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Abstract. The goal of this paper is to extend the general solution to
the ramification problem for the situation calculus to the case where
causal rules specifying indirect effects of actions may form cycles or
cycles through negation. We formulate causal dependencies as rules
of inductive definitions. Then we give a semantics to a logic for rep-
resenting inductive definitions (ID-logic) by translating definitions to
sentences of fixed-point logic. We describe a regression-based proce-
dure for generating successor state axioms from inductive rules, and
consider several benchmark examples. Finally, we show that bound-
edness is a sufficient condition for translating causal theories to suc-
cessor state axioms.

1 INTRODUCTION

The ramification problem arises in the context of knowledge repre-
sentation, when one wants to capture indirect effects of actions in a
logic-based formalism. It has been shown (e.g., [11]) that state con-
straints are generally inadequate for deriving indirect effects of ac-
tions, and that some notion of causation is needed. Unlike material
implication, causal implications are not contrapositive which makes
them similar to the rules of logic programs. This similarity shows
most strongly in two directions of research. The work of McCain and
Turner on causal logic [12], developed further by Lifschitz [9], bears
close connections with Reiter’s default logic; its implementation in
logic programming combines classical negation with negation as fail-
ure under answer set semantics.(cf. [10]). The other line of research
relates causal rules with stratified [14] and well-founded [6] seman-
tics for logic programming. McIlraith [14] interprets the implication
connective as causal or definitional, and describes a procedure for
compiling successor state axioms from a set of effect axioms and a
set of ramification axioms. The solution applies to acyclic stratified
theories. The authors of [6] concentrate on the semantical aspects of
the ramification problem, and formulate direct and indirect effects
of actions as rules of inductive definitions. For collections of such
definitions, they introduce the term “causal theories”. The meaning
of causal theories is given by the well-founded generalization of in-
ductive definitions [4]. The authors conjectured that inductive rules
can be translated to successor state axioms of the situation calculus.
The following questions needed to be answered. (1) Since the well-
founded semantics is three-valued, there are causal theories in which
some literals have the third truth value “undefined”. Is there a coun-
terpart of such causal theories in classical two-valued logic? (2) It is
well-known that, in general, recursion cannot be represented in first-
order logic. On the other hand, successor state axioms are first order.
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Does this imply that causal theories cannot be translated to the situa-
tion calculus?

The answer to the first question is positive. Fortunately, there is a
way to capture well-founded semantics in classical logic. We give the
corresponding definition in the following section. The truth set of a
defined predicate is expressed by a formula with nested fixed-point
operators which are expressible by second-order circumscription [13]
formulas. Regarding the second question, we demonstrate that it is
possible to provide a translation of causal theories to successor state
axioms for the class of bounded causal theories, i.e., those which are
equivalent to recursion-free sets of rules.

For several years, Denecker has been arguing for the use of induc-
tive definitions for knowledge representation. Recently, he proposed
a special logic for these purposes [5]. He terms it the logic for induc-
tive definitions, or ID-logic. The syntax of ID-logic is the syntax of
first- or second-order logic, combined with formulas for represent-
ing inductive definitions. The semantics for the general case of non-
propositional definitions is presented as a generalization of the propo-
sitional case, using so-called grounding technique. In this paper, we
develop the syntax of ID-logic further and define the semantics of the
logic by translating its formulas to the formulas of fixed-point logic.
The translation demonstrates that definitions add at most the power
of fixed-point logic to the original language, before definitions.

This paper is organized as follows. First, in Section 2, we describe a
logic for representing inductive definitions, and define its semantics.
Section 3 is devoted to the situation calculus with definitions. In Sec-
tion 4, we provide a procedure for translating causal rules to successor
state axioms. To this end, we redefine regression as applying causal
rules “backwards”. This process is similar to top-down evaluation of
logic programs. In the case where static causal rules (ramifications)
are not present, our regression is essentially the same as Reiter’s orig-
inal definition. We consider several benchmark examples, and formu-
late a general theorem about translating causal theories to successor
state axioms of the situation calculus. This theorem extends our pre-
vious results [18]. Finally, in Section 5, we discuss the possibility of a
computationally useful characterization of which causal theories are
representable in the situation calculus, and in first-order logic in gen-
eral. This general characterization is impossible. This conclusion fol-
lows from the fact that boundednessis undecidablefor databasequery
languages [8]. There are, however, classes of causal theories where
boundedness is decidable.

