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Abstract. Of the many justifications of Bayesianism, most imply
some assumption that is not very compelling, like the differentiability
or continuity of some auxiliary function. We show how such assump-
tions can be replaced by weaker assumptions for finite domains. The
new assumptions are a non-informative refinement principle and a
concept of information independence. These assumptions are weaker
than those used in alternative justifications, which is shown by their
inadequacy for infinite domains. They are also more compelling.

1 Introduction

The normative claim of Bayesianism is that every type of uncer-
tainty should be described as probability. Bayesianism has been quite
controversial in both the statistics and the uncertainty management
communities. It developed as subjective Bayesianism, in [5, 11]. Re-
cently, the information based family of justifications, initiated in [3]
and continued in [1] have been discussed in [12, 6, 13]. We will try to
find assumptions that are strong enough to strictly imply Bayesian-
ism and at the same time convincing in a subjective way (common
sense). In section 2 we give a short outline of the arguments of Cox
and his followers and introduce the functionF relating the plausi-
bility of a conjunction to the plausibilities of its conjuncts, and the
similar functionsS andG describing plausibilities of complements
and disjunctions. In section 3 we discuss the problem raised in recent
papers and propose assumptions weaker than the standard ones: non-
informative refinability and information independence. In 3.1 we ob-
serve that our assumptions imply thatF andG must be associative
and symmetric, and jointly distributive. In 3.2 we show that even
if there is no direct violation of strict monotonicity, associativity or
symmetry, there can be problems in a model that surface after a num-
ber of refinement steps, and we describe a theorem (proved in the ap-
pendix) saying that for a finite domain, and under our assumptions,
natural refinements are possible if and only if the functionF is trans-
formed to multiplication by some monotone scaling of the plausibil-
ity measure. Our argument shows that a similar scaling must exist
taking the functionG to addition. We outline an argument showing
that a rescaling takingG(x, y) tox+y must also takeF (x, y) toxy.
In 3.3 we discuss the extension to infinite but non-dense domains. We
show with an example that some new assumption is required for the
infinite case before Bayes rules.

2 Summary of assumptions

In 1946, R.T. Cox published his findings [3] on some properties re-
quired by any good calculus of plausibility of statements. He stated
three desiderata (the following is actually from [9], but very similar):
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I: Divisibility and comparability- The plausibility of a statement is
a real number and is dependent on information we have related to
the statement.

II: Consistency - If the plausibility of a statement can be derived in
two ways, the two results must be equal.

III: Common sense - Deductive propositional logic should be the spe-
cial case of reasoning with statements known to be true or known
to be false, and plausibilities should vary sensibly with the assess-
ment of plausibilities in the model.

Cox’s paper is very appealing to believers in Bayesianism, but
sometimes more has been put in it than there is, and sometimes less.
Although the first two desiderata can be criticized, they are usu-
ally accepted and their interpretation is uncontroversial. The third
desideratum is clearly open-ended, and sometimes it has been inter-
preted as found suitable considering the proof method used rather
than by some serious consideration of what is meant by common
sense.

After introducing the notationA|C for the plausibility of state-
mentA given that we knowC to be true, Cox finds the govern-
ing functional equation for defining the plausibility of a conjunc-
tion: AB|C = F (A|BC,B|C) must hold for some functionF .
There is also assumed to be a functionS describing complements:
S(A|C) = A|C. Using the rules of propositional logic and a num-
ber of auxiliary assumptions it is possible to show that there must
exist a strictly monotone scalingw(x) of the plausibility measure
that satisfies the rules of probabilities,i.e., takesF to multiplica-
tion andS to 1 − x – in other words,w(F (x, y)) = w(x)w(y)
andw(S(x)) = 1 − w(x). The assumptions used by Cox are not
explicitly stated, but they can be inferred from his text[13]. They in-
volve among others some density and differentiability assumptions
that have been criticized in [12, 6]. The existence of the function
w(x) that translates the plausibility measure to another measure sat-
isfying the rules of probabilities will be calledrescalability, and the
main topic of investigation in this note is under what reasonable and
precise assumptions rescalability obtains. From rescalability all the
machinery of Bayesian analysis follows, except the way to assign
prior probabilities.

