| D-logic and the Ramification Problem
for the Situation Calculus

Eugenia Ternovskaia !

Abstract. Thegoa of this paper isto extend the general solution to
the ramification problem for the situation calculusto the case where
causal rules specifying indirect effects of actions may form cyclesor
cycles through negation. We formulate causal dependenciesas rules
of inductive definitions. Then we give a semanticsto alogic for rep-
resenting inductive definitions (ID-logic) by translating definitionsto
sentencesof fixed-point logic. We describe aregression-based proce-
dure for generating successor state axioms from inductive rules, and
consider several benchmark examples. Finally, we show that bound-
ednessis a sufficient condition for trandating causal theories to suc-
Cessor state axioms.

1 INTRODUCTION

The ramification problem arises in the context of knowledge repre-
sentation, when one wants to capture indirect effects of actionsin a
logic-based formalism. It has been shown (e.g., [11]) that state con-
straints are generally inadequate for deriving indirect effects of ac-
tions, and that some notion of causation is needed. Unlike material
implication, causal implications are not contrapositive which makes
them similar to the rules of logic programs. This similarity shows
most strongly in two directions of research. Thework of McCain and
Turner on causal logic [12], developed further by Lifschitz [9], bears
close connections with Reiter’'s default logic; its implementation in
logic programming combinesclassical negation with negationasfail-
ure under answer set semantics.(cf. [10]). The other line of research
relates causal rules with stratified [14] and well-founded [6] seman-
tics for logic programming. Mcllraith [14] interprets the implication
connective as causal or definitional, and describes a procedure for
compiling successor state axioms from a set of effect axioms and a
set of ramification axioms. The solution applies to acyclic stratified
theories. The authors of [6] concentrate on the semantical aspects of
the ramification problem, and formulate direct and indirect effects
of actions as rules of inductive definitions. For collections of such
definitions, they introduce the term “causal theories’. The meaning
of causal theoriesis given by the well-founded generalization of in-
ductive definitions [4]. The authors conjectured that inductive rules
can be trandated to successor state axioms of the situation calculus.
The following questions needed to be answered. (1) Since the well-
founded semanticsisthree-valued, there are causal theoriesin which
some literals have the third truth value “undefined”. Is there a coun-
terpart of such causal theoriesin classical two-valued logic? (2) It is
well-known that, in general, recursion cannot be represented in first-
order logic. On the other hand, successor state axioms arefirst order.

1 Computer Science Department, University of Toronto, Canada, email:
eugenia@cs.toronto.edu

Doesthisimply that causal theories cannot be translated to the situa-
tion calculus?

The answer to the first question is positive. Fortunately, thereis a
way to capturewel|-founded semanticsin classical logic. We givethe
corresponding definition in the following section. The truth set of a
defined predicate is expressed by a formula with nested fixed-point
operatorswhich are expressibleby second-order circumscription [13]
formulas. Regarding the second question, we demonstrate that it is
possible to provide a translation of causal theoriesto successor state
axiomsfor the classof bounded causal theories, i.e., those which are
equivalent to recursion-free sets of rules.

For several years, Denecker hasbeen arguing for the use of induc-
tive definitionsfor knowledge representation. Recently, he proposed
aspecia logic for these purposes[5]. He termsit thelogic for induc-
tive definitions, or ID-logic. The syntax of ID-logic is the syntax of
first- or second-order logic, combined with formulas for represent-
ing inductive definitions. The semanticsfor the general case of non-
propositional definitionsis presented asageneralization of the propo-
sitional case, using so-called grounding technique. In this paper, we
devel op the syntax of 1D-logic further and definethe semanticsof the
logic by translating its formulas to the formulas of fixed-point logic.
The translation demonstrates that definitions add at most the power
of fixed-point logic to the original language, before definitions.