2 A LOGIC FOR INDUCTIVE DEFINITIONS

Fix a vocabulary � . A definition � in vocabulary � is a set of rules
of the form l  	. The formula l must be of the form R(�t) where
R is a predicate symbol from � , �t is a tuple of first-order terms. It is
called the head of the rule. The formula 	 constitutes the body of the



rule. Every relation symbol occurring in the head of some rule of �
is defined; all other symbols in � are open. In database theory, defined
and open relation symbols are called intentional and extensional, re-
spectively. Denote by (�;�)d and (�;�)o the set of defined and open
symbols of �. Hence, (�;�)o = � n (�;�)d. We often write �d
and �o if no confusion is possible. The values of the open symbols
are given by a �o-structure. All the rules of � will be applied simul-
taneously to generate consecutive stages of the defined symbols. For
instance, on the structure N of natural numbers, �1 is a definition of
the form fZ(0)  ; P (x)  :Z(x)g which defines zero and the
positive natural numbers.

Sometimes the applications of the rules of a definition, say �2,
must be delayed until the fixed-point of another definition, say�1, is
reached. In this case, we write �1 ��2. In general, the result of eval-
uation changes with the order of definitions. If �1 and �2 are to be
evaluated in parallel, we write �1+�2 . If �1 and�2 are definitions
then so are �1 ��2 and�1+�2. We agree to have (�;�1 ��2)d =
(�;�1)d[ (�;�2)d and (�;�1+�2)d = (�;�1)d[ (�;�2)d, and
we require (�;�1)d \ (�;�2)d = ; whenever �1 and �2 are to be
evaluated in sequence or in parallel.

We obtain ID-logic by closing first-order (or second-order) logic
under inductive definitions. For a vocabulary � , the class ID[� ] of
formulas of ID-logic is defined recursively as follows. (The notation
�1 ;:::;�n

�
stands for “If �1; : : : ; �n are formulas then� is a formula”.)

�
�

where � is an atomic first-order (resp., second order) formula
over �

�
[�;P ](�x) where � is a definition in vocabulary � , P 2 (�;�)d,
and the length of tuple �x coincides with the arity of P

� �

:� ; �; 

�_ ; �

9x� where � and are atomic first-order (resp., second
order) formulas over � .

Intuitively, the meaning of formula [�; P ](�t) in structure A is “�tA

belongs to a relation determined by definition � in structure A and
associated with defined symbol P ”. For example, [�1; Z](0) where
�1 is as above is true on the structureNof natural numbers. The for-
mal semantics of ID-logic is definedbelow. Note that if P 2 (�;�1)d
and P 2 (�;�2)d and the definition �1 is different from �2 then
[�1; P ] and [�2; P ] denote two different relations.

Let �(�x;X) be a formula in the vocabulary � , where �x =
(x1; : : : ; xk), X is a relation variable of arity k, and let A be a � -
structure. Then � andA give rise to an operation �� : Pow(Ak)!
Pow(Ak) defined by ��(R) := f�a j A j= �[�a;R]g and �a =
(a1; : : : ; ak). Note that A j= �[�] means “assignment � satisfies
formula � in A”. If � = �(�x;X), �a = �(�x) and R = �[X], we
write A j= �[�a;R]. We say that an occurrence of a predicate sym-
bol in a formula is negative (respectively, positive) if it is within the
scope of an odd (respectively, even) number of negations. If all occur-
rences of X in �(�x;X) are positive, then the operator �� is mono-
tone and its least fixed-point is defined by transfinite induction (cf.
[15, 2]): ��(1) :=

S
n�0 �

�

(n) where ��(n) := f�a j there is �b 2

A such that (A;��<n) j= �[�a;�b] and ��<n :=
S
j<n �

�

(j):g
To simplify the presentation of the semantics, we suppose that for

any defined symbolP of�, say, of arity r, there are distinct variables
�xP = xP;1 : : : xP;r such that any rule in � with head symbol P has
the form P (�xP )  	: With every defined P we associate the for-
mula

�P (�xP ) :=
_
f9�y	 j P (�xP ) 	 in �g; (1)

where �y contains the variables in 	 that are distinct from the vari-
ables in �xP . A positive definition is a definition without negative oc-
currences of defined symbols in the body of any rule.

