Solving the inver se representation problem

GabrieleKern-lsberner!

Abstract. Inthis paper, we present an approach to extract most rel-
evant information from a (semi-)quantitative knowledge base, e.g.,
from a probability distribution. Relevance hereis meant with respect
to some appropriate inductive inference process, like maximum en-
tropy inference (ME-inference) in probabilistics. Soin particular, the
method developed in this paper is apt to solve the inverse maxent
problem, computing from a distribution in a non-heuristic way a set
of conditionals that ME-represents that distribution. Since we only
make use of one special characteristic of ME-inference, this method
may as well be applied to other, similar inference processes.

1 Introduction

In many practical examples and applications, the available knowl-
edge is neither certain nor complete. So classical deduction often
seems to be inappropriate to yield useful inferences, and also the
techniques of nonmonotonic reasoning may prove to be too wesk. A
way out of this dilemma is offered by selecting a model most ade-
quately representing the available knowledge, and using this model
for inferences. This policy is pursued, for instance, by reasoning at
maximum entropy in a probabilistic setting [7], and by system-Z for
ranking functions[2]. Theway how to solvethis representation prob-
lemis usually guided by fundamental principles of reasoning, or by
good heuristics. The appropriate handling of conditional information,
constituting crucial pieces of knowledge, is a peculiarly challenging
task.

On the other hand, incompletenessof knowledge can also be ade-
liberate consequence of focusing on most relevant information and
relationships. So, conversely, given some model, one may ask which
propositional and conditional statements constitute central knowl-
edge. In particular, which part of the knowledge inherent to that
model is apt to generate it with respect to some given inductive rep-
resentation technique?

In this paper, we will present an approach to solve this inverse
representation problem for quantitative and semi-quantitative repre-
sentation methods satisfying a conditional indifference property. The
method based on maximum entropy (abbreviated by ME) is known
to fulfill this property (see[3]), so we will exemplify our ideasin a
probabilistic setting. Given some probability distribution P, we will
show how to calculate afinite set R *"°® of probabilistic conditionals
such that P is the ME-model of R¥™®. Therefore, in particular, the
techniquesdevel opedin this paper constitute an approachto solvethe
inversemaxent problem. They are, however, useful in amore general
environment. The basic ideais to exploit numerical relationships as
manifestations of interactions of underlying conditional knowledge.
So the techniquesto be presented may also be applied e.g. to ranking
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functions representing epistemic states. Although starting from num-
bers, our method is essentially algebraic, elaborating the conditional
structure of worlds.

Our approach differs from usua knowledge discovery and data
mining methodsin that it takesexplicitly inductive representation, or
inference, respectively, into consideration. It is not based on observ-
ing conditional independencies, but aims at learning conditional de-
pendenciesin a non-heuristic way. As a further novelty, our method
computesnot single, isolated rules, but yields asaresult aset of rules
in taking into account highly complex interaction of rules. When ap-
plied to a probability distribution gained from statistical data, the set
of conditionals R?"°® obtained by theinverse maxent procedure may
also be supposed to represent most informative knowledgeto bedis-
covered from the data.

This paper is organized as follows: In the next section, we sum-
marize some basic hotations and techniquesfor conditional's, and we
sketch how to obtain an ME-representation. Section 3 introduces the
notion of conditional structures, which we will use in Section 4 to
define conditional indifference. Section 5 sketches the procedure of
how to compute a set of conditional swith respect to which adistribu-
tion isindifferent, and the theoretical backgroundis elucidated. Then
in Section 6, this procedureis applied to solve the maxent problem
for an example. We concludethis paper with an outlook in Section 7.
All proofs are omitted, but may be foundin [4].