Thispaper isorganized asfollows. First, in Section2, wedescribea
logic for representing inductive definitions, and defineits semantics.
Section 3 isdevoted to the situation cal culuswith definitions. In Sec-
tion 4, we provideaprocedurefor trans ating causal rulesto successor
state axioms. To this end, we redefine regression as applying causal
rules “backwards’. This processis similar to top-down evaluation of
logic programs. In the case where static causal rules (ramifications)
arenot present, our regressionis essentially the sameasReiter’sorig-
inal definition. We consider several benchmark exampl es, and formu-
late a general theorem about translating causal theories to successor
state axioms of the situation calculus. This theorem extends our pre-
viousresults[18]. Finally, in Section 5, we discussthe possibility of a
computationally useful characterization of which causal theories are
representablein the situation calculus, and in first-order logic in gen-
eral. Thisgeneral characterizationisimpossible. Thisconclusionfol-
lowsfrom the fact that boundednessisundecidablefor databasequery
languages[8]. There are, however, classes of causal theories where
boundednessis decidable.

2 ALOGICFORINDUCTIVE DEFINITIONS

Fix avocabulary 7. A definition A in vocabulary = is a set of rules
of theform{ « W¥. Theformula! must be of the form R(t) where
R isapredicate symbol from 7, ¢ isatuple of first-order terms. It is
called the head of therule. Theformula ¥ constitutesthe body of the

rule. Every relation symbol occurring in the head of somerule of A
is defined; all other symbolsin 7 are open. In databasetheory, defined
and open relation symbolsare called intentional and extensional, re-
spectively. Denoteby (7, A)q and (7, A), theset of defined and open
symbols of A. Hence, (7, A)s = 7\ (7, A)a. We often write
and 7, if no confusion is possible. The values of the open symbols
are given by ar,-structure. All the rules of A will be applied simul-
taneously to generate consecutive stages of the defined symbols. For
instance, on the structure N of natural numbers, A; isadefinition of
the form {Z(0) «, P(z) « —Z(z)} which defines zero and the
positive natural numbers.

Sometimes the applications of the rules of a definition, say A»,
must be delayed until the fixed-point of another definition, say A+, is
reached. In thiscase, wewrite A; - A,. Ingeneral, theresult of eval-
uation changeswith the order of definitions. If A, and A, areto be
evaluatedin parallel, wewrite A; + A,. If A; and A, aredefinitions
thensoare A; - Az and Ay + A,. Weagreetohave(r, Ay - Az)g =
(7’7 Al)d (@] (7’7 Az)d af'ld(T7 A —|—A2)d = (7’7 Al)d (@] (7’7 A2)d, and
werequire (7, A1)a N (7, A2)a = O whenever A, and A, areto be
evaluated in sequenceor in parallel.

We obtain ID-logic by closing first-order (or second-order) logic
under inductive definitions. For a vocabulary 7, the class ID[7] of
formulas of ID-logic is defined recursively as follows. (The notation
frbu gandsfor “If g1, . . ., ¢, areformulasthen ¢ isaformula’.)
* - where ¢ is an atomic first-order (resp., second order) formula

over v
* A where A isadefinition in vocabulary 7, P € (7,A)q,
and t]he length of tuple z coincideswith the arity of P
o £ L 52 whered and ¢ areatomicfirst-order (resp., second

order) formulas over 7.

Intuitively, the meaning of formula [A, P](f) in structure A is“#*
belongs to arelation determined by definition A in structure .4 and
associated with defined symbol P”. For example, [A 1, Z](0) where
A isasaboveistrueon the structure N of natural numbers. Thefor-
mal semanticsof |D-logicisdefinedbelow. Notethat if P € (7, A1)a
and P € (7,A2)a and the definition A, is different from A, then
[A1, P]and[A2, P] denotetwo different relations.

Let ¢(z, X) be a formula in the vocabulary 7, where z =
(x1,...,2r), X isarelation variable of arity &, and let A bea 7-
structure. Then ¢ and A giveriseto an operation I'? : Pow(A*) —
Pow(A") definedby T*(R) := {a| A = ¢[a R]}anda =
(a1,...,ar). Notethat A |= ¢[c] means “assignment o satisfies
formula® in A”. If ¢ = ¢(z,X),a = o(z) and R = o[X], we
write A |= ¢[a, R]. We say that an occurrence of a predicate sym-
bol in aformulais negative (respectively, positive) if it iswithin the
scopeof an odd (respectively, even) number of negations. If al occur-
rences of X in ¢(#, X) are positive, then the operator T'? is mono-
tone and its least fixed-point is defined by transfinite induction (cf.
[15, 2]): rfm) = U,so rfn) where I'f | := {a | thereisb €
Asuchthat (A,T'2,) = ¢[a,b] andT'%,, := U, ')}