We shall describe the semantics of positive definitions first. As-
sume that P 1, : : : Pm are the defined symbols of �. By definition
of a positive definition they do not occur negated in the body of any
rule. LetA be a �o-structure. Define

P i(n) := f�a j there are P (�xP ) 	 in � and �b 2 A such that
(A;P 1

<n; : : : ; P
m
<n) j=	[�a;�b] and P i<n :=

S
j<n P

i
(j):g

(where �a interprets the variables in �xP i , and�b interprets those remain-
ing). Since �P1 , : : : , �Pm are positive in P 1, : : : , Pm, their simul-
taneous fixed-point (P 1

(1); : : : ; P
m
(1)) given byP i(1) :=

S
n�0 P

i
(n)

exists. Thus a positive definition � and a �o structure A give rise
to the � -structure (A;P1

(1); : : : P
k
(1)), whereP 1

(1); : : : P
k
(1) are the

defined relations. This extended structure provides the semantics for
�.

Now we are ready to define the semantics for a general definition.
First we provide some intuition by discussing a procedure for deter-
mining the so-called truth set of a defined predicate. This procedure
generalizes the procedure originally proposed by Van Gelder [20]. Let
� be a general definition. For every defined symbol P , replace all
positive occurrences of P in the bodies by a new relation symbolP 0.
Now, the original P does not occur in the head of any rule of the re-
sulting definition�0; hence,P is an open symbol of � 0, and thus,�0

is a positive definition. In order to simplify the presentation, we as-
sume that � only contains a single defined relation symbol P . In ev-
ery �o-structureA, the definition� gives rise to a sequence(Pn)n�0

of relations on A defined by

P0 := ;,
Pn is the result for P 0 of the evaluation of the definition �0 in
(A; P�n), i.e., taking P�n as interpretation of the open symbol
P of �0.

(where P�n =
S

2k<n

P2k if n is odd,
T

2k+1<n

P2k+1 if n is even).

Example 1 (renaming). In the following definition, renaming se-
lected occurrences of P by P 0, as described above,

�0 : P (x) S(x; y; z) ^R(x; u) ^ :P (y)
P (x) :R(y; y) ^ P (x) ^ :P (u);

produces

�0
0 : P 0(x) S(x; y; z) ^R(x; u) ^ :P (y)

P 0(x) :R(y; y) ^ P 0(x) ^ :P (y)

Let  (x;Q) be a first-order formula positive in Q, � be the mono-
tone operator associated with it. Then [LFPx;Q( (x;Q))] denotes
the least fixed-point of � . In the definition �0 , the stagesPn of the
evaluation of �0 are the stages ��n of �� , where

�(x;P ) := [LFPx;P 0 (9y9z9uS(x; y; z) ^R(x; u) ^ :P (y))
_9y:R(y; y) ^ P 0(x) ^ :P (y)](x):

Consider again the general �o-structure A and the sequence
(Pn)n�0 of relations on A. Define the truth set of this sequence as

P
�
true := fa 2 A j 9n08n � n0 : a 2 Png:

Then � leads to the � -structure (A;P�
true). Note that P�

true = P1

if the fixed-point P1 of the sequence (Pn)n�0 exists. The extended
structure (A;P�

true) provides the semantics for the general definition
�. For terms �t, the meaning of formula [�; P ](�t) is “�tA 2 P�

true”.
We say that � is total if the fixed-point P1 of the sequence

(Pn)n�0 exists for all �o-structures A. Note that we cannot restrict



the language to allow total definitions only. By doing so, we would
obtain an undecidable syntax. To see this, notice that monotonicity of
�� is undecidable. Thus, there is no algorithm to determine whether
the fixed-point of �� exists; therefore the question of whether a def-
inition is total is undecidable. A general definition is guaranteed to
be total if it is positive or stratified. Let FO+LFP denote the closure
of first-order logic under least fixed-point of operations definable by
positive formulas. The following proposition makes use of previous
work on the well-founded semantics of logic programs and database
query languages.

Proposition 1. For every ID-logic formula [�;P ](�t) there is an
equivalent FO+LFP formula.