2 Basicnotations and techniques

We consider a propositional language £ with finitely many atomic
propositions. Let €2 denote the corresponding set of possibleworlds,
that is, € isacomplete set of propositional interpretations of £. The
conjunction operator, A, will usualy be omitted, so AB will mean
A A B, and negation isindicated by barring, i.e. A = - A.
Conditionals are written in the form (B|A), with antecedents, A,
and consequents, B, both propositional formulasin £. Let (£ | £)
denotethe set of all conditionalsover £. Each conditional ( B|A) can
be represented as a generalized indicator function on worlds, setting

1 : wEAB
(B]4)(w) = { 0 i AP @
u : wgEA

where u stands for undefined (cf. [1]). Two conditionals are equiv-
alent iff they yield the same indicator function. Single-elementary
conditionals are conditional s whose antecedents are conjunctions of

literals, and whose consequentsconsist of one single literal.

We introduce the following relation C between conditionals:
(D|C)C (BJA) iff CD = AB andCD |= AB

If (D|C) E (B]A), then (D|C) iscalled asubconditional of (B|A).
For any two conditionals (B|A), (D|C) € (£ | £) with ABCD =



ABCD = L, thesupremum (B|A)LI(D|C)yin (£ | £) with respect
to C existsandisgivenby (B|A)U(D|C) = (ABVCD|AVC) (cf.
[4]). In particular, for two conditionals (B|A), (B|C') with the same
consequent, we have (B|A) U (B|C) = (B|A v C). Thefollowing
lemma provides an easy characterization for the relation C to hold
between single-elementary conditionals:

Lemmal Let (b|A)and(d|C) betwo single-elementary condition-
als. Then (d|C) C (b A) iff C = Aandb = d.

This lemma may be slightly generalized to hold for conditionals
(b]A) and (d|C') where A and C' are disjunctions of conjunctions
of literals not containing b and d, respectively.

Let P be a probability distribution over the aphabet of L.
Within a probabilistic framework, conditionals can be quantified
and interpreted probabilistically via conditional probabilities: P |=
(B|A)[z] iff P(AB) = zP(A) for some z € [0, 1]. Suppose
RP™Y = {(Bi| A1) [z1], ..., (Bn|An) [£s]} is a consistent set of
probabilistic conditionals. Then the ME-representation of R?"°?,
ME(R*"°"), is the unique distribution @* that maximizes the en-
tropy H(Q) = — >, Q(w)log Q(w) subjectto @ |= R¥"" (cf.
[7]). If RP™" = {(Bi|A1) [71],- .., (BnlAs) [#a]}, then R =
{(B1]A1), ..., (Bn|An)} denotesthe set of structural (i.e. unquan-
tified) conditionals, and vice versa.

In this paper, we will only consider positive probability distribu-
tions P. Correspondingly, wewill assumethat the M E-representation
of any set R*™® dealt with in the sequel is positive. In particular, all
probabilities 2; of conditionalsin R?"°® have to be different from 0
and 1. Thisis but a technical prerequisite, to focus on the most in-
teresting cases, and for the sake of brevity. The general case may be
dealt with in asimilar manner (cf. [4]).

3 Conditional structures

When we consider (finite) sets of conditionAls R =
{(B1]|A1),...,(Bn|An)}, we have to modify representation
(1) appropriately to identify the effect of each conditional in R on
worldsin . Thisleadsto introducing the functionso; = o(g,|a;)
below (see (2)) which generalize (1) by replacing the numbers 0
and 1 by abstract symbols. Moreover, we will make use of a group
structure to represent the joint impact of conditionals on worlds.

To each conditional (B;:|A;i) in R we associate two symbols
al,a”. Let
.an)

—lat a—
fR_<a17al7"'7an7an

be the free abelian group with generators at,a;,...,a} ay,
iee Fr conssts of al eements of the form
(af ) (al)*t ... (af )™ (a;)* with integers ri,s; € 7Z (the
ring of integers). Each element of F can be identified by its expo-
nents, so that Fr isisomorphic to Z>™ (cf. [6]). The commutativity
of Fr corresponds to the fact that the conditionalsin R shall be
effective simultaneously, without assuming any order of application.

For eachi,1 < ¢ < n, weddfineafunctions; : Q@ — Fr by

setting
a;" if (BAA,‘)(W) =1
cr,'(w) = { a; if (BAA,‘)(W) =0 )
1 if (BAA,‘)(W) =u

oi(w) represents the manner in which the conditional (B:|A:) ap-
plies to the possible world w. The neutral element 1 of Fz corre-
spondsto the non-applicability of (B;|A;) in casethat the antecedent

A; isnot satisfied. The function

H oi(w) =

1<ign llgzg

II a €)

or(w) =

describesthe all-over effect of R onw. o (w) iscaled (arepresen-
tation of) the conditional structure of w with respectto R.