To simplify the presentation of the semantics, we supposethat for
any defined symbol P of A, say, of arity r, therearedistinct variables
Zp =xp1...xp, suchthat any rulein A with head symbol P has
theform P(zp) «+ W. With every defined P we associate the for-
mula

¢p(zp) = \/{3gV | P(zp) < WinA}, @

where i contains the variables in ¥ that are distinct from the vari-
ablesin z p. A positive definition is a definition without negative oc-
currences of defined symbolsin the body of any rule.

We shall describe the semantics of positive definitions first. As-
sumethat P*, ... P™ arethe defined symbols of A. By definition
of a positive definition they do not occur negated in the body of any
rule. Let A be a r,-structure. Define

P, ={a|thereare P(zp) « V¥ in A andb € A suchthat

(A, PL,,...,P2) = ¥[a,bland PL, := U,<n P}
(wherea interpretsthevariablesin z p., and b interpretsthoseremain-
ing). Since g p1, ... , ppm arepogtivein P*, ..., P™, their smul-
taneousfixed-point (P(.), ..., P(%,) givenby P{.y := U, 5o Pl
exists. Thus a positive definition A and a 7, structure .4 give rise
tother-structure (A, P, ... Pt.)), where P, ... Pl arethe
defined relations. This extended structure provides the semantics for
A.

Now we are ready to define the semanticsfor ageneral definition.
First we provide some intuition by discussing a procedure for deter-
mining the so-called truth set of a defined predicate. This procedure
generalizesthe procedureoriginally proposed by Van Gelder [20]. Let
A be a genera definition. For every defined symbol P, replace all
positive occurrencesof P inthe bodiesby anew relation symbol P'.
Now, the original P does not occur in the head of any rule of there-
sulting definition A’; hence, P isan opensymbol of A’, andthus, A’
is a positive definition. In order to simplify the presentation, we as-
sumethat A only containsasingle defined relation symbol P. In ev-
ery 7.-structure A, the definition A givesriseto asequence(r)»>o0
of relations on A defined by N

Py =0,
P, istheresult for P’ of the evaluation of the definition A’ in
(A, P<yn), i.e, taking P, asinterpretation of the open symbol
Pof A,

(where P, = |J P if nisodd,

2k<n

ﬂ P2k+1 ifn ISeVen)
2k+1<n
Example 1 (renaming). In the following definition, renaming se-
lected occurrencesof P by P’, asdescribed above,

Ao : P(z) « S(z,y,2) A R(z,u) A=P(y)
P(z) « =R(y,y) A P(z) A=P(u),

produces
Ag : P'(z) + S(z,y,2) A R(z,u) A=P(y)
P'(z) + =R(y,y) A P'(z) A=P(y)

Let 4 (=, Q) beafirst-order formula positivein @, T be the mono-
tone operator associated with it. Then [LEP, o (¥ (=, Q))] denotes
the least fixed-point of "% . In the definition Ay, the stages P, of the
evaluation of A, arethe stagesT'% of T'?, where

&(z, P) := [LFP, p(JyFzTuS(z,y, 5) A R(z,u) A =P(y))
VIy=R(y,y) A P'(z) A =P(y)](z).

Consider again the general 7,-structure .4 and the sequence
(Pn)n>o Of relations on A. Definethe truth set of this sequenceas

PA. = {a € A|dnoVn > no : a € P,}.

Then A leadsto the 7-structure (A, P&..). Notethat Py = P
if the fixed-point P, of the sequence (Pr),>o exists. The extended
structure (A, P&,) providesthe semanticsfor the general definition
A. For terms £, the meaning of formula[A, P](#) is“#4 € PA..".
We say that A istotal if the fixed-point P, of the sequence
(Pr)n>o existsfor all 7,-structures .A. Note that we cannot restrict

the language to allow total definitions only. By doing so, we would
obtain an undecidablesyntax. To seethis, noticethat monotonicity of
I"?* isundecidable. Thus, there is no algorithm to determine whether
the fixed-point of I'? exists; therefore the question of whether a def-
inition is total is undecidable. A general definition is guaranteed to
be total if it is positive or stratified. Let FO+LFP denote the closure
of first-order logic under least fixed-point of operations definable by
positive formulas. The following proposition makes use of previous
work on the well-founded semantics of logic programs and database
query languages.