Proof. For simplicity, suppose that P is the only defined symbol of
�. Then � has the form fP (�x)  	1; : : : ; P (�x)  	sg: In for-
mula (2) below, 9�y are the variables in 	i distinct from �x and 	0i is
obtained from 	i by replacing positive occurrences of P by P 0 so
that �(�x;P ) is negative in P .

�(�x;P ) := [LFP�x;P 0

s_
i=1

9�y	0i](�x): (2)

This implies that �� is antitone, i.e., X � Y implies ��(Y ) �
��(X): Therefore, ��0 � ��2 � ��4 � : : :��5 � ��3 � ��1 : In
the literature on well-founded semantics of logic programming (e.g.
[1, 20]), the increasing even subsequence��2�n corresponds to the un-
derestimates of the positive facts and the decreasing odd subsequence
��2�n+1 corresponds to the underestimates of the negative facts.

The operator � := �� � �� is monotone. Let  (�x;P ) be the for-
mula �(�x; �( ; P )) which is positive in P . Then � = � . Since
� n = ��2�n , then � 1 =

S
n�0 �

�
2�n = P�

true. Hence, [�; P ](�t) is
equivalent to the FO+LFP formula [LFP�x;P (�x;P )](�t):

To extend the parallel with logic programming, one can define the
false set P�

false of � asP�
false := fa 2 A j 9n08n � n0 : a 62 Png;

and the undefined set as P �
undef := A n (P�

true [ P
�
false): Note that

� is a total definition if and only if the set P�
undef is empty for all

structures.
Proposition 1 shows that definitions add at most the power of

FO+LFP to the expressive power of the original language (before def-
initions). It can be shown that on finite structures [7], definitions add
exactly the power of FO+LFP to the original language. Proposition 1,
however, is not restricted to finite structures.

3 SITUATION CALCULUS WITH
DEFINITIONS

We consider a many-sorted version � sc of the vocabulary of the situ-
ation calculus with equality and with sorts for actions, situations and,
possibly with one or more sorts for objects. The primitive non-logical
symbols of sort actions consist of variables a, a1 , a2 , : : : , and con-
stantsA0, A1, A2, : : : The primitive non-logical symbols of sort sit-
uations consist of variables s, s0, s00 , ~s, : : : , constantS0 , binary func-
tion do(a; s), where a is an action, and s is a situation. This function
defines a successor situation in terms of a current situation and a per-
formed action. Finitely many predicate symbols F1; : : : ; Fn called
fluents represent properties of the world, and have situations and pos-
sibly objects as their arguments. These symbols shall be viewed as
definable in the rest of this paper. The logical symbols of the language
are :, _, 9, =. Other logical connectives and the universal quantifier
8 are the usual abbreviations. In this paper, we do not consider pred-
icates Poss andv (cf. [16]).

A basic action theory is a set of axiomsD = Df [Dss[Duna[
DS0 ;whereDf is the set of foundational axioms for situations;Dss is
the set of successor state axioms, one for each fluent;Duna is the set
of unique name axioms for actions; andDS0 is the description of the
initial situation. The foundational axioms for the situation calculus,
Df , are

S0 6= do(a; s);
do(a1; s1) = do(a2; s2) � a1 = a2 ^ s1 = s2;

8P [P (S0) ^ 8s
0 8a P (s0) � P (do(a; s0)) � 8s P (s)]:

(3)

These axioms guarantee that situations compose an infinitely branch-
ing tree. Indeed, it can be shown that the class of tree-like structures is
completely characterized by the induction principle on situations and
unique name assumptions for situations [18]. Successor state axioms,
Dss, have the form

Fi(�x; do(a; s)) � [
+Fi(�x; a; s) _ Fi(�x; s) ^ :

�
Fi
(�x; a; s)]: (4)

Formula 
+F (�x; a; s) (respectively, 
�F (�x; a; s)) denotes a first order
formula specifying the conditions under which fluent F is true (re-
spectively, false) in the successor situation [17]. The only free vari-
ables of these formulas are those among �x, a, s. Function symbol do
does not occur in these formulas, neither does S0 . The unique name
axioms,Duna, specify that any two actions with different names are
not equal. The description of the initial situation,DS0 , is a set of first
order sentences that are uniform in S0; i.e., they contain no situation
term other than S0. We shall augment the foundational axioms Df ,
unique name assumptions Duna, and the initial database DS0 with
two definitions, �c and �h, evaluated consecutively.

