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Abstract. Of the many justifications of Bayesianism, most imply I: Divisibility and comparability- The plausibility of a statement is

some assumption that is not very compelling, like the differentiability a real number and is dependent on information we have related to

or continuity of some auxiliary function. We show how such assump- the statement.

tions can be replaced by weaker assumptions for finite domains. THe Consistency - If the plausibility of a statement can be derived in

new assumptions are a non-informative refinement principle and a two ways, the two results must be equal.

concept of information independence. These assumptions are wedkerCommon sense - Deductive propositional logic should be the spe-

than those used in alternative justifications, which is shown by their cial case of reasoning with statements known to be true or known

inadequacy for infinite domains. They are also more compelling. to be false, and plausibilities should vary sensibly with the assess-
ment of plausibilities in the model.

1 Introduction Cox’s paper is very appealing to believers in Bayesianism, but
The normative claim of Bayesianism is that every type of uncer-Sometimes more has been put in it than there is, and sometimes less.
tainty should be described as probability. Bayesianism has been quifdthough the first two desiderata can be criticized, they are usu-
controversial in both the statistics and the uncertainty managemer@ly accepted and their interpretation is uncontroversial. The third
communities. It developed as subjective Bayesianism, in [5, 11]. Redesideratum is clearly open-ended, and sometimes it has been inter-
cently, the information based family of justifications, initiated in [3] Preted as found suitable considering the proof method used rather
and continued in [1] have been discussed in [12, 6, 13]. We will try tothan by some serious consideration of what is meant by common
find assumptions that are strong enough to strictly imply BayesianS€Nse.

ism and at the same time convincing in a subjective way (common After introducing the notatiomd|C for the plausibility of state-
sense). In section 2 we give a short outline of the arguments of Cofent A given that we knowC' to be true, Cox finds the govern-
and his followers and introduce the functidhrelating the plausi- NG functional equation for defining the plausibility of a conjunc-
bility of a conjunction to the plausibilities of its conjuncts, and the tion: AB|C' = F(A|BC, B|C) must hold for some functiorf".
similar functionsS andG describing plausibilities of complements There is also assumed to be a functi$rdescribing complements:
and disjunctions. In section 3 we discuss the problem raised in recert(4/C) = A|C'. Using the rules of propositional logic and a num-
papers and propose assumptions weaker than the standard ones: npft of auxiliary assumptions it is possible to show that there must
informative refinability and information independence. In 3.1 we ob-€Xist a strictly monotone scaling(x) of the plausibility measure
serve that our assumptions imply thatand G must be associative that satisfies the rules of probabilitiese., takesF' to multiplica-

and symmetric, and jointly distributive. In 3.2 we show that evention andS to 1 — z —in other wordsw(F(z,y)) = w(z)w(y)

if there is no direct violation of strict monotonicity, associativity or ahdw(S(z)) = 1 — w(x). The assumptions used by Cox are not
symmetry, there can be problems in a model that surface after a nun§xplicitly stated, but they can be inferred from his text[13]. They in-
ber of refinement steps, and we describe a theorem (proved in the a1.50Ive among others some density and differentiability assumptions
pendix) saying that for a finite domain, and under our assumptionshat have been criticized in [12, 6]. The existence of the function
natural refinements are possible if and only if the functiors trans- w(x) that translates the plausibility measure to another measure sat-
formed to multiplication by some monotone scaling of the pIausibiI-iSfying the rules of probabilities will be calleg@scalability, and the

ity measure. Our argument shows that a similar scaling must exidiain topic of investigation in this note is under what reasonable and
taking the function’s to addition. We outline an argument showing preci;e assumptions_ rescalabil_ity obtains. From rescalability all Fhe
that a rescaling taking/(z, y) to z +y must also také” (z, y) to zy. machinery of Bayesian analysis follows, except the way to assign
In 3.3 we discuss the extension to infinite but non-dense domains. We¥ior probabilities.

show with an example that some new assumption is required for the A More precise derivation of rescalability with significantly
infinite case before Bayes rules. weaker assumptions was published by @lf¥]. Aczél relaxes the

differentiability assumption of Cox and introduces the funct@n

with the use:A v B|C = G(A|C, BA|C). Itis then only necessary

to assume continuity ofz with the accompanying domain dense-

In 1946, R.T. Cox published his findings [3] on some properties re-ness, strict monotonicity, associativity, symmetry, distributivity and

quired by any good calculus of plausibility of statements. He statedbvious boundary conditions to prove rescalability. Paris also gives a

three desiderata (the following is actually from [9], but very similar): full-fledged proof of rescalability [12] that does not use differentia-
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model and is not associative. Since associativity is preserved by andG(z,y) are strictly increasing in both arguments for non-zero
monotone scaling, it cannot be possible to rescale the plausibility plausibility values of: andy.