Proposition 1. For every ID-logic formula [A, P](¢) there is an
equivalent FO+LFP formula.

Proof. For simplicity, supposethat P is the only defined symbol of
A. Then A hastheform {P(z) < ¥1,...,P(z) « VU,}. Infor-
mula (2) below, 3y are the variablesin ¥; distinct from z and ¥! is
obtained from ¥, by replacing positive occurrencesof P by P’ so
that ¢(z, P) isnegativein P.

é(z, P) := [LFP, p \/) (z).)

=1

This implies that T'? is antitone, i.e, X C Y impliesT?(Y) C
I'?(X). Therefore, T¢ C T C TP C ...T¢ C TY CT9. In
the literature on well-founded semantics of logic programming (e.g.
[1, 20]), theincreasing even subsequencel ¢, correspondsto the un-
derestimates of the positivefacts and the decreasing odd subsequence
re, 41 correspondsto the underestimates of the negative facts.

The operator © := I'* . I'? is monotone. Let ¢(z, P) be the for-
mula ¢(Z, ¢(-, P)) which is positive in P. Then ©® = I'¥. Since
Y =19, thenT% = U, 50 'S, = PR Hence, [A, P)(#) is
equivaent to the FO+LFPformula[LFPz pe(z, P)](). O

To extend the parallel with logic programming, one can definethe
falseset P4y, of AasPh,. :={a € A|Inoe¥n > no : a & P},
and the undefined set as Pl g0 = A \ (Piue U PAL.). Note that
A isatotal definition if and only if the set P4, is empty for all
structures.

Proposition 1 shows that definitions add at most the power of
FO+L FPto the expressivepower of the original language (before def-
initions). It can be shown that on finite structures[7], definitions add
exactly the power of FO+LFPto the original language. Proposition 1,
however, is not restricted to finite structures.

3 SITUATION CALCULUSWITH
DEFINITIONS

We consider a many-sorted version = *¢ of the vocabulary of the situ-
ation calculuswith equality and with sortsfor actions, situationsand,
possibly with one or more sortsfor objects. The primitive non-logical
symbols of sort actions consist of variablesa, a1, az, ... , and con-
stants Ao, A1, Az, ... Theprimitive non-logical symbolsof sort sit-
uationsconsist of variabless, s’,s”, 3, . . . , constant Sy, binary func-
tiondo(a, s), wherea isan action, and s isa situation. Thisfunction
defines a successor situation in terms of a current situation and a per-
formed action. Finitely many predicate symbols £, ..., F, caled
fluents represent properties of theworld, and have situations and pos-
sibly objects as their arguments. These symbols shall be viewed as
definablein therest of this paper. Thelogica symbolsof thelanguage
are—, V, 3, =. Other logical connectivesand the universal quantifier
V are the usual abbreviations. In this paper, we do not consider pred-
icates Poss and C (cf. [16]).

A basicactiontheory isaset of axiomsD? = Dy UDc UDyna U
Ds,, whereD; isthe set of foundational axiomsfor situations; Ds is
the set of successor state axioms, one for each fluent; D ... isthe set
of unique nameaxiomsfor actions; and D s, is the description of the
initial situation. The foundational axioms for the situation calculus,
Df, are

So # do(a,),
do(ay, s1) = do(az, s2) D a1 = az A s1 = s2, 3)
VP [P(So) AVs' Ya P(s') D P(do(a, s")) D Vs P(s)].