Example 2 Consider the set R = {(d|a), (d|b), (d|c)} of condi-
tionals using the atoms a, b, ¢, d. Let al™, a7, aSi be the group gen-
erators associated with (d|a), (d|b), (d|c), respectively. The condi-
tional structure of w = abed, e.g., isor (abed) = at af, sinceabed
confirms the first two conditionals, and the third conditional is not
applicableto it. Moreover, by conditional structures, it is possibleto
compare worlds, or sets of worlds, as to their behavior with respect
to the conditionalsin R. For instance, we have

JR(abEd)aR(aEcd)aR(Ebcd) =
= (af)*(af )*(af)* =

|
—
&

That isto say, that the elements of the set {abzd, abed, @bed} show
collectively the same conditional behavior as two copiesof abcd. m

To compare worlds conveniently with respect to their conditional
structures, we impose a multiplication on the set of worlds © by
considering the worlds w as formal symbols. That means, we in-
troduce the free abelian group @ := (w | w € ), generated
by dl w € €, and consisting of al words @ = wi™ ... wy"™
with wi,...,wm € @ and integers ry, ... r,% Now o may be
extended to 2 in a straightforward manner by setting o (o) =
or(w1)™ ...or(wm) ™, yielding ahomomorphismof groupso x :
Q — fR.

The generators a} are mere symbols, representing the effects of
the corresponding conditional on worlds. Ascan easily be seen, how-
ever, the kernel of such arepresentation homomorphism

ker or :={0 € Q| or(®) =1}

does not depend on the particular symbolschosen. Therefore, itisan
invariant of R. ker or contains exactly all group elements& € Q
with abalanced conditional structure, that means, whereall effects of
conditionalsin R onworldsoccurringin & are completely cancelled.

Having the same conditional structure defines an equivalence re-
lation =% on : &1 =xr G2 iff or(G1) = or(D:), ie iff
105" € ker ox. Thusthe kerndl of o plays an important part in
identifying the conditional structure of elements& € €, in particular
of worldsw, with respect to R. No nontrivial relations hold between
different group generatorsal,a;,...,a}, a; of Fr, so we have
or(@) = 1iff 0:(®) = 1fordli, 1 < ¢ < n, and this means
ker o= = (i, ker ;. In this way, each conditional in R con-
tributes to ker o= . Besidesthe explicit representation of knowledge
by R, often implicit normalizing constraints (suchas P(T|T) = 1
for probability functions or x(T|T) = 0 for ordina conditional
functions) have to be taken into account. It is easy to check that
kerormy = Qo ={0=w1...cwn™ € Q3T r; =0}
Two elements &; = w]* .. € Q are
equivalent modulo €, &) =1 Do, iff 3100 = @200, i.e iff
2oigicm i = 2igrgy Sk- Thismeansthat &, and &, are equiv-

alent modulo Qo iff they both are a (cancelled) product of the same

r S.o— S1 Sp
LWty W2 = V... Up

2 We will often use fractional representations for the elements of €, that is,

. . . Wi . -
for instance, we will write ! ingtead of wiwy L
w2



number of generators, each generator being counted with its corre-
sponding exponent. Set

kero o :=ker or N Qo = ker ORU{(T|T)}

4 Indifferent representations of conditional
knowledge

In this section, we will study conditional interactions in positive
probability functions P. Each such function may be extended to a
homomorphism P : 2 — (R, -) from X into the positivereal num-
bersby setting P(w1™ ... ww ™) = P(w1)™ -...- P(wm) ™. This
allows usto analyze numerical relationshipsin order to elaborate the
conditionals whose structures P follows, that means, to determine
sets of conditionals R with respect to which P is indifferent:
Definition 3 Suppose P is a positive probability distribution, and
let R = {(B1]|A1),...,(Bxr|An)} beaset of conditionals.