A more precise derivation of rescalability with significantly
weaker assumptions was published by Acz´el[1]. Aczél relaxes the
differentiability assumption of Cox and introduces the functionG
with the use:A ∨ B|C = G(A|C,BA|C). It is then only necessary
to assume continuity ofG with the accompanying domain dense-
ness, strict monotonicity, associativity, symmetry, distributivity and
obvious boundary conditions to prove rescalability. Paris also gives a
full-fledged proof of rescalability [12] that does not use differentia-
bility assumptions, but still contains a density assumption of the set
of plausibility values (which cannot hold in a finite setting).

An example is given in Halpern[6] of a finite model where the
function F is only defined on the plausibilities appearing in the



model and is not associative. Since associativity is preserved by
monotone scaling, it cannot be possible to rescale the plausibility
measure of this model so thatF is translated to multiplication, be-
cause multiplication is associative butF is not. The plausibilities of
this model can thus not be considered equivalent to probabilities.

3 Weakening assumptions

We want to see if density and associativity assumptions are nec-
essary, or if there are more fundamental arguments in favor of
Bayesianism. We thus assume that the functionF can be different
in different models. But we do not regard a model as fixed and fin-
ished. Instead, we think of a model as being worked out incremen-
tally by refinement,i.e., by breaking down the situation in sub-cases
to the degree desired in an application, and our method should not
be such that we are unnaturally and arbitrarily constrained in how far
and how our model can be refined. We adapt an informative refine-
ment method, sometimes known as ’extending the discussion’[14, 7].
When a user is not confident about his assessment ofA|C, he di-
vides the contextC into two subcasesC1 and C2, and assesses
A|C1, A|C2, C1|C andC2|C. NowA|C = G(AC1|C,AC2|C) =
G(F (A|C1, C1|C), F (A|C2, C2|C)). A weaker form of model re-
finement is a non-informative refinement where we do split cases into
subcases, but do not assign new plausibilities of existing events con-
tingent on the new subcases. Such refinements should never change
the information obtainable from the model, and should not make it
inconsistent. As pointed out in [6], a user interested in finite models
is probably not impressed by an assumption implying that models
are infinite. Although refinability assumes that an infinite number of
new symbols are available, it is probaly acceptable to a user who
realizes that models even if finite must be refinable when worked
out, and such a user would probably accept the unbounded nature of
refinability as an approximation to what is required by practicality
considerations. We also want to have at our disposal the possibil-
ity of claiming that two new statements are independent in a given
context, so that knowledge of one does not change the plausibility
of the other. This condition we call information independence. It is
closely related to statistical independence, but we do not use this term
since we have not yet introduced probabilities. Finally, we introduce
a strict monotonicity requirement, which is also introduced in most
previous analyses without a lot of discussion. Our proposed assump-
tions, which should reflect one possible interpretation of Cox’s and
Jaynes’s common sense desideratum, are:

• Refinability: If we have already made a particular splitting of a
statement into sub-cases, by adding new statements implying it, it
should always be possible to refine another statement in the same
way, and with the same plausibilities in the new refinement. As an
example, if we definedA′ withA′ → A andA′|A = a, it should
for any existing statementB be allowed to defineB′ as a new
symbol withB′ → B andB′|B = a.

• Information Independence: If a statement is refined by several
new symbols, it should be possible to state that they are infor-
mation independent, so that knowledge of one does not affect the
plausibility of the other. As an example, ifA and B are intro-
duced as refinements ofC, we should be permitted to claim that
A|BC = A|C andB|AC = B|C.

• Strict Monotonicity: The plausibility of a conjunction is always
strictly less than those of the conjuncts, if these are independent
and their plausibilities are not 0 or 1. The plausibility of a dis-
junction of exclusive statements with non-zero plausibilities is al-
ways strictly larger than those of its disjuncts. MoreoverF (x, y)

andG(x, y) are strictly increasing in both arguments for non-zero
plausibility values ofx andy.

The main purpose of this note is to show that these assumptions
entail Bayesianism for finite models.