Example 2 (suitcase). Several versions of this example (e.g. [19])
have been used to demonstrate that domain constraints are not strong
enough and that an explicit notion of causality is necessary. Suppose
we have a suitcase which opens if and only if both of its two locks
are open. Fluent O represents the fact that the suitcase is open; flu-
entsL1 ,L2 are true whenever the corresponding locks are open. Con-
stant symbols o1, o2, c1, c2 represent actions of opening and closing
the respective lock. Following [11], [6] and other authors, we distin-
guish between the fact that fluent F (respectively, its negation) holds
in a situation and the statement that F (respectively, :F ) is caused
to hold. To capture this difference, we introduce predicates CF (s),
C:F (s) for each fluent F , whereC stands for “caused”. For the rest
of the paper, we adopt the following notation: Whenever convenient,
we omit the situation argument s and denote the situation argument
do(a; s) by a prime; for example, L2 represents L2(s), and C 0L1 de-
notes CL1 (do(a; s)). The rules of �c

1 specify direct and indirect ef-
fects of actions.

C 0L1  a = o1 C 0:L1  a = c1

C 0L2  a = o2 C 0:L2  a = c2

C 0O  C 0L1^L2 C 0:O  C 0:L1_:L2

Following [6], we view the last two rules as an abbreviation for

C 0O  C 0L1 ^C
0
L2

C 0:O  C 0:L1
C 0O  C 0L1 ^ L2 ^ :C

0
:L2

C 0:O  C 0:L2
C 0O  L1 ^ :C

0
:L1 ^C

0
L2

Let �h
1 be given by the following set of rules (i = 1; : : : ; n):

Fi
0  C 0Fi Fi

0  Fi ^ :C
0
:Fi

In our example, Fi 2 fL1; L2;Og and n = 3.



4 GENERATING SUCCESSOR STATE AXIOMS

Consider a vocabulary � . Let Form[� ] be the set of well-formed
formulas over � . Let � be a propositional definition in vocabulary
� . Define operatorR : Form[� ]! Form[� ] inductively as follows.

R[ ] =

8>>>>>><
>>>>>>:

P (�xP ) if  = P (�xP ) and P 2 (�;�)o;

R[�P (�xP )] if  = P (�xP ), P 2 (�;�)d
and �P (�xP ) is obtained as in (1);

R[�1] _R[�2] if  = �1 _ �2;

:R[�] if  = : �:

TransformationR is called the regression operator. If the theory does
not include static causal rules, the definition of the regression oper-
ator above is essentially the same as the original definition of [16],
except that in our case it is a purely syntactic transformation. Regres-
sion for the non-propositional case is a generalization of the propo-
sitional definition using the grounding technique defined in [5]. In
what follows, we construct successor state axioms of the form F 0 �
R[C 0F ]_F^:R[C

0
:F ]: If regression is performed successfully,pred-

icate CF does not appear in this sentence. We discuss the general so-
lution at the end of the section.

Example 3 (suitcase, continued). Consider the regression of C 0O
andC 0:O from Example 2. It is convenient to represent regression in
a tree form. Thus, in Figure 1, the regression of each atomic formula
P is represented by a tree where (1) each node of the tree is labeled
by an atomic or a negated atomic formula; (2) the root is labeled by
P ; (3) each leaf is labeled by an open atomic or negated atomic for-
mula; and (4) for each internal node, there is a rule in � so that the
head is the label of that node, and the body is the list of labels of its
children. Regression trees are similar to “proof trees”, an alternative
way of representing inductive definitions [5, 2]. In particular, along a
branch of a “proof tree”, labels of the nodes do not compose cycles.
This property also holds for regression trees.

C 0O

�� \\
C 0L2 L2 :C

0
:L2

a = o1 a 6= c2

C 0O

�� TT
C 0L1 C 0L2

a = o1a = o2

C 0O

�� \\
C 0L2L1 :C

0
:L1

a = o2 a 6= c1

C 0:O

C 0:L1

a = c1

C 0:O

C 0:L2

a = c2

Figure 1. Regression trees for the suitcase example.