measure of this model so that is translated to multiplication, be-

cause multiplication is associative bfitis not. The plausibilities of The main purpose of this note is to show that these assumptions
this model can thus not be considered equivalent to probabilities. €ntail Bayesianism for finite models.

3 Weakening assumptions 3.1 Associativity, symmetry and joint distributivity

We want to see if density and associativity assumptions are neddalpern takes his example [6] as an indication that the conclu-
essary, or if there are more fundamental arguments in favor o$ion of Cox does not apply to finite models. It is true that den-
Bayesianism. We thus assume that the functiornan be different  sity and continuity cannot be dropped without introduction of some
in different models. But we do not regard a model as fixed and finnew assumption. However, if we accept refinability as a reason-
ished. Instead, we think of a model as being worked out incremenable assumption, things change. If we have worked out a model
tally by refinementj.e., by breaking down the situation in sub-cases where F(a, F'(b,c)) # F(F(a,b),c) for some plausibilities:, b

to the degree desired in an application, and our method should n@nd ¢, then we take an arbitrary statemesit(not false) and re-

be such that we are unnaturally and arbitrarily constrained in how fafine with S., S, and S.. S, — S, Sy — Sc and S. —

and how our model can be refined. We adapt an informative refine$, S.|Sy = a, So|Sc = b and S.|S = c. Now the value
ment method, sometimes known as 'extending the discussion’[14, 7]5.55c|S can be computed in two ways giving different results, as
When a user is not confident about his assessment|Gf he di-  (SaS)Sc|S = F(SaSp|SSe, Sc|S) = F(F(SalSh, Sb|Sc),c) =
vides the contexC' into two subcase€’; and C», and assesses F(F(a,b),c) and asS,(SuSc)|S = F(S4|SSuSe, SpSec|S) =
A|C4, A|Cy, C1|C andC2|C. Now A|C = G(AC1|C, AC,|C) = F(Sa|Se, F(Sb|Se, Sc|S)) = F(a, F(b,c)). So our model is not
G(F(A|C1,C1|0), F(A|C2, C2|C)). A weaker form of model re-  consistently non-informatively refinable #f violates associativity.
finement is a non-informative refinement where we do split cases into A similar argument can be used to show thfatis bound by
subcases, but do not assign new plausibilities of existing events coigommon sense to be symmetric: If we have defined some function
tingent on the new subcases. Such refinements should never changgue F(a,b) = c, it is reasonable that one should be able to re-
the information obtainable from the model, and should not make ifine any statemerff into two information independent statemerits
inconsistent. As pointed out in [6], a user interested in finite modelsand B, with A|BS = A|S = a and B|AS = B|S = b and thus

is probably not impressed by an assumption implying that modelsAB|S = BA|S = c. If we allow this refinement operation, sym-
are infinite. Although refinability assumes that an infinite number ofmetry of F* follows from commutativity of conjunction. The above is
new symbols are available, it is probaly acceptable to a user wheeant to suggest that it is quite reasonable to require that the function
realizes that models even if finite must be refinable when worked? is associative and symmetric for all values that appear in a given
out, and such a user would probably accept the unbounded nature afodel. If the functionG of [1] were used, the corresponding refine-
refinability as an approximation to what is required by practicalityment principle would be that i€7(a,b) = c is assumed, then we
considerations. We also want to have at our disposal the possibishould be allowed to take any stateméhin the model and define

ity of claiming that two new statements are independent in a givera sub-case&”’ with C|S = ¢, and two disjoint and exhaustive sub-
context, so that knowledge of one does not change the plausibilitgasesA and B of C with plausibilitiesA|.S = a and B[S = b. With

of the other. This condition we call information independence. It isthis refinement operation it is easy to show tGamust be symmet-
closely related to statistical independence, but we do not use this teriic and associative, since it follows readily from commutativity and
since we have not yet introduced probabilities. Finally, we introduceassociativity of disjunction.