3.1 Associativity, symmetry and joint distributivity

Halpern takes his example [6] as an indication that the conclu-
sion of Cox does not apply to finite models. It is true that den-
sity and continuity cannot be dropped without introduction of some
new assumption. However, if we accept refinability as a reason-
able assumption, things change. If we have worked out a model
whereF (a,F (b, c)) 6= F (F (a, b), c) for some plausibilitiesa, b
and c, then we take an arbitrary statementS (not false) and re-
fine with Sa, Sb and Sc: Sa → Sb, Sb → Sc and Sc →
S, Sa|Sb = a, Sb|Sc = b and Sc|S = c. Now the value
SaSbSc|S can be computed in two ways giving different results, as
(SaSb)Sc|S = F (SaSb|SSc, Sc|S) = F (F (Sa|Sb, Sb|Sc), c) =
F (F (a, b), c) and asSa(SbSc)|S = F (Sa|SSbSc, SbSc|S) =
F (Sa|Sb, F (Sb|Sc, Sc|S)) = F (a,F (b, c)). So our model is not
consistently non-informatively refinable ifF violates associativity.

A similar argument can be used to show thatF is bound by
common sense to be symmetric: If we have defined some function
valueF (a, b) = c, it is reasonable that one should be able to re-
fine any statementS into two information independent statementsA
andB, with A|BS = A|S = a andB|AS = B|S = b and thus
AB|S = BA|S = c. If we allow this refinement operation, sym-
metry ofF follows from commutativity of conjunction. The above is
meant to suggest that it is quite reasonable to require that the function
F is associative and symmetric for all values that appear in a given
model. If the functionG of [1] were used, the corresponding refine-
ment principle would be that ifG(a, b) = c is assumed, then we
should be allowed to take any statementS in the model and define
a sub-caseC with C|S = c, and two disjoint and exhaustive sub-
casesA andB of C with plausibilitiesA|S = a andB|S = b. With
this refinement operation it is easy to show thatG must be symmet-
ric and associative, since it follows readily from commutativity and
associativity of disjunction.

Finally we must consider the distributive law assumed in [1] and
satisfied by∗ and+, which we will soon require for showing that
a scaling takingF to ∗ will also takeG to +. For any three plau-
sibilities a, b andc occurring in the model, and whereG(a, b) has
been defined, we require that it should be possible to refine any state-
mentS into three statementsA → S, B → S andC → S with
A|S = a, B|S = b andC|S = c, and such thatAB is false
andA, B andA ∨ B are all information independent ofC. This
requirement leads to the distributive law forF andG on the domain,
since(A ∨ B) ∧ C|S = F (G(a, b), c) and (A ∨ B) ∧ C|S =
(A ∧ C) ∨ (B ∧ C)|S = G(F (a, c), F (b, c)).

In summary:

Observation 1 In order to satisfy natural requirements on consis-
tency being preserved by non-informative refinements of models, we
must work with models whereF andG are partially specified in such
a way that they satisfy the laws of associativity and symmetry, as well
as joint distributivity.

3.2 Equivalence of refinability and rescalability

We can now dismiss the example of [6] by observing that non-
associativity inevitably violates the principle of consistent refinabil-



ity. It remains to consider whether any partially specified function
can be extended to an associative function if it is associative on its
range of definition. This is not generally the case, even if it also
satisfies the other properties that will be required from the com-
pleted function: strict monotonicity and symmetry. If an appropri-
ate rescaling to probabilities exists, we can find it by solving a finite
linear system of equations and inequalities for the log probabilities
li = logw(xi) excluding the value for falsity. The system has an
equationli + lj = lk for each triplexk = F (xi, xj) and an inequal-
ity li < lj for every pair withxi < xj , and an equalityli = lj when
xi = xj .