P isindifferent with respectto R iff P(&1) = P(©2) whenever
or(B1) = or (), fordl &1, o, € QWiths, =1 Gs.

If P isindifferent with respect to R, then it does not distinguish
between elements &, =1 @» with the same conditional structure
with respect to R. Conversely, any deviation P(&) # 1 can beex-
plained by the conditionalsin R acting on & in a hon-balanced way.
Note that the notion of indifference only aims at observing condi-
tional structures, without making use of any probabilities associated
with the conditionals.

The following proposition rephrases conditional indifference by
establishing arelationship between the kernelsof o= and P:

Proposition 4 Suppose P is a positive probability distribution, and
let R = {(Bi|A1),...,(Br|An)} be a set of conditionals. P is
indifferent with respectto R iff kero or C kerg P.

If kero oR = kero P, then P((,Au'l) = P(C/JQ) iff O'R((,Au'l) = O'R(C/JQ)
and &1 =1 2. Inthis case, P completely follows the conditional
structuresimposed by R —it observesR faithfully.

The next theorem characterizesindifferent probability functions:

Theorem 5 A (positive) probability function P is indifferent with
respecttoaset R = {(B1|A1), ..., (Br|An)} iff therearepositive
real numbersao, af a7, ..., at, a; € RT, suchthat

_ + ~
P(w) = ag H o} H o), we. (4)
1<ign 1<ign
w4 B; wEa, B

Conditional indifference is the crucial ingredient to realize the prin-
ciple of conditional preservationin belief revision theory which may
govern the revision of an epistemic state by a set of conditionals (cf.
[5]). This principle may be reformulated for the inductive represen-
tation of conditional probabilistic knowledge, asfollows:

Principle of conditional preservation for representations:

A probability distribution P representing a set R*"°° of condition-
als satisfiesthe principle of conditional preservation (with respect to
RPT) iff P isindifferent with respect to R.

Representations observing this principle handle even complex in-
terdependenciesbetween the conditional sinvolved in avery accurate
way. Therefore, they are especially well-designed for conditional in-
ferences (see [9]).

In particular, each ME-distribution ME(R?™?) is indifferent with
respect to its generating set of conditionals, which may be seen di-
rectly from Theorem 5 (cf. [3]). Asanexamplein aqualitative frame-
work, each system-Z* representation sati sfiesthe principle of condi-
tional preservation, too (cf. [5]).

5 Discovering conditional structures

In this section, as the main result of this paper, we will present an
approachto computing sets R, or R?"°?, respectively, of conditionals
that may be apt to generate some given (positive) probability function
P via an appropriate inductive inference method. Appropriate here
means obeying the principle of conditional preservation, ase.g. ME-
inference (see Section 4 above). Our method addresses quite new
aspectsin knowledge discovery:

¢ It isbased on numbers but not on probabilities closeto 1; actually
it aims at discovering structures of conditional knowledge.

e Themethodis ableto disentangle highly complex interactions be-
tween conditionals.

e We are going to discover not single, isolated rules but a set of
rules, thus taking into regard the collective effects of several con-
ditionals.

The method to be presented is guided by the following idea: If P is
the result of an inductive inference procedure using a set R*™" of
conditionals as knowledge base and observing the principle of con-
ditional preservation (e.g. P = ME(RP™?")), then P is necessarily
indifferent with respectto R, i.e. ker, or C kero P by Proposition
4. |dedlly, we would have P to represent R faithfully, that is,

PETR and kerp P =kerg or. 5)

Assuming faithfulness means presupposing that no equation P (&) =
1 isfulfilled accidentally, but that any of these equationsis induced
by R. Thusthe structures of the conditionalsin R become manifest
inthe elementsof ker, P, that is, in dlements® € Q with P(&) = 1.
As afurther prerequisite, we will assumethat this knowledge inher-
ent to P is representable by a set of single-elementary conditionals.
This restriction should not be considered as a heavy drawback, bear-
ing in mind the expressibility of single-elementary conditionals.