These axioms guaranteethat situationscomposean infinitely branch-
ing tree. Indeed, it can be shownthat the class of tree-like structuresis
completely characterized by the induction principle on situations and
unique nameassumptionsfor situations[18]. Successor state axioms,
D, havetheform

Fi(z,do(a,s)) = ['ya(a’:, a,s)V Fi(Z,s) A =v5 (T,a,s)]. (4)

Formula~}(z, a, s) (respectively, v (z, a, s)) denotes afirst order
formula specifying the conditions under which fluent F is true (re-
spectively, false) in the successor situation [17]. The only free vari-
ables of these formulas are thoseamong z, a, s. Function symbol do
does not occur in these formulas, neither does Sq. The unique name
axioms, D.naq, Specify that any two actionswith different namesare
not equal. The description of theinitial situation, Ds,, isaset of first
order sentencesthat are uniformin So; i.e., they contain no situation
term other than So. We shall augment the foundational axioms D,
unique name assumptions D .., and the initial database D s, with
two definitions, A° and A", evaluated consecutively.

Example 2 (suitcase). Severa versions of this example (e.g. [19])
have been used to demonstrate that domain constraintsare not strong
enough and that an explicit notion of causality is necessary. Suppose
we have a suitcase which opensif and only if both of its two locks
are open. Fluent O represents the fact that the suitcase is open; flu-
ents L, L, aretrue whenever the correspondinglocksare open. Con-
stant symbols o1, 02, ¢1, ¢z represent actions of opening and closing
the respective lock. Following [11], [6] and other authors, we distin-
guish between the fact that fluent F' (respectively, its negation) holds
in a situation and the statement that F' (respectively, —F') is caused
to hold. To capture this difference, we introduce predicates C'r(s),
C-r(s) for eachfluent £, where C' standsfor “ caused”. For the rest
of the paper, we adopt the following notation: Whenever convenient,
we omit the situation argument s and denote the situation argument
do(a, s) by aprime; for example, L: represents Lo (s), and C7,, de-
notes C'z, (do(a, s)). Therulesof A{ specify direct and indirect ef-
fects of actions.

C/Ll —a=o0

C"L2 —a = o2
I I

Co «—CL L,

I
—L, —a=c
I
C_,L2 —a=cs
I I
C—|O — C—|L1\/—|L2

Following [6], we view the last two rules as an abbreviation for
Co+ Cp, ANCL,

Co « Cp, NLa A=CL
Co «+ Li A=CLp ANCE,

Clo « CLy,

Clo«CLp,

Let A? begiven by thefollowing setof rules (i = 1, ..., n):
Fi/%C};l F,‘/%F,‘/\—'Ci,pl

In our example, F; € {L1, L»,0} andn = 3.

4 GENERATING SUCCESSOR STATE AXIOMS

Consider a vocabulary 7. Let Form[7] be the set of well-formed
formulas over 7. Let A be a propositiona definition in vocabulary
7. Define operator R : Form[r] — Form[7] inductively asfollows.

P(zp) if y = P(zp)and P € (1,A)o,

R[qﬁp(i‘p)] ifl/):P(i‘p),PE (T,A)d
R[Y] = and ¢ p(z p) isobtained asin (1),

Rlp1]V Rlg2] ifp = d1 V¢,

~R[¢] if ¢ = = .

Transformation R iscalled theregressionoperator. If thetheory does
not include static causal rules, the definition of the regression oper-
ator aboveis essentialy the same as the original definition of [16],
except that in our caseit isapurely syntactic transformation. Regres-
sion for the non-propositional caseis a generalization of the propo-
sitional definition using the grounding technique defined in [5]. In
what follows, we construct successor state axioms of theform I/ =
R[CE]VFA=R[CLg]. If regressionis performed successfully, pred-
icate C'r doesnot appear in this sentence. We discussthe general so-
lution at the end of the section.

Example 3 (suitcase, continued). Consider the regression of C{,
and C , from Example 2. It is convenient to represent regressionin
atreeform. Thus, in Figure 1, the regression of each atomic formula
P isrepresented by atree where (1) each node of thetreeislabeled
by an atomic or a negated atomic formula; (2) the root is labeled by
P; (3) each leaf islabeled by an open atomic or negated atomic for-
mula; and (4) for each internal node, thereisarule in A so that the
head is the label of that node, and the body isthelist of labels of its
children. Regression trees are similar to “proof trees’, an aternative
way of representing inductive definitions[5, 2]. In particular, along a
branch of a*“proof tree”, labels of the nodes do not compose cycles.
This property also holdsfor regression trees.