If a partially specified function can be completed to a full function
over the support points (and some more points) satisfying associa-
tivity, symmetry and strict monotonicity, then the system is solvable.
Its solution set is either unbounded (because the system is homoge-
neous) or empty, and it is empty only if there is no completion satis-
fying associativity, symmetry and strict monotonicity. A simple case
where the partially specified function triples satisfy the laws, but no
completion over the support points does so, is the following: Assume
the partial specification satisfies

F (x4, x4) = a (1)

F (x3, x5) = a (2)

F (x2, x4) = b (3)

F (x1, x5) = b (4)

F (x4, x6) = c (5)

F (x3, x7) = c (6)

F (x2, x6) = d (7)

F (x1, x8) = d (8)

Here we have assumed that thexi quantities are ordered increasingly
in the open interval(0, 1), but the quantitiesa, b, c andd can have
any values. If the plausibilities were scalable to log probabilitiesli,
there should be a solution to the system:

l4 + l4 = la (9)

l3 + l5 = la (10)

l2 + l4 = lb (11)

l1 + l5 = lb (12)

l4 + l6 = lc (13)

l3 + l7 = lc (14)

l2 + l6 = ld (15)

l1 + l8 = ld, (16)

together with the conditionsli < li+1.
If we now add together the equations (9-16) multiplied with the

coefficient sequence(1,−1,−1, 1,−1, 1, 1,−1), we find after can-
celling that they implyl7 = l8, contrary to the conditionl7 < l8.

But if it were possible to complete the partially specifiedF
so that it satisfies symmetry and associativity, we can reach the
same conclusion by composing, with the functionF , equations
(1-8), after first swapping the equations with negative coefficient.
The resulting equation isF (F (x4, x4), F (a,F (F (x1, . . .)))) =
F (F (x3, x5), F (a, F (F (x2, . . .)))),
and thus by symmetry and associativity we can rearrange it to

F (x7, F (a,F (b, . . .))) = F (x8, F (a, F (b, . . .))), (17)

where the omitted (dotted) parts of the left and right sides of
(17) are equal. This entails, because of strict monotonicity and

because no variable is zero, thatx7 = x8, contrary to the as-
sumption thatx7 < x8. This also means that it is possible
to add a finite set of statements by refinement with plausibili-
ties that leads to inconsistency in the plausibility assignment. In
this example we can add statements{Ai}7i=1, B4 and C, with
Ai|C = xi andB4|C = x4. If the Ai andB4 are independent
givenC, the statementA1A2A3A4B4A5A6A7|C can be shown to
have two different plausibilities,F (q, x7) and F (q, x8) for q =
F (a,F (b, F (c, F (d, x1, F (x2, F (x3, F (x4, F (x4, F (x5, x6) · · ·).

We are now ready to state that rescalability of theF function fol-
lows from our assumptions. The argument goes as follows: If rescala-
bility obtains, it is trivial to extendF to an associative, symmetric and
strictly monotone function over the dense interval(0, 1) which cov-
ers any refinement. If rescalability does not hold, then this is equiv-
alent to non-solvability of a linear program. But this means that a
dual program has a solution (from which the coefficient vector in the
example is obtained), and it so happens that this solution defines a
refinement that is a proof of non-compliance ofF with strict mono-
tonicity, assuming it is symmetric and associative - but these proper-
ties have already been shown to follow from refinability. The concept
of extension baseis a formalization of the definedness of expressions
such as those in (17) and is a set of multiplicities of its domain el-
ements. If we have extendedF to an extension base it means that
all expression like those in (17) are defined, if the number of occur-
rences of each domain element in the expression is no greater than its
multiplicity in the extension base. A more precise definition is given
in the appendix.

Theorem 2 LetX = (xi)
L
i=1 be a strictly increasing sequence of

real values. LetS = {1, . . . , L} and T◦ ⊂ S3 be a finite set of
triples. The partial function◦ satisfiesxi◦xj = xk, for all (i, j, k) ∈
T◦. Then the following conditions (i) and (ii) are equivalent:

(i) There is a finite extension baseB of X to which◦ cannot be ex-
tended as a symmetric, associative and strictly increasing func-
tion.

(ii) There is no increasing sequence of numbers(fi)
L
i=1 such that if

(i, j, k) ∈ T◦, thenfi + fj = fk.

This theorem (proved in the appendix) applies both to the function
F and the functionG of a consistently refinable plausibility model,
since these functions are both, by the preceding analysis, associative,
symmetric and strictly increasing. For the functionF , the numbers
fi must be negative, since we assumedF (x, y) < min(x, y) and
we have an equationfL + fi < fj , fj < fi < fL, in our system.
The fi can thus be taken as log probabilities. For the functionG,
the fi must for analog reasons be positive. They can be taken as
probabilities after some normalizing linear scaling. There are thus a
number of rescalings transforming the functionF to ∗ and a number
of rescalings transformingG to +, but we do not yet know if there is
one rescaling satisfying both criteria.