a strict monotonicity requirement, which is also introduced in most  Finally we must consider the distributive law assumed in [1] and
previous analyses without a lot of discussion. Our proposed assumsatisfied by« and 4-, which we will soon require for showing that
tions, which should reflect one possible interpretation of Cox’s anda scaling takingF”’ to = will also takeG to +. For any three plau-
Jaynes’s common sense desideratum, are: sibilities a, b and ¢ occurring in the model, and wher&(a, b) has

Refinability: If h read q icul litt ¢ been defined, we require that it should be possible to refine any state-
* Refinability: If we have already made a particular splitting of & |+ ¢ into three statementd — S B — SandC — S with

statement into sub-cases, by adding new statements implying it’mS — a4, B|S = bandC|S = ¢ and such that1B is false

should alwgys be possible to _re_fi_n_e a_nother statement in the SaMbhd 4, B and A v B are all information independent @. This

way, and W'th the §am(? pl_ausm/nlltles in the Ewew refln_ement. As arr]equirement leads to the distributive law fBrandG on the domain,
example, if we defined’ with A" — Aand A’|A = a, it should ;o (AV B) A C|S = F(G(a,b),¢) and (A V B) A C|S =

for any existing statemen® be allowed to defind3’ as a new (ANC)V (BAC)S = G(F(a C’) }77(b e))

symbol withB’ — B and B’'|B = a. T

e Information Independence: If a statement is refined by several
new symbols, it should be possible to state that they are inforObservation 1 In order to satisfy natural requirements on consis-
mation independent, so that knowledge of one does not affect thency being preserved by non-informative refinements of models, we
plausibility of the other. As an example, 4f and B are intro-  must work with models whefé and G are partially specified in such
duced as refinements 6f, we should be permitted to claim that a way that they satisfy the laws of associativity and symmetry, as well
A|BC = A|C and BJAC = B|C. as joint distributivity.

e Strict Monotonicity: The plausibility of a conjunction is always
strictly less than those of the conjuncts, if these are independe
and their plausibilities are not 0 or 1. The plausibility of a dis-
junction of exclusive statements with non-zero plausibilities is al-We can now dismiss the example of [6] by observing that non-
ways strictly larger than those of its disjuncts. Moreové&(z, y) associativity inevitably violates the principle of consistent refinabil-

In summary:
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ity. It remains to consider whether any partially specified functionbecause no variable is zero, thet = xs, contrary to the as-
can be extended to an associative function if it is associative on itsumption thatzr < xzg. This also means that it is possible
range of definition. This is not generally the case, even if it alsoto add a finite set of statements by refinement with plausibili-
satisfies the other properties that will be required from the comdties that leads to inconsistency in the plausibility assignment. In
pleted function: strict monotonicity and symmetry. If an appropri- this example we can add statemertd;}/_,, By and C, with
ate rescaling to probabilities exists, we can find it by solving a finiteA;|C = x; and B4|C = z4. If the A; and B, are independent
linear system of equations and inequalities for the log probabilitieggiven C, the statementl; A, As A4 B4 A5 AgA7|C can be shown to
l; = logw(z;) excluding the value for falsity. The system has an have two different plausibilitiesF'(¢, z7) and F(q,zs) for ¢ =
equationl; + [; = I;, for each triplex, = F'(z;,z;) and aninequal-  F(a, F(b, F(c, F(d,z1, F(z2, F(x3, F (24, F (x4, F (25, z¢) - - *).
ity I; < I; for every pair withz; < z;, and an equality; = [; when We are now ready to state that rescalability of théunction fol-
Ti = Tj. lows from our assumptions. The argument goes as follows: If rescala-
If a partially specified function can be completed to a full function bility obtains, itis trivial to extend” to an associative, symmetric and
over the support points (and some more points) satisfying associatrictly monotone function over the dense inter¢@l1) which cov-
tivity, symmetry and strict monotonicity, then the system is solvable.ers any refinement. If rescalability does not hold, then this is equiv-
Its solution set is either unbounded (because the system is homogalent to non-solvability of a linear program. But this means that a
neous) or empty, and it is empty only if there is no completion satis-dual program has a solution (from which the coefficient vector in the
fying associativity, symmetry and strict monotonicity. A simple caseexample is obtained), and it so happens that this solution defines a
where the partially specified function triples satisfy the laws, but norefinement that is a proof of non-compliancefofwith strict mono-
completion over the support points does so, is the following: Assumeonicity, assuming it is symmetric and associative - but these proper-
the partial specification satisfies ties have already been shown to follow from refinability. The concept
of extension basis a formalization of the definedness of expressions