% c % ‘o Cho
CI{JQ\;CLIQ C{1\022 CI{Lll_'Ci‘Ll C!‘Ll C!‘L2

S P O S B
=01 aFc; Aa=0@=02 AG=02 AF£C aA=C a=cC

Figurel. Regression treesfor the suitcase example.

The result of regression of C/, is the disjunction of conjunctions of
leavesin each tree with C{, in the root. Using unique name assump-
tions, we obtain the following successor state axioms.

VsVa Li(do(a,s)) =a=o01V Li(s) Aa # ¢
VsVa La(do(a, s)) =a =02V La(s) Aa # ¢
VsVa O(do(a, s)) = Li(s) Aa =02 V La(s) Aa =0,
VO(s)Na #c1 Aa # ¢z

Example 4 (gear wheels). This example illustrates the case where
causal dependenciesform apositivecycle. Supposewe havetwo con-
nected gear wheels and supposefluents 7’1, 7> represent the fact that
thefirst (respectively, the second) wheel isturning. If awheel startsor
stopsturning, wedenotethischangeby action start 1, startz, stop1,
or stops, respectively. The following rules of A5 specify direct and
indirect effects of actions:

Cé«l — a = start;
C}Q — a = starts
Cr, + Cp,

i.T1 — Ci.T2

LTl < a = stop

LTQ — a = stopa
Chr, + Cp,

i.T2 — Ci.T1

Thedefinition A% issimilar to A from thepreviousexample. Figure
2 representstheregressionof C'z, andC., . Noticethat thethird and
the sixth tree from the left are discarded as having cyclic branches.

I I I I I I
CTl CTl CTl -Ty -Ty -Ty

a |— start J" J" a |— sto J" J"
= 1 Ty T, = stop1 =T, -T

a = starts J‘h a = stops J‘LTI

Figure2. Regress ontreesfor the gear wheelsexample.
We obtain the following successor state axioms:

VsVa T1(do(a, s)) = a = start; V a = start,
VT1(s) Aa # stopr Aa # stops

VsVa Tx(do(a, s)) = a = start; V a = start,
VT2 (s) Aa # stopr Aa # stops

Example5 (circuit). Thefollowing examplefrom [6] illustrates the
case where causal dependencies contain a cycle through negation.
Consider the circuit from Figure 3.

\

‘\ Cé«ea:ct CLTea:ot
I I I I

Cr, «+ Cprs Cgr, < Crag

p s B C/Q — Cél Ci,p — Cﬁ2
. ' ' ' '
B‘ i “r, < Copyas “ry < Corvag
! I I I I
~T.—.+.7Q CﬁQ — (LR1 Cp + (LR2
-R2
Cls + Cr Cr«+ Clg
1 } Cs « CLy Clp+ Cg

Figure3. Electrica circuit.

The circuit consists of two interconnected sub-circuits. On one cir-
cuit, there aretwo serially connected switches, P and .S, and arelay,
R;. The other circuit contains two switches, 7" and @, and a relay,
R,. Theonly actions used in the theory are ¢ and o, which repre-
sent closing and opening of switch 7. Thefirst relay ison (i.e., true)
if and only if switches P and S areon, R1(s) = P(s) A S(s). Simi-
larly, for the secondrelay, wehave Rz (s) = T'(s) A Q(s). Relay R;
and switch @, aswell asrelay R, and switch P are connectedin the
followingway: Ri(s) = Q(s), R2(s) = ~P(s). Thecorresponding
causal rules, with the samekind of abbreviationsasin example 2, are
represented in Figure 3.

As usual, we include A, where the defined symbols are al the
fluents of the theory. After expanding the abbreviationsin A5 asin
Example 2, we notice that the definition contains a negative cycle,
Clp « Cg, « Cf « Ck, « —=CLp, s0Aj isnot stratified.
Reproducing regression trees for this example requires much space,
so we can only givethe resulting successor state axioms.