What can we say about the joint effect of rescaling on the func-
tionsF andG? The analysis of [1] takes the joint distributivity of
F andG as a starting point, and then we can draw on results for the
extremely well studied Cauchy equation. We outline an argument,
which is very much based on the classical analysis of Cauchy’s equa-
tion f(x + y) = f(x) + f(y)[1], the difference being that we do
not have a dense domain, but instead we have a refinability princi-
ple that allows us to construct a finite inconsistency proof for any
given non-linear solution. If we scaleG to +, the distributivity equa-
tion is transformed to a family of Cauchy equations,F (x+ y, z) =
F (x, z) + F (y, z). We claim that the general solution has the form



F (x, z) = xc(z) for some monotone functionc. Indeed, the refin-
ability principle for complement, given thatG is +, lets us define
two cases of a statementS with S′|S = a andS′′|S = 1 − a.
By repeated refinement, an arbitrarily fine grid of statements in the
model, related by addition, can be created. Thus, ifF (x0, z0) = sx0,
F (x0, z0) = sx0 = F (F (x0, a), z0) + F (F (x0, 1 − a), z0). We
can thus by repeating refinement find pointsx(i)

0 arbitrarily close to
0 with bothF (x

(i)
0 , z0) ≤ sx

(i)
0 andF (x

(i)
0 , z0) ≥ sx

(i)
0 . If we

hadF (x0, z0) = sx0 andF (x1, z0) = s′x1, with s > s′, we can
find a refinement with two plausibilitiesa anda′ such thata < a′

butF (a, z0) ≥ sa > s′a′ ≥ F (a′, z0), a violation of strict mono-
tonicity of F . SoF (x, z) must vary linearly withx for constantz,
F (x, z) = xc(z). But sinceF (1, z) = z we must havec(z) = z on
the domain,i.e., F (x, y) = xy. We have outlined an argument for:

Theorem 3 LetX = (xi)
L
i=1 be an increasing sequence of distinct

values in the open interval(0, 1), andS = {1, . . . , L}. Given two
sets of triplesTF , TG ⊂ S3 interpreted as specifications of two par-
tial functionsF andG satisfying alsoF (1, xi) = xi , F (0, xi) = 0
andG(0, xi) = xi.

The following are equivalent:

(i) There is a finite extension baseB ofX to whichF andG cannot
be jointly extended as symmetric, associative and strictly increas-
ing functions satisfying joint distributivity.

(ii) There is no increasing sequence of real numbers(pi)
L
i=1 such that

if (i, j, k) ∈ TF , thenpi ∗ pj = pk, and if (i, j, k) ∈ TG, then
pi + pj = pk.

The above means that we can assign plausibilities in two different
ways: either we choose functionsF andG that have the required
properties and use them for assigning plausibilities of conjunctions
and disjunctions, or else we assign plausibilities on the fly but check
always (by solving linear and non-linear constraint problems) that
no newly defined triple (arguments and function value) violates the
required properties. In both cases it would be better to work with
probabilities.

We finally note in which way our argument is new. We have
completely dropped the continuity requirements used previously. We
have also removed density assumptions. However, refinements add to
the domain because of strict monotonicity. There is no bound on how
far we may have to refine a non-rescalable model in order to show
its deficiency, but for every non-rescalable model there is a finite
argument showing its deficiency. One could of course still wonder
whether refinability is strictly weaker than those assumptions used in
earlier work like [1, 12]. These assumptions were characterized in [6]
as assuming a dense domain. Our assumptions are really weaker, for
the somewhat surprising reason that our assumptions until now do
not suffice for the infinite case, as we will show in the next section.

