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Abstract. In this paper, we present an approach to extract most rel-
evant information from a (semi-)quantitative knowledge base, e.g.,
from a probability distribution. Relevance here is meant with respect
to some appropriate inductive inference process, like maximum en-
tropy inference (ME-inference) in probabilistics. So in particular, the
method developed in this paper is apt to solve the inverse maxent
problem, computing from a distribution in a non-heuristic way a set
of conditionals that ME-represents that distribution. Since we only
make use of one special characteristic of ME-inference, this method
may as well be applied to other, similar inference processes.

1 Introduction

In many practical examples and applications, the available knowl-
edge is neither certain nor complete. So classical deduction often
seems to be inappropriate to yield useful inferences, and also the
techniques of nonmonotonic reasoning may prove to be too weak. A
way out of this dilemma is offered by selecting a model most ade-
quately representing the available knowledge, and using this model
for inferences. This policy is pursued, for instance, by reasoning at
maximum entropy in a probabilistic setting [7], and by system-Z for
ranking functions [2]. The way how to solve this representationprob-
lem is usually guided by fundamental principles of reasoning, or by
good heuristics. The appropriate handling of conditional information,
constituting crucial pieces of knowledge, is a peculiarly challenging
task.

On the other hand, incompleteness of knowledge can also be a de-
liberate consequence of focusing on most relevant information and
relationships. So, conversely, given some model, one may ask which
propositional and conditional statements constitute central knowl-
edge. In particular, which part of the knowledge inherent to that
model is apt to generate it with respect to some given inductive rep-
resentation technique?

In this paper, we will present an approach to solve this inverse
representation problem for quantitative and semi-quantitative repre-
sentation methods satisfying a conditional indifference property. The
method based on maximum entropy (abbreviated by ME) is known
to fulfill this property (see [3]), so we will exemplify our ideas in a
probabilistic setting. Given some probability distribution P , we will
show how to calculate a finite set Rprob of probabilistic conditionals
such that P is the ME-model of Rprob . Therefore, in particular, the
techniques developed in this paper constitute an approach to solve the
inverse maxent problem. They are, however, useful in a more general
environment. The basic idea is to exploit numerical relationships as
manifestations of interactions of underlying conditional knowledge.
So the techniques to be presented may also be applied e.g. to ranking
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functions representing epistemic states. Although starting from num-
bers, our method is essentially algebraic, elaborating the conditional
structure of worlds.

Our approach differs from usual knowledge discovery and data
mining methods in that it takes explicitly inductive representation, or
inference, respectively, into consideration. It is not based on observ-
ing conditional independencies, but aims at learning conditional de-
pendencies in a non-heuristic way. As a further novelty, our method
computes not single, isolated rules, but yields as a result a set of rules
in taking into account highly complex interaction of rules. When ap-
plied to a probability distribution gained from statistical data, the set
of conditionalsRprob obtained by the inverse maxent procedure may
also be supposed to represent most informative knowledge to be dis-
covered from the data.

This paper is organized as follows: In the next section, we sum-
marize some basic notations and techniques for conditionals, and we
sketch how to obtain an ME-representation. Section 3 introduces the
notion of conditional structures, which we will use in Section 4 to
define conditional indifference. Section 5 sketches the procedure of
how to compute a set of conditionals with respect to which a distribu-
tion is indifferent, and the theoretical background is elucidated. Then
in Section 6, this procedure is applied to solve the maxent problem
for an example. We conclude this paper with an outlook in Section 7.
All proofs are omitted, but may be found in [4].

2 Basic notations and techniques

We consider a propositional language L with finitely many atomic
propositions. Let 
 denote the corresponding set of possible worlds,
that is, 
 is a complete set of propositional interpretations of L. The
conjunction operator, ^, will usually be omitted, so AB will mean
A ^B, and negation is indicated by barring, i.e. A = :A.