VsVa T(do(a,s))=a=c, VI (s)Na# o

VsVa Q(do(a,s)) =a =0V Q(s) Na # ¢,

VsVa S(do(a, s)) =a =0,V S(s) Na #c;

VsVa P(do(a, s)) VsVa ~Ry(do(a, s))
)

VsVa Ri(do(a, s

~—

a=o0VRi(s)Na#c

Example 6 (TC of agraph). This example motivates the need for
the boundedness condition for generating successor state axioms.
Supposewe have adirected (potentially infinite) graph in which each
arc is represented by fluent A(z, y). We want to compute the tran-
sitive closure TC(x, y) of therelation A. The action of adding arc
(z, y) tothe graphisrepresented by actionadd(x, y). For simplicity,

we assume that arcs cannot be deleted. The rules of definition A 7€
are:
qu(
Cre(e,y) ¢ Chay)
CTC(.r,y) « C(TC(m,z)/\A(z,y)))

) a= add(z, y)

Thelast ruleistheusual abbreviation. Consider the following regres-
sion. R[Cresyy] = a = add(z,y) V I2(R[Cre(p,y] Aa =
add(z,y)) V 3z(R[Crc(y,-] A Alz,y)) = ... Thelength of the
resulting formula grows with every iteration of regression, and the
process never terminates. Thus, in general, regression may produce
aformula of infinitary predicatelogic. Thisis not acceptablefor our
purposes and motivates the following study.

We say that a definition A is bounded if there is a constant ¢
such that, for al = -structures, the fixed-point P, of the sequence
(Pn)n>o definedin Section 2 is reached within ¢ steps. Observe that
definition A7 from Example 6 is unbounded — for a structure 7,
with an infinite domain, the closure ordinal of the corresponding op-
erator is w. If definition A is bounded, then thereis arecursion-free
definition A’ suchthat Vz[A, P)(z) = [A/, P](z).

Lemmal. If A°isboundedthen, for eachfluent F;, theregressionof
CF, (respectively, CL p,) in A° is equivalent to afirst order formula,
call it v}, (respectively, v7.).

In the theorem below, we need the following consistency condition
Aizi. . n—373a3s v} (7,a,5) A 75 (7, a,). This sentence re-
quiresthat the conditions making fluent F; true(ﬁl (z,a,s))andthe
conditionsmakingit false(yy, (%, a, s) arenever truesimultaneously.

Theorem 1. Suppose the consistency condition holds and A € is
bounded. Let & be aterm of sort situation in the vocabulary 7 *“, and
let F'beafluent. Then Dy U Duna U Ds, = F (o) if and onlyif, for
every structure A satisfying D ; U Duna U Ds,, 0 € [A° - AMA
where[A° - A"]4 istherelation defined by A€ - A" with respect to
structure A, and o is the interpretation of the situation term o in
this structure.

The theorem follows from the procedure for generating successor
state axioms, from the definition of regressionand from the preceding
lemma.

5 CONCLUSIONS

In this paper, we have addressed the logic for representing inductive
definitions (ID-logic) as proposed by Denecker. We have provided a
semantics for thislogic, by trandating its sentencesto the sentences
of fixed-point logic. | D-logic may beviewed asafragment of second-
order logic; moreover, we have demonstrated that definitions add at
most the power of FO+LFP to the origina language (before defini-
tions). This conclusionis very important from a computational point
of view, becauseof thewell-known complexity/expressivenesstrade-
off. Despite its modest power, ID-logic is expressive enough to en-
code arather general solution to the ramification problem.

Representing causal theories in the situation calculus, and in first-
order logicin general, requires somecare. We have demonstrated that
boundednessof causal theoriesisasufficient condition for translating
to successor state axioms of the situation calculus. This condition is
not necessary, however: asshownby Gurevichand Ajtai [3], thereare
first-order representablebut unboundedlogic programs. Inthesimple
case of negation-free causal theories, boundednessis anecessary and
sufficient condition for afirst-order trandlation.

Unfortunately, boundednessof A € isnot decidable, either for pos-
itive or for general definitions. This conclusion follows from the ob-
servation that boundednessof logic programsisan undecidabl e prob-
lem [8]. Thus, in general, it is not possibleto give a computationally
useful characterization of those causal theoriesthat are representable
in the situation calculus. In spite of these negative conclusions, it is
possibleto identify wide subclassesof definitionsfor whichthereare
algorithms to detect when a definition isfirst-order. For instance, us-
ing theresults about general logic programs, onecan demonstratethat
boundednessis decidablefor stratified causal theories, where the de-
fined predicates contain at most one argument, in addition to a situa-
tion term.