F(za,z4) = a @ such as those in (17) and is a set of multiplicities of its domain el-
F(z3,z5) =a (2)  ements. If we have extenddd to an extension base it means that
F(x2,24) = b 3) all expression like those in (17) are defined, if the number of occur-
_ rences of each domain element in the expression is no greater than its
F(z1,25) =b 4 AR . . o 9TEEE T
multiplicity in the extension base. A more precise definition is given

F(za,26) = ¢ ) inthe appendix.
F(zs,z7) =c (6)
F(xz,26) = d ) Theorem 2 Let X = (x;)Z; be a strictly increasing sequence of

’ real values. LetS = {1,...,L} andT, C S* be a finite set of
F‘(.T17 xs) = (8)

triples. The partial functior satisfiesc;ox; = zk, forall (i, 7, k) €
Here we have assumed that thequantities are ordered increasingly Zo- Then the following conditions (i) and (ii) are equivalent:

in the open interva(0, 1), but the quantities, b, ¢ andd can have
any values. If the plausibilities were scalable to log probabilities
there should be a solution to the system:

(i) There is a finite extension bage of X to whicho cannot be ex-
tended as a symmetric, associative and strictly increasing func-

tion.
ly+1la =1, (9) (i) There is no increasing sequence of numbgefs)” ; such that if
Is+ 15 =1, (10) (4,4, k) € To, thenf; + f; = fr.
letla=1h (11) This theorem (proved in the appendix) applies both to the function
h+ls=1 (12) F and the functiorG of a consistently refinable plausibility model,
L+l =1 (13) since these functions are both, by the preceding analysis, associative,

symmetric and strictly increasing. For the functiéh the numbers

ls+lr =l 14 £ must be negative, since we assuntéfl,y) < min(z,y) and
lo+1ls=1la (15)  we have an equatiofir + f; < fj, f; < fi < fr,in our system.
I +1s =g, (16) The f; can thus be taken as log probabilities. For the functign

) N the f; must for analog reasons be positive. They can be taken as
together with the conditions < /1. probabilities after some normalizing linear scaling. There are thus a

If we now add together the equations (9-16) multiplied with the ,, mper of rescalings transforming the functiBrio + and a number
coefficient sequencel, —1, —1,1, —1,1,1, —1), we find after can- 4t rescalings transforming' to +, but we do not yet know if there is
celling _the.\t they impl)l7_ = [g, contrary to the condi_tiohr < lg._ _ one rescaling satisfying both criteria.

But if it were possible to complete the partially specifigd What can we say about the joint effect of rescaling on the func-
so that it satisfies symmetry and associativity, we can reach thgons F and G? The analysis of [1] takes the joint distributivity of
same conclusion by composing, with the functiéh equations  r and( as a starting point, and then we can draw on results for the
(1-8), after first swapping the equations with negative coefficient.exiremely well studied Cauchy equation. We outline an argument,
The resulting equation ig"(F(za, z4), F(a, F(F(z1,...)))) =  whichis very much based on the classical analysis of Cauchy’s equa-
F(F(z3,x5), Fa, F(F(22,...))), _ tion f(z +y) = f(z) + f(y)[1], the difference being that we do
and thus by symmetry and associativity we can rearrange it to not have a dense domain, but instead we have a refinability princi-

ple that allows us to construct a finite inconsistency proof for any
F(z7, F(a, F(b,...))) = F(zs, F(a, F(b,...))),  (17)  given non-linear solution. If we scal@ to +, the distributivity equa-
where the omitted (dotted) parts of the left and right sides oftion is transformed to a family of Cauchy equatiof¥z + y, z) =
(17) are equal. This entails, because of strict monotonicity andf'(x, z) + F(y, z). We claim that the general solution has the form



F(z,z) = zc(z) for some monotone functioa Indeed, the refin-  number of intervals is invariant under strictly monotone rescaling. So
ability principle for complement, given that is +, lets us define a model where the union of such intervals (exponent now denoting

two cases of a statemestwith S’|S = a andS”|S = 1 — a. iteration of ', so thatr! = z andz™*' = F(z,2™)) is an infinite
By repeated refinement, an arbitrarily fine grid of statements in theset of disjoint intervals cannot be rescalable.
model, related by addition, can be created. ThuB(ifo, z0) = szo, As an example with an infinite number of intervals thus not be-