So assume R = {(bi]|A1)[z1], ..., (bn|An)[rs]} is an ex-
isting, but hidden set of single-elementary conditionals, such that
(5) holds. Let us further suppose that kero P is known from ex-
ploiting numerical relationships. Without loss of generality, only
to simplify notation, we assume all consequents &; to be positive
literals. Since conditional indifference is a structural notion, we
omit the quantifications z; of the conditionalsin what follows. Let
or : Q= Fr =(af,a;,...,a},a;) denoteaconditional struc-
ture homomorphism with respectto R .

Our method is a bottom-up approach generalizing conditionalsin
accordance with the conditional structure revealed by kerq P. We
start with considering basic single-elementary conditionals, which
are single-elementary conditionals with antecedents of maximal
length. For each atom v € L, choose an arbitrary, but fixed num-
bering of the remaining atoms w # v, (wo, w1, . . ., Wy @toms —1)-
Then basic single-elementary conditionals are conditionals of the
form

Yor = (v] A\w)) 6)

withe; € {0, 1}, w; := w;, w) := 5,0 < j < #(atoms) — 1 and
I =73, €2’ Wewill abbreviate the antecedent of ¢, by C1. Let

B = {t,, |vaominL,0 < 2#@OM-1_ 43

denote the set of all basic single-elementary conditionalsin (£ | £),
and let fg = <b+ bv_,l | Uatomin£70 < 1 < 2#(&’[0”5)—1 _

,0?



1} be the free abelian group corresponding to 3 with conditional
structure homomorphismo i : Q@ — Fg,

bjl, ifw=0C, v
og = HU”J’ ovi(w) = b;l, ifw=0C,,v
v, 17 el%

Lemma6 oz isinjective,i.e kero o5 = {1}.

So o provides the most finely grained conditional structure on Q:
No different elements &; # &> are equivalent with respect to 5.
Next, we defineahomomorphismg : Fg — Fr via

gbfy= I at= ] af, )

1<ign 1gign
Yo 1 E(b;14;) bi=v,Cy 1 IF4,
where the equalities hold according to Lemma 1. Notethat g —asR
—is not known but only assumed to exist.

It is important to note that for different atoms v and v’, only dif-
ferent af occur in g(bf ) and g(b, /), respectively, by Lemma 1
(andlogically for a;” and g(b;) and (b7, ,,)). Moreover, each af
anda;” occursat most onceineachg(b jyl) andg(b;;), respectively.
Thiswill beused several timesin the sequel. g establishesa connec-
tion between the conditional structureswith respect to B and to —the
unknown, but existing — R

Theorem 7 Letg: Fz — Fr beasin (7). Thenor = goop.

Theorem 7 providesimmediately a method for determining ker ¢ by
considering o3 and kerg oz = kerg P (cf. (5)).

Corollary 8 & € kero o iff & € Qo and o3(@) € ker g.

Proposition 9 Letd = w]* - ... wim € Q.
Thenop(wi® ... w;™) € ker g iff for all atomsv in £,

II ofy™ [ br)* ekerg. ®

1<kgm 1<kgm
wp=Cy v wp=Cy 7
So each (generating) element of ker, o gives rise to an equation
modulo ker g for the generatorsbf |, b, of Fis.

v,
+
b,y
ngkgm(b;lk)rk € ker g iff ngkgm(by_,zk)rk € ker g iff
ngkgm(bvylk) ke ker g.

The idea of the procedure to be described in the sequel is to exploit
the relations mod ker g holding between the group elements b, ; €
F with the aim to define a finite sequenceof sets S 9, W . of
conditionals approximating R:

i

Corollary 10 Let v be an atomof thelanguage £. Setb, ; =

kero og0) Ckero o5y C ... Ckerp or 9)

We will first present the fundamental techniques and state the nec-
essary theoretical results. In the next section, the procedure will be
explained by an example and applied to ME-reasoning.