ACKNOWLEDGEMENTS

Thanksto Marc Denecker and to the anonymousrefereesfor helpful
comments.

REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases,
Addison-Wesley, 1995.

[2] P Aczd, ‘An introduction to inductive definitions’, in Handbook of
Mathematical Logic, ed., J. Barwise, pp. 739-782. Elsevier, (1977).

[3] M. Ajtai and Y. Gurevich, ‘Datalog versus first order logic’, in Proc.
30th IEEE FOCS, pp. 142148, (1989).

[4] M. Denecker,‘ The well-founded semanticsis the principle of inductive
definitions’, in Logicsin Artificial Intelligence, eds., J. Dix, L. Fari nas
del Cerro, and U. Furbach, volume 1489 of Lecture Notesin Artificial
Intelligence, pp. 1-16. Springer-Verlag, (1998).

[5] M. Denecker, ‘Extending classical logic with inductive definitions', in
Proc. CL’ 2000, (2000).

[6] M. Denecker, D. Theseider Dupre, and K. Van Belleghem, ‘ An induc-
tive definition approachto ramifications’, Linkdping Electronic Articles
in Computer and Information Science, 3(1998): nr 7, (1998). URL:
http://www.ep.liu.se/ea/cis/1998/007/.

[7] H.-D. Ebbinghausand J. Flum, Finite Model Theory, Springer-Verlag,
Berlin, Heidelberg, New York, second edn., 1999.

[8] H. Gaifman, H. Mairson, Y. Sagiv, and M.Y. Vardi, ‘Undecidable op-
timization problems for database logic programs’, in Proc. 2nd |IEEE
LICS, pp. 106-115, (1987).

[9] V. Lifschitz, ‘Onthelogic of causal explanation’, J. of Artificial Intelli-
gence, 96, 451465, (1997).

[10] V. Lifschitz, ‘ Actionlanguages, answer setsand planning’, in The Logic
Programming Paradigm: a 25-Year Perspective, 357-373, Springer
Verlag, (1999).

[11] F Lin, ‘Embracing causality in specifying the indirect effects of ac-
tions', in Proc. of IJCAI 95, pp. 19851991, (1995).

[12] N.McCainand H. Turner, ‘A causal theory of ramifications and quali-
fications', in Proc. of IJCAI 95, pp. 1978-1984, (1995).

[13] J. McCarthy, ‘ Circumscription— aform of non-monotonicreasoning’,
J. of Artificial Intelligence, 13, 27-39, (1980).

[14] S. Mcllraith, ‘A closed-form solution to the ramification problem
(sometimes)’, in Proceedings of the Workshop on Nonmonotonic Rea-
soning, Actionand Change, Fifteenth International Joint Conferenceon
Artificial Intelligence, pp. 103-126, (997).

[15] Y.N. Moschovakis, Elementary |nductionon Abstract Structures, Ams-
terdam, North Holland, 1974.

[16] F Pirri and R. Reiter, ‘ Some contributionsto the metatheory of the sit-
uation calculus', J. of ACM, 46(3), 261325, (1999).

[17] R. Reiter, ‘The frame problem in the situation calculus: a simple solu-
tion (sometimes) and a completenessresult for goal regression’, in Arti-
ficial Intelligence and Mathematical Theory of Computation: Papersin
Honor of John McCarthy, ed., Vladimir Lifschitz, 359-380, Academic
Press, San Diego, CA, (1991).

[18] E. Ternovskaia, ‘Inductive definability and the situation calculus', in
Transaction and Change in Logic Databases, volume 1472 of Lecture
Notes in Computer Science. Springer-Verlag, (1998).

[19] M. Thielscher, ‘ Ramification and causality’, J. of Artificial Intelligence,
89, 317-364, (1997).

[20] A. Van Gelder, ‘An dternating fixpoint of logic programs with nega-
tion’, Journal of computer and system sciences, 47, 185-221, (1993).