The result of regression of C 0O is the disjunction of conjunctions of
leaves in each tree with C 0O in the root. Using unique name assump-
tions, we obtain the following successor state axioms.

8s8a L1(do(a; s)) � a = o1 _ L1(s) ^ a 6= c1
8s8a L2(do(a; s)) � a = o2 _ L2(s) ^ a 6= c2

8s8a O(do(a; s)) � L1(s) ^ a = o2 _ L2(s) ^ a = o1

_O(s) ^ a 6= c1 ^ a 6= c2

Example 4 (gear wheels). This example illustrates the case where
causal dependenciesform a positive cycle. Suppose we have two con-
nected gear wheels and suppose fluents T 1, T2 represent the fact that
the first (respectively, the second) wheel is turning. If a wheel starts or
stops turning, we denote this change by action start1 , start2, stop1,
or stop2, respectively. The following rules of �c

2 specify direct and
indirect effects of actions:

C 0T1  a = start1 C 0:T1  a = stop1
C 0T2  a = start2 C 0:T2  a = stop2

C 0T1  C 0T2 C 0T2  C 0T1
C 0:T1  C 0:T2 C 0:T2  C 0:T1

The definition�h
2 is similar to�h

1 from the previous example. Figure
2 represents the regression ofC 0

T1
andC 0:T1 . Notice that the third and

the sixth tree from the left are discarded as having cyclic branches.

C 0T1

a = start1

C 0T1

C 0T2

a = start2

C 0T1

C 0T2

C 0T1...

C 0:T1

a = stop1

C 0:T1

C 0:T2

a = stop2

C 0:T1

C 0:T2

C 0:T1...
Figure 2. Regression trees for the gear wheels example.

We obtain the following successor state axioms:

8s8a T1(do(a; s)) � a = start1 _ a = start2
_T1(s) ^ a 6= stop1 ^ a 6= stop2

8s8a T2(do(a; s)) � a = start1 _ a = start2

_T2(s) ^ a 6= stop1 ^ a 6= stop2

Example 5 (circuit). The following example from [6] illustrates the
case where causal dependencies contain a cycle through negation.
Consider the circuit from Figure 3.
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P S

~R2

R1

~T Q

C 0T  a = ct C 0:T  a = ot

C 0R1
 C 0P^S C 0R2

 C 0T^Q
C 0Q  C 0R1

C 0:P  C 0R2

C 0:R1
 C 0:P_:S C 0:R2

 C 0:T_:Q
C 0:Q  C 0:R1

C 0P  C 0:R2

C 0:S  C 0T C 0T  C 0:S
C 0S  C 0:T C 0:T  C 0S

Figure 3. Electrical circuit.

The circuit consists of two interconnected sub-circuits. On one cir-
cuit, there are two serially connected switches, P and S, and a relay,
R1 . The other circuit contains two switches, T and Q, and a relay,
R2 . The only actions used in the theory are ct and ot, which repre-
sent closing and opening of switch T . The first relay is on (i.e., true)
if and only if switchesP and S are on, R1(s) � P (s)^ S(s). Simi-
larly, for the second relay, we haveR2(s) � T (s)^Q(s). RelayR1

and switchQ, as well as relay R2 and switch P are connected in the
following way:R1(s) � Q(s),R2(s) � :P (s). The corresponding
causal rules, with the same kind of abbreviations as in example 2, are
represented in Figure 3.

As usual, we include �h
3 , where the defined symbols are all the

fluents of the theory. After expanding the abbreviations in �c
3 as in

Example 2, we notice that the definition contains a negative cycle,
C 0:P  C 0R2

 C 0Q  C 0R1
 :C 0:P , so �c

3 is not stratified.
Reproducing regression trees for this example requires much space,
so we can only give the resulting successor state axioms.