We start with setting S\ = B. Lemma 6 states kero o 50y = 1,
so (9) trivialy holds. Let =, denote the equivalence relation mod
ker g on Fg,i.e. by =4 by iff g(b1) = g(b2) for any two elements
b1, by € Fg. For each (generating) element & = wi! - ... - wy™ of
kero P = kerg o, set up an equation modulo ker g:

O'B((:') Eg 17

1. diminate "

and split up these equations according to Proposition 9 and Corollary
10. Set ¢ := g. Thebasic idea of the method is to eliminate, or to
join conditionalsby LI, respectively, in accordancewith the equations
modulo ker g. Wefirst summarizethetechnical prerequisitesfor each
step:

Prerequisites: S(*) is a set of conditionals gofjf)] with a single atom
v in the conclusion, and the antecedent D"} of ¢ (") is a digiunc-

tion of elementary conjunctions not containing v. Let Fgu =
(sffyf, s!). 7)., bethefree abelian group associated with S (*), and

let g : F o) — Fr bethe homomorphism defined by
gVl = 11 a

1@5)71
v=b,, DAy

suchthat g 0 o5 = or. Let =, ) mean = moduloker g
We show how to exploit equations of the form

s = s g (10)

v,j0 —g() Bugy P,
to modify S(*) appropriately. To obtain this modified set S+,

W, from 8
0

2. replaceeach (", by

Tk

@iijkl) = Sngty)Jo U Sogfty)Jk = (U | Di(fty)Ju v D(t) )’

VI

for1 <k <m. St DY =p v pW 1<k <m;

VI v,Jo VI

3. retainall other gogj?l, i.e

eutt =l for

;

wZvorl & {jo, 71, ..., Jm}

Thisasoincludesthecase m = 0, i.e. go(f) =, 1;inthiscase,

v,j0 —

Step 2 is vacuous and therefore is left out. Define homomorphisms
h(t+1) : ]:S(t) — ]:S(H'l) andg(“fl) : ]:S(t+1) — Fr by

T crem by w =0l =jo
AARICHOES e ifw =l =1 <k <m
ngl) else
and
1
g(t“)(swtj )) = H a;.
1<ign

t41)
w:b,,Dfﬂ)l =4,

Lemmall LetSU+D RU+D 444D padefined asabove Thenthe
following relationships hold:

(i) gtV oAttt = g»
(i) AY ooy = og0t1);
(i) g"*Y 0 o504 = oR.

1

So the new set S (1) s apt to continue the set chain (9):

Corollary 12 Wth the same notation asin Lemma 11, it holds that
kero o5y C kero o5u41) C kero or (11)

By replacing each group element s'") by A"+ (s(")), equations

holding modulo ker ¢(* are transformed into equations modulo
ker g('+1):

g ([T =1 it A0 =1,
k

k



dueto Lemma 11(i). Note that while neither R nor g are known, the
homomorphisms (") will approximate R in a constructive way.

If al equations modulo ker g can be solved successfully, then,
finally, no non-trivial equations modulo ker g*') are Ieft for some
t'. Thatis, for any & € kero o, 1 = or(@) = ¢ 0 04w (@)
holdstrividly, i.e. dueto oy (@) = 1. But thismeanskero or C
kero oy C Kero or, sOkero oguy = kero or. In this case,
repeating the procedure described above yields asuitable set S (') of
conditionals which is faithfully represented by P. The appertaining
probabilities may be calculated directly from P.

6 Example—solvingtheinverse maxent problem

We will now illustrate the method described in the previous section
by an example. Given some positive probability distribution P, we
will show how to calculate efficiently a set S?7°* of (probabilistic)
conditionalssuch that P = ME(S?"°%). P isindifferent with respect
to each such set $77°*, sowe havekero S C kero P =: K.