F(zo,20) = swo = F(F(zo0,a),20) + F(F(z0,1 — a),20). We  ing rescalable, consider a domain generated from two statements

can thus by repeating refinement find point§ arbitrarily close to ~ With plausibilitiesy = 1/4 andz = 1/5. Let exponents of plau-

0 with both F(:véi),zo) < sxé“ and F(méi),zo) > Sl'éi). If we sibilities denote iteration of thé” function. The model is defined

had F(zo, z0) = szo andF(z1,20) = s'z1, With s > s’, we can by: F(y’, ") = 1/(3(j + k) + (4 + 2k)/(5 + k)). Now z¥ =

find a refinement with two plausibilities anda’ such thata < o 1/(3*p+2),4” =1/(3xp+1), and separation is not obtained, be-

but F(a, z0) > sa > s'a’ > F(d', 20), a violation of strict mono- ~ CaUse n_(y”+ is larger Fh.al’.lcp for any positive integep, and there-.

tonicity of F. So F(z, ) must vary linearly withz for constantz, fore all intervals are disjoint. We have not at all useq the functlon

F(z,2) = zc(z). But sinceF (1, z) = z we must have(z) = z on G, so we h_ave no means to even talk gbout vaIu_e@cnrh refine- _

the domainj.e., F(z,y) = zy. We have outlined an argument for: mgnts. An |nt(_erest|ng observation on this model is t.hat each of its
finite subsets is rescalable, and of course the fundtiaa associa-

Theorem 3 Let X = (z;)%, be an increasing sequence of distinct tive, symmetric and strictly monotone. There appears to be no finite
values in the open intervaD, 1), and S = {1,...,L}. Given two argumentation for its inadequacy, at least not using reasonable refin-
sets of triplesT’, T C S* interpreted as specifications of two par- ability arguments. In a forthcoming note we will show that our inter-
tial functionsF and G satisfying alsaF'(1, z;) = ; , F(0,2:) = 0 pretation of Cox assumptions for infinite models entails rescalability
andG(0, z;) = . to infinitesimal or extended probability[2, 15], where probabilities

The following are equivalent: take values in an ordered algebraic field of reals and infinitesimals.
The example above would correspond to extended probabilifies

(i) There is a finite extension baggof X to whichF andG cannot = anda + € for y, wherea is some probability value andis an
be jointly extended as symmetric, associative and strictly increasinfinitesimal.

ing functions satisfying joint distributivity.

(ii) There is no increasing sequence of real qumt(@ﬁgle suchthat 4  Conclusions

if (4,7,k) € Tr, thenp; *x p; = pg, and if (z,7,k) € T¢, then

pi+ D = Dk Bayesianism can be motivated by successful application and by sev-

eral different and more or less convincing arguments[8, 12, 9]. We

The above means that we can assign plausibilities in two differenproposed to weaken the common sense assumptions used previously
ways: either we choose functior8 and G that have the required from domain denseness and continuityrofo refinability and allow-
properties and use them for assigning plausibilities of conjunctiondng information independence, and showed such assumptions suffi-
and disjunctions, or else we assign plausibilities on the fly but checkient for finite models. That our proposal uses truly weaker assump-
always (by solving linear and non-linear constraint problems) thations is shown by its inadequacy for the infinite case. The require-
no newly defined triple (arguments and function value) violates thement of strict monotonicity is suggested by common sense and pro-
required properties. In both cases it would be better to work withPosed in most previous justifications, although it is in no way in-
probabilities. evitable.

We finally note in which way our argument is new. We have ©One could note that our discussion is rather neutral as to how un-
completely dropped the continuity requirements used previously. W@voidable our assumptions are in real applications, and thus we can-
have also removed density assumptions. However, refinements addfgt claim inevitability of Bayesianism. An overwhelming number of
the domain because of strict monotonicity. There is no bound on hovglaims for and against Bayesianism can be found in the literature and
far we may have to refine a non-rescalable model in order to sho is clearly beyond the scope of any reasonable length paper to sort
its deficiency, but for every non-rescalable model there is a finiteoUt these claims. Many are criticized, e.g., in [8, 11, 9]. Our refin-
argument showing its deficiency. One could of course still wonder@bility and information independence principles, which are not com-
whether refinability is strictly weaker than those assumptions used iRletely new [7], but not until now shown to be central for uncertainty
earlier work like [1, 12]. These assumptions were characterized in [f[nanagement foundations, appear to be somewhat more compelling
as assuming a dense domain. Our assumptions are really weaker, f2n strict monotonicity and insistence on a single real number for
the somewhat surprising reason that our assumptions until now dglausibility, although maybe less compelling than consistency and

not suffice for the infinite case, as we will show in the next section. (non-strict) monotonicity. We conjecture that arguments similar to
those above can be used to relax the continuity assumption made by