8s8a T (do(a; s)) � a = ct _ T (s) ^ a 6= ot

8s8a Q(do(a; s)) � a = ot _Q(s) ^ a 6= ct
8s8a S(do(a; s)) � a = ot _ S(s) ^ a 6= ct

8s8a P (do(a;s)) 8s8a :R2(do(a; s))
8s8a R1(do(a; s)) � a = ot _ R1(s) ^ a 6= ct

Example 6 (TC of a graph). This example motivates the need for
the boundedness condition for generating successor state axioms.
Suppose we have a directed (potentially infinite) graph in which each
arc is represented by fluent A(x; y). We want to compute the tran-
sitive closure TC(x; y) of the relation A. The action of adding arc
(x; y) to the graph is represented by action add(x; y). For simplicity,



we assume that arcs cannot be deleted. The rules of definition �TC

are:
C 0A(x;y)  a = add(x; y)

C 0TC(x;y)  C 0A(x;y)
C 0TC(x;y)  C 0(TC(x;z)^A(z;y)))

The last rule is the usual abbreviation. Consider the following regres-
sion. R[C 0TC(x;y)] � a = add(x; y) _ 9z(R[C 0TC(x;z)] ^ a =
add(z; y)) _ 9z(R[C 0TC(x;z)] ^ A(z;y)) � : : : The length of the
resulting formula grows with every iteration of regression, and the
process never terminates. Thus, in general, regression may produce
a formula of infinitary predicate logic. This is not acceptable for our
purposes and motivates the following study.

We say that a definition � is bounded if there is a constant c
such that, for all �o-structures, the fixed-point P1 of the sequence
(Pn)n�0 defined in Section 2 is reached within c steps. Observe that
definition �TC from Example 6 is unbounded — for a structure �o
with an infinite domain, the closure ordinal of the corresponding op-
erator is !. If definition � is bounded, then there is a recursion-free
definition �0 such that 8�x[�; P ](�x) � [�0; P ](�x).

Lemma 1. If�c is boundedthen, for each fluentF i, the regressionof
C 0Fi (respectively,C 0:Fi ) in �c is equivalent to a first order formula,
call it 
+Fi (respectively, 
�Fi ).

In the theorem below, we need the following consistency conditionV
i=1;::: ;n :9�x9a9s 


+
Fi
(�x; a; s) ^ 
�Fi(�x; a; s). This sentence re-

quires that the conditions making fluentFi true (
+Fi (�x; a; s)) and the
conditions making it false (
�Fi (�x; a; s) are never true simultaneously.

Theorem 1. Suppose the consistency condition holds and � c is
bounded. Let � be a term of sort situation in the vocabulary � sc, and
let F be a fluent. ThenDf [Duna [DS0 j= F (�) if and only if, for
every structureA satisfyingDf [ Duna [ DS0 , �A 2 [�c ��h]A

where [�c ��h]A is the relation defined by �c ��h with respect to
structure A, and �A is the interpretation of the situation term � in
this structure.

The theorem follows from the procedure for generating successor
state axioms, from the definition of regression and from the preceding
lemma.

5 CONCLUSIONS

In this paper, we have addressed the logic for representing inductive
definitions (ID-logic) as proposed by Denecker. We have provided a
semantics for this logic, by translating its sentences to the sentences
of fixed-point logic. ID-logic may be viewed as a fragment of second-
order logic; moreover, we have demonstrated that definitions add at
most the power of FO+LFP to the original language (before defini-
tions). This conclusion is very important from a computational point
of view, because of the well-known complexity/expressiveness trade-
off. Despite its modest power, ID-logic is expressive enough to en-
code a rather general solution to the ramification problem.

Representing causal theories in the situation calculus, and in first-
order logic in general, requires some care. We have demonstrated that
boundednessof causal theories is a sufficient condition for translating
to successor state axioms of the situation calculus. This condition is
not necessary,however: as shown by Gurevich and Ajtai [3], there are
first-order representable but unboundedlogic programs. In the simple
case of negation-free causal theories, boundedness is a necessary and
sufficient condition for a first-order translation.

Unfortunately, boundedness of �c is not decidable, either for pos-
itive or for general definitions. This conclusion follows from the ob-
servation that boundednessof logic programs is an undecidable prob-
lem [8]. Thus, in general, it is not possible to give a computationally
useful characterization of those causal theories that are representable
in the situation calculus. In spite of these negative conclusions, it is
possible to identify wide subclasses of definitions for which there are
algorithms to detect when a definition is first-order. For instance, us-
ing the results about general logic programs, one can demonstrate that
boundedness is decidable for stratified causal theories, where the de-
fined predicates contain at most one argument, in addition to a situa-
tion term.
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