We consider formulas involving the three atomic propositions a -
being a student, & - beingyoung, and ¢ - being single (i.e. unmarried).
Thedistribution P over a, b, c is given asfollows:

w P(w) w P(w) w P(w) w P(w)
abc | 0.1950 || abe | 0.1758 || abc | 0.0408 || abe | 0.0519
abe | 0.1528 || @be | 0.1378 || @be | 0.1081 || @be | 0.1378

Here important relationships between probabilities are revealed by

P(ae) = P(abe), P(%2) = P(3), P(<&) = P(ZE), deter-

mining the kernel of P as K = <ﬂ, M, M>
_ o abc abc - abc’ abe - abe

We list the twelve basic single-elementary conditionals ., ; of B:

bao=(a|bE) Yoo=(b|ac) teo=(c|ab)
aa=(a|bc) oa=(b|Tc) ea=(c|ab)
Yaz=(a|bc) tp2=(b|ac) ¢eo=(c|ab)
taa=(a|bc) woa=(b|ac) vea=(c|ab)
with corresponding generatorsij 1» by, of F5. Thegeneratorsof A
yield the following eguations modulo ker ¢, dueto Corollary 8:
abc b- bl b~
1= ki — a,2°b,0 ¢c,1
978 <ab5> b by oboo

1= + bt bt b bt b
= abc-abc\ bl bl bt b bt b,
=g OB

—— =F oF - - oF ot
abc - abc ba 2by obe by sby bl

7. == + b= bt b= b= b—
= abc -abc\ bt b, bt b b b,
=g OB — =

T oo - T
baoPy,2PeaPa 1Py 1Pc 0

abc - abe c2Pa1
Considering these equations for each atom a, b, ¢ separately and
omitting the {4+, — }-signs (see Proposition 9 and Corollary 10), we
obtain

ba,O Eg ba,27 bc,O Eg bc,17 bb,O Eg 17

ba2 =g baa, be1 =4 bes, byobys =4 beiby 2,

ba,O Eg ba,17 bc,O Eg bc,2~
Thlsylelds ba70 =y ba71 =y ba72 =y ba73,

bc,O Eg bc,l Eg bc,2 Eg bc,37

byo =4 1,bps =4 by,1bys.
Eliminating ¢»»0 and joining conditionals according to these equa-
tions, as described by the algorithm in Section 5, results in the fol-
lowing conditionals:

l/ia,o ( Zz}a,l ( Zz}a,2 ( ¢a73 = (Cl|—|—)7

wc,O [ Zz}c,l [ Zz}c,2 [ ¢673 = (C|T)7
Vo3 Uhe1 = (ble);  ¢o3 Uhe2 = (bla).

Associating the proper probabilities with these struc-
tural conditionals, we obtain SP* = {(a|T)[0.4635],
(c| T)[0.4967], (ba)[0.8], (b]c)[0.7]} as an ME-generating set
for P,i.e. P = ME(S""°").

7 Outlook

In general, the techniques described in Section 5 will not suffice to
eliminate all equationsmodulo ker ¢, and we will be left with more
complex equationsmodulo ker g of the form

H(ngty)ﬁc)rk Eg(t) H(Sgty)h)sz’ (12)
!

k

al ri,s: > 0. The great variety of relationships possibly holding
between the conditional sinvolved makesit difficult, if notimpossible
in general, to construct a new appropriate set S ‘1) of conditionals
in astraightforward way.

Nevertheless, the method developed so far already illustrates the
central idea of how to find the conditionals whose structures some
probability function P (or some ordinal conditional function «) fol-
lows: By investigating rel ationships between the numerical values of
P, the effects of conditionals are analyzed and isolated, and condi-
tionals are joined suitably so as to fit the conditional structures in-
herent to P. The operations on conditionals are based on equations
between group elements representing these conditionals.

The applicability of the method presented in this paper neither de-
pends on the presupposition of P being afaithful respresentation nor
on having a complete description of kerq P available: Each numer-
ical relationship found amongst the values of P corresponds to an
element of kero P and may be used to set up equationsfor the group
elementsin Fz modulo ker g. The generators of kero P are particu-
larly appropriate for this task, in that they yield basic equations, but
any other element will do, too. If P failsto be a faithful represen-
tation of some suitable set of conditionals, then too many equations
modulo ker ¢ will haveto be solved trivially. In this case, backtrack-
ing will be necessary, undoing the last joining of conditionals.

Though at the present state, the method is not guaranteed to ter-
minate successfully, we will find that in many cases, it will yield a
useful approximation of the hidden set R of conditionals. Treating
equationsof form (12) is atopic of our ongoing research, and results
will be published in afurther paper.
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