Conditionals are written in the form (BjA), with antecedents,A,
and consequents, B, both propositional formulas in L. Let (L j L)
denote the set of all conditionals over L. Each conditional (BjA) can
be represented as a generalized indicator function on worlds, setting

(BjA)(!) =

8<
:

1 : ! j= AB

0 : ! j= AB

u : ! j= A

(1)

where u stands for undefined (cf. [1]). Two conditionals are equiv-
alent iff they yield the same indicator function. Single-elementary
conditionals are conditionals whose antecedents are conjunctions of
literals, and whose consequents consist of one single literal.

We introduce the following relation v between conditionals:

(DjC) v (BjA) iff CD j= AB and CD j= AB

If (DjC) v (BjA), then (DjC) is called a subconditional of (BjA).
For any two conditionals (BjA); (DjC) 2 (L j L) with ABCD �



ABCD � ?, the supremum (BjA)t(DjC) in (L j L) with respect
tov exists and is given by (BjA)t(DjC)� (AB_CDjA_C) (cf.
[4]). In particular, for two conditionals (BjA); (BjC) with the same
consequent, we have (BjA) t (BjC) � (BjA _ C). The following
lemma provides an easy characterization for the relation v to hold
between single-elementary conditionals:

Lemma 1 Let (bjA) and (djC) be two single-elementary condition-
als. Then (djC) v (bjA) iff C j= A and b = d.

This lemma may be slightly generalized to hold for conditionals
(bjA) and (djC) where A and C are disjunctions of conjunctions
of literals not containing b and d, respectively.

Let P be a probability distribution over the alphabet of L.
Within a probabilistic framework, conditionals can be quantified
and interpreted probabilistically via conditional probabilities: P j=
(BjA) [x] iff P (AB) = xP (A) for some x 2 [0; 1]. Suppose
Rprob = f(B1jA1) [x1]; : : : ; (BnjAn) [xn]g is a consistent set of
probabilistic conditionals. Then the ME-representation of Rprob ,
ME(Rprob), is the unique distribution Q� that maximizes the en-
tropy H(Q) = �

P
! Q(!) logQ(!) subject to Q j= Rprob (cf.

[7]). If Rprob = f(B1jA1) [x1]; : : : ; (BnjAn) [xn]g, then R =
f(B1jA1); : : : ; (BnjAn)g denotes the set of structural (i.e. unquan-
tified) conditionals, and vice versa.

In this paper, we will only consider positive probability distribu-
tionsP . Correspondingly, we will assume that the ME-representation
of any set Rprob dealt with in the sequel is positive. In particular, all
probabilities xi of conditionals in Rprob have to be different from 0
and 1. This is but a technical prerequisite, to focus on the most in-
teresting cases, and for the sake of brevity. The general case may be
dealt with in a similar manner (cf. [4]).

3 Conditional structures

When we consider (finite) sets of conditionals R =
f(B1jA1); : : : ; (BnjAn)g, we have to modify representation
(1) appropriately to identify the effect of each conditional in R on
worlds in 
. This leads to introducing the functions �i = �(BijAi)
below (see (2)) which generalize (1) by replacing the numbers 0
and 1 by abstract symbols. Moreover, we will make use of a group
structure to represent the joint impact of conditionals on worlds.

To each conditional (BijAi) in R we associate two symbols
a
+
i ;a

�
i . Let

FR = ha+1 ;a
�
1 ; : : : ;a

+
n ;a

�
n i

be the free abelian group with generators a
+
1 ;a

�
1 ; : : : ;a

+
n ;a

�
n ,

i.e. FR consists of all elements of the form
(a+1 )

r1 (a�1 )
s1 : : : (a+n )

rn(a�n )
sn with integers ri; si 2 Z (the

ring of integers). Each element of FR can be identified by its expo-
nents, so that FR is isomorphic toZ2n (cf. [6]). The commutativity
of FR corresponds to the fact that the conditionals in R shall be
effective simultaneously, without assuming any order of application.

For each i; 1 6 i 6 n, we define a function �i : 
 ! FR by
setting

�i(!) =

8<
:

a
+
i if (BijAi)(!) = 1

a
�
i if (BijAi)(!) = 0
1 if (BijAