semantics of tests also disappears,
since the problem of evaluating ¢ V —¢ in the current situation and
that of evaluating o |= ¢ V o = ¢ then coincide.

Operationalising Nondeterministic Choice of Argument An-
other interesting difference concerns the specification of the parame-
ter mechanisms in ConGolog and 3APL. Whereas ConGolog has an
explicit operator wx for binding variables in a program (only closed
programs are ConGolog programs!), the parameter mechanism in
3APL is based on an implicit binding mechanism where tests are
used to compute bindings for free variables in a program. The ax-
iomatic definition of the wx operator by means of the logical existen-
tial quantifier, however, again poses a problem concerning theimple-
mentation of this operator. To operationalise the guessing of a value
by the operator =X we need a hame for every possible value since
computations proceed by manipulating terms. Therefore, we assume
that action theories together with the current database satisfy domain
closure, thatis, A + o[E VXX =t V...X=1tq) for o C Lnow
and Sasituation term.

Basic Actions, Progression and Belief BasesA third difference
between ConGolog and 3APL is that the operational semantics of
3APL explicitly refers to states called belief bases whereas the ax-
iomatic definition of the predicate Trans only mentions situations
which denote such a state. In the operational semantics for 3APL,
belief bases are updated by basic actions. The semantics of basic ac-
tions in ConGolog is provided by successor state axioms. For our
purposes, we need away to link successor state axioms to an update
semantics for actions. This link is provided by the work of Lin and
Reiter on the progression of databases [7]. They define aprogression
operator for (relatively) complete basic action theories which can be
used to define atransition function 7 for 3APL basic actions.

Definition 6.1 The progression operator Prog is defined by:

Prog(o,€) = o,

Prog(o, A(f)) =

{P(®) | o = P(f) and P(1) is situation independent }U
{=P® | ok -P(}) and P(f) is situation independent }U
{F(f,now) | o = ®(t, A(T), now)}u

{~F(F,now) | o k= ~e(F, A(D), now)}

By theorem 3in [7], the progression operator as defined in defini-
tion 6.1 yields a progression of a complete belief or data base . By
theorem 1 in [7], we then know that any sentence ¢[do(«, S)] uni-
form in do(c, S) is entailed by A + o[iff A + o[do(«, S)] dso
entails p[do(a, S)], which shows that the progression operator can
be used to define an update semantics for actions.

Thetransition function 7~ which assigns meaning to 3APL actions
is derived from the progression operator. 7 incorporates both the
information of precondition and successor state axioms.

Definition 6.2 Let o C Lnow be a complete theory, and S a closed
term of sort situation. Define for every action A(T) its semantics by:

T(A®),) = Prog(o, AM) if A+ o[S | Poss(A®),),
T (A(D), o) isundefined otherwise.

Because instances of action precondition axioms must be uniform
in a situation S it follows that 7 is well-defined. The main point
of this definition is that it shows how to reduce situations (action
histories) to states for complete databases.

Translation Function 7 Now that we have set the stage, we define
a trandation function = from ConGolog programs to 3APL agents.
The mapping 7 is defined by induction on the structure of programs.
One of the moreinteresting cases isthetranslation of awx.d program
which is mapped to a sequential 3APL program random(x); 7(d).
The 7x operator is simulated by the special action random, and the
explicit binding by the wx operator is replaced by the implicit bind-
ing mechanism in 3APL. Also note that a ConGolog procedure is
translated to a 3APL rule with empty guard.

Definition 6.3 The trandation function 7 isinductively defined by:

o 7(nil) = E, 7(A(D) = A®D), 7(¢?) = ¢7,

[7(61, 52)—7‘(51) (52),7’(51 |52):T(51)+T((52),
e 7(wx.d) = random(x); 7(9),

e 7(P(D) = P(T), 7(proc P(X)ép end) = P(X) + 7(dp).

7 An Embedding of ConGolog into 3APL

The basic idea of the embedding isto show that aConGolog program
can be bismulated by a corresponding 3APL program. A program
bisimulates another program in case every possible computation of
the former can be matched with a computation of the latter, and vice
versa. The concept of matching computations is defined in terms of
the matching of single computation steps. Computation steps match
if their behaviour is similar. In our case, we define this similarity in
terms of the actions that are performed and the databases that are
computed.

The main result of the paper is Theorem 7.2, which shows that
a ConGolog program ¢ bisimulates with its r-translation 7(4). The
theorem shows that ¢ and 7(d) generate the same action sequences
and produce the same databases. We first state a lemma that shows
that the concept defined by the Final predicate for ConGolog pro-
grams § coincides with successful termination of the correspond-
ing 3APL r-translations 7(4) modulo some internal steps. Both the
lemma and the theorem are proven by induction on the structure of
programs , and by making use of the completeness of databases and
the domain closure assumption. The proofs can be found in [3].

Lemma 7.1 Let o C Lnow beacompletetheory, ¢ € Lnow, and She
aclosed situation term. Then, for any action theory A and ConGolog

program 8: A + o[= Final (8,) iff (r(8),0) — (E, o).

The main embedding result isthe following bisimulation theorem:

Theorem 7.2 Let A be a basic action theory with complete initial
database o C Liow, §,4" be (closed) ConGolog programs, and o be
an action sequence. Then:

A+ o[S] E Trans* (6, S, nil, do(c, 9))
iff
(r(8),0) =" (E, Prog(c, o))

8 Discussion

ConGolog is a logic programming language which extends basic
action theories in the situation calculus with operators for building
complex programs. The logical perspective of the situation calculus
offers a very expressive framework for specifying agents. Basic ac-
tion theories provide a framework for specifying actions and offer a
solution to the frame problem. The logical semantics of ConGolog,

however, does not straightforwardly provide an implementation lan-
guage, in contrasts with the operational semantics of 3APL. Theem-
bedding result of this paper shows that one option to implement (a
restricted version of) ConGolog isto embed the language into 3APL.
Another important feature of the logical semanticsisthat in the pres-
ence of functiona fluents, situations cannot be identified with states.

3APL is an agent programming language based on the agent-
oriented approach. Its operational semantics is state-based and spec-
ified by means of a transition semantics. A clear distinction is made
between the programming language and a programming logic for
proving properties of 3APL agents. The agent language 3APL ab-
stracts both from the knowledge representation that agents use and
a concrete specification of actions. The embedding result shows that
basic action theories in the situation calculus can be used to specify
actions and to derive an update semantics for 3APL actions.

Both languages emphasise different aspects of agent computing.
ConGolog is presented as a high-level programming alternative to
planning. The focus is on extracting a legal action sequence from a
nondeterministic program. A ConGolog program thus is seen as a
vehicle for computing a situation (action history). As in planning,
finding alegal action sequence requires search and this explains the
use of a backtracking model of execution. The backtracking model
is inhereted from logic programming, which is used to implement
ConGolog [1].

With respect to 3APL, the focus is on computing belief bases.
Upon termination a 3APL program returns a belief base. The exe-
cution model that is proposed is that of the ‘imperative flow of con-
trol’ [5]. The basic feature of this model is that a commitment to a
choice is made as soon as an action has been executed. Because of
the embedding result, it is clear, however, that neither the semantics
of ConGolog nor that of 3APL dictates the use of one or the other
model of execution.

REFERENCES

[1] Giuseppe De Giacomo, Y ves Lespérance, and Hector Levesque, ‘ Con-
Golog, a Concurrent Programming Language Based on the Situation
Calculus, Artificial Intelligence, accepted for publication.

[2] Koen Hindriks, F.S. de Boer, Wiebe van der Hoek, and John-Jules
Meyer, ‘An Operational Semantics for the Single Agent Core of
AGENT-0", Technical Report UU-CS-1999-30, Department of Com-
puter Science, University Utrecht, (1999).

[3] Koen Hindriks, Yves Lespérance, and Hector J. Levesque, ‘ An Embed-
ding of ConGolog in 3APL’, Technical Report UU-CS-2000-13, De-
partment of Computer Science, University Utrecht, (2000).

[4] Koen V. Hindriks, Frank S. de Boer, Wiebe van der Hoek, and John-
Jules Ch. Meyer, ‘A Formal Embedding of AgentSpeak(L) in 3APL’,
in Advanced Topics in Artificial Intelligence (LNAI 1502), eds., G. An-
toniou and J. Slaney, 155-166, Springer-Verlag, (1998).

[5] Koen V. Hindriks, Frank S. de Boer, Wiebe van der Hoek, and John-
Jules Ch. Meyer, ‘Agent Programming in 3APL’, Autonomous Agents
and Multi-Agent Systems, 2(4), 357-401, (1999).

[6] Hector J. Levesque, Ray Reiter, Yves Lespérance, Fangzhen Lin, and
Richard B. Scherl, ‘GOLOG: A logic programming language for dy-
namic domains', Journal of Logic Programming, 31, 59-84, (1997).

[7] Fangzhen Lin and Ray Reiter, ‘How to Progress a Database’, Artificial
Intelligence, 92, 131-167, (1997).

[8] J. McCarthy and P.J. Hayes, ‘ Some philosophical problems from the
standpoint of artificial intelligence’, in Machine Intelligence, eds.,
Meltzer and Michie, 463-502, Edinburgh University Press, (1969).

[9] Fiora Pirri and Ray Reiter, ‘ Some Contributions to the Metatheory of
the Situation Calculus', JACM, accepted for publication, (1999).

[10] Anand S. Rao, ‘AgentSpeak(L): BDI Agents Speak Out in a Logical
Computable Language’, in Agents Breaking Away (LNAI 1038), eds.,
W. van der Velde and J.W. Perram, pp. 42-55. Springer-Verlag, (1996).

[11] Yoav Shoham, ‘Agent-oriented programming’, Artificial Intelligence,
60, 51-92, (1993).