3.3 Infinite models

The replacement of denseness, continuity and associativity assump-
tions by refinability entails Bayesianism in finite domains. Now it re-
mains to consider non-finite domains. There seem to be no principled
reason that Theorem 2 should not work in infinite domains. However,
there is a problem in how we interpret strict monotonicity, and in par-
ticular we do not think that finite refinability is sufficient for infinite
domains, as shown by the following consideration: in a probability
model, ifx < y then the union of the intervals[xi, yi] is a finite set of
disjoint intervals, since the intervals will overlap for largei. But the

number of intervals is invariant under strictly monotone rescaling. So
a model where the union of such intervals (exponent now denoting
iteration ofF , so thatx1 = x andxn+1 = F (x, xn)) is an infinite
set of disjoint intervals cannot be rescalable.

As an example with an infinite number of intervals thus not be-
ing rescalable, consider a domain generated from two statements
with plausibilitiesy = 1/4 andx = 1/5. Let exponents of plau-
sibilities denote iteration of theF function. The model is defined
by: F (yj, xk) = 1/(3(j + k) + (j + 2k)/(j + k)). Now xp =
1/(3∗p+2), yp = 1/(3∗p+1), and separation is not obtained, be-
cause noyp+1 is larger thanxp for any positive integerp, and there-
fore all intervals are disjoint. We have not at all used the function
G, so we have no means to even talk about values ofG in refine-
ments. An interesting observation on this model is that each of its
finite subsets is rescalable, and of course the functionF is associa-
tive, symmetric and strictly monotone. There appears to be no finite
argumentation for its inadequacy, at least not using reasonable refin-
ability arguments. In a forthcoming note we will show that our inter-
pretation of Cox assumptions for infinite models entails rescalability
to infinitesimal or extended probability[2, 15], where probabilities
take values in an ordered algebraic field of reals and infinitesimals.
The example above would correspond to extended probabilitiesa for
x anda + ε for y, wherea is some probability value andε is an
infinitesimal.

4 Conclusions

Bayesianism can be motivated by successful application and by sev-
eral different and more or less convincing arguments[8, 12, 9]. We
proposed to weaken the common sense assumptions used previously
from domain denseness and continuity ofF to refinability and allow-
ing information independence, and showed such assumptions suffi-
cient for finite models. That our proposal uses truly weaker assump-
tions is shown by its inadequacy for the infinite case. The require-
ment of strict monotonicity is suggested by common sense and pro-
posed in most previous justifications, although it is in no way in-
evitable.

One could note that our discussion is rather neutral as to how un-
avoidable our assumptions are in real applications, and thus we can-
not claim inevitability of Bayesianism. An overwhelming number of
claims for and against Bayesianism can be found in the literature and
it is clearly beyond the scope of any reasonable length paper to sort
out these claims. Many are criticized, e.g., in [8, 11, 9]. Our refin-
ability and information independence principles, which are not com-
pletely new [7], but not until now shown to be central for uncertainty
management foundations, appear to be somewhat more compelling
than strict monotonicity and insistence on a single real number for
plausibility, although maybe less compelling than consistency and
(non-strict) monotonicity. We conjecture that arguments similar to
those above can be used to relax the continuity assumption made by
Lindley[11].
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A Rescalability Theorem

First some definitions: We use the infix operator notationx ◦ y for
F (x, y), which is convenient for associative and symmetric func-
tions. Anextension baseB of a sequenceX of lengthL is a sequence
(ni) of lengthL of non-negative integers. A partial function that is
associative and symmetric onX2, whereX = (xi), can beextended
to extension baseB if it can be extended to an associative and sym-
metric function on a domain such that the expressionv1 ◦v2◦· · ·◦vn
and all its subexpressions have values if everyvi is equal to somexj ,
and for alli, the number of occurrences ofxi is not larger than the
corresponding numberni in B.

The following is a result in duality theory of linear programming,
[10, Corollary 1A, case (i)] (we could also have used the slightly less
suitable but better known Farkas’s Lemma [4] - there appears to be
no really simple proof of either):

Lemma 4 (Kuhn) The system of equationsAx = 0 has a positive
solutionx > 0 if there is nou such thatATu ≥ 0 andu 6= 0.

We can now prove a lemma that is obvious for dimension two and
three, but not in general:

Lemma 5 LetF be a linear subspace ofRn. The following condi-
tions are equivalent:

(i) There is no element inF with all components positive.
(ii) There is a nonzero vectord with non-negative components that is

orthogonal toF .