Lindley[11].
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) o o ) DF is orthogonal to some non-zero vectbwith non-negative com-
First some definitions: We use the infix operator notation y for ponents, by Lemma 5. In other words, a linear equatib f = 0
F(z,y), which is convenient for associative and symmetric func- ¢, f can be derived fromM f = 0 only, i.e, the null space
tions. Anextension bas® of a sequenc& of lengthL is a sequence £+ Mf = 0} of M is included in the null spacgf : d” Df = 0}

(n;) of length L of non-negative integers. A partial function that is d” D, andd™D = ¢ M for some vector. SinceM and D have
associative and symmetric of*, whereX = (x;), can beextended  jyteqer elements, and the condition is homogeneods e can as-
to extension bas# if it can be extended to an associative and Sym-¢,me thatd consists of natural numbers andbf integers. Thus, a
metric function on a domain such that the expressionuzo---ovn  |inear equalityd” Df = 0 for f can be obtained as a linear combi-
and allits subexpressions have values if everng equal to some;,  npation with integer coefficients of the linear equalities given by the
and for all7, the number of occurrences of is not larger than the o of the systerd/ f = 0. But each row of M is derived from
corresponding number; in B. _ _aconstraintz;, = z; o z; for the functiono. By composing these
The following is a result in duality theory of linear programming, ¢onstraints with the associative and commutative operaiarthe
[10, Corollary 1A, case (i)] (we could also have used the slightly lesgy5ttern indicated by we can derive a functional constraint or 4,
suitable but better known Farkas's Lemma [4] - there appears {0 bgq 4t ast obtain a functional constraint corresponding to the linear
no really simple proof of either): constraintd” D f = 0. We compose the constraints coded by a triple
of T, a number of times given by the magnitude of the corresponding
coefficiente; of the linear combination, reversing the equation if the
coefficient is negative. In this way we derive a functional constraint:

Lemma 4 (Kuhn) The system of equationtz = 0 has a positive
solutionz > 0 if there is nou such thatd” v > 0 andu # 0.

We can now prove a lemma that is obvious for dimension two and

three, but not in general: a10a20---0am =brobyo---0by. (18)

. . . Th rr nding linear constraifit D f = n ritten
Lemmab5 Let F' be a linear subspace d®". The following condi- e corresponding linear constraiit Df = 0 can be written as

tions are equivalent: difi +dafot-dp1fo1=difo+dafs+ - do_1fr, (19)

(i) There is no element i’ with all components positive.
(i) There is a nonzero vectat with non-negative components that is
orthogonal toF'.

where nod; is negative and at least one is positive. But (19) results

from the linear form of (18) by cancelling certain elements in both

sides. Thusp = m and eithera; = b; (for quantities cancelling in

the linear combination) ai; < b; (for quantities remaining in (19),
(ii) —(i): This direction is obvious, since a vector orthogonal to aWIth at least one St”(_:t mequallty_s_lnce at least dnés non-zero.

non-zero and non-negative one cannot have all components positive. But then, from strict monotonicity, we must also hawg:o az o

(i)—(ii): Assume (i): There is no element ifi of R™ with all com- ' °@m <biobro--obn. ) )

ponents positive. LeF' be the space spanned by the rows of matrix Ther_e can thus rlot be a strlctl_y increasing extension & an

B, F = {BTy : y € R}. Let the rows ofA be a base for the extension base_d_eflned by the union of {he) and (b;) sequences,

orthogonal co-space d@f, ABT = 0. Thus,F = {z : Az =0} and in othe_r WOI’dS“ (i) is the gase.

Az = 0 has no positive solutiom by our assumption that (i) is the So (i) and (ii) are equivalent. O

case. Sincelz = 0 has no positive solution, by Lemma 4 there is a

u such thatd”v > 0 andu # 0. Nowu” A is a non-negative vector,

Proof.