Proof.
(ii)→(i): This direction is obvious, since a vector orthogonal to a

non-zero and non-negative one cannot have all components positive.
(i)→(ii): Assume (i): There is no element inF of Rn with all com-
ponents positive. LetF be the space spanned by the rows of matrix
B, F = {BT y : y ∈ Rk}. Let the rows ofA be a base for the
orthogonal co-space ofF ,ABT = 0. Thus,F = {x : Ax = 0} and
Ax = 0 has no positive solutionx by our assumption that (i) is the
case. SinceAx = 0 has no positive solution, by Lemma 4 there is a
u such thatATu ≥ 0 andu 6= 0. NowuTA is a non-negative vector,

and it is orthogonal to every vector inF becauseABT = 0 and thus
(uTA)(BTx) = 0 for all x ∈ Rk. So (ii) applies,i.e., (i)→(ii).

Conditions (i) and (ii) are thus equivalent.
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We can now prove Theorem 2:

Proof.(of Theorem 2)
(i)→(ii) : If (ii) is not the case, there exist appropriatefi. Define
l(x) by interpolation to a strictly increasing function between the
constraintsl(xi) = fi. The functionx ◦ y = l−1(l(x) + l(y)) is
associative, symmetric and strictly increasing. So also (i) is not the
case, which shows (i)→(ii).
(ii)→(i): Assume (ii) is the case. Define the|T◦| by L matrixM to
have one row for each tuple inT◦. For such a tuple(i, j, k), the row
has the value 1 in columnsi and j, the value -1 in columnk, and
zero otherwise. MatrixD isL− 1 byL and has valueD = I ′ − I ′′
whereI ′ and I ′′ is theL by L unit matrix with the first and last
row, respectively, deleted. From now on we regardf as a sequence
of variablesfi. Since (ii) is the case, there is noL-vector solutionf
toMf = 0 that also satisfiesDf > 0, since such a solution would
contradict non-existence of thefi.

The solution spaceF of Mf = 0 is such that the linear subspace
DF is orthogonal to some non-zero vectordwith non-negative com-
ponents, by Lemma 5. In other words, a linear equationdTDf = 0
for f can be derived fromMf = 0 only, i.e., the null space
{f : Mf = 0} of M is included in the null space{f : dTDf = 0}
of dTD, anddTD = cTM for some vectorc. SinceM andD have
integer elements, and the condition is homogeneous ind, we can as-
sume thatd consists of natural numbers andc of integers. Thus, a
linear equalitydTDf = 0 for f can be obtained as a linear combi-
nation with integer coefficients of the linear equalities given by the
rows of the systemMf = 0. But each rowr of M is derived from
a constraintxk = xi ◦ xj for the function◦. By composing these
constraints with the associative and commutative operator◦ in the
pattern indicated byc we can derive a functional constraint onx ◦ y,
and at last obtain a functional constraint corresponding to the linear
constraintdTDf = 0. We compose the constraints coded by a triple
of T◦ a number of times given by the magnitude of the corresponding
coefficientci of the linear combination, reversing the equation if the
coefficient is negative. In this way we derive a functional constraint:

a1 ◦ a2 ◦ · · · ◦ am = b1 ◦ b2 ◦ · · · ◦ bn. (18)

The corresponding linear constraintdTDf = 0 can be written as

d1f1 + d2f2 + · · · dL−1fL−1 = d1f2 + d2f3 + · · · dL−1fL, (19)

where nodi is negative and at least one is positive. But (19) results
from the linear form of (18) by cancelling certain elements in both
sides. Thus,n = m and eitherai = bi (for quantities cancelling in
the linear combination) orai < bi (for quantities remaining in (19),
with at least one strict inequality since at least onedi is non-zero.

But then, from strict monotonicity, we must also have:a1 ◦ a2 ◦
· · · ◦ am < b1 ◦ b2 ◦ · · · ◦ bn.

There can thus not be a strictly increasing extension of◦ to an
extension base defined by the union of the(ai) and(bi) sequences,
in other words (i) is the case.

So (i) and (ii) are equivalent. 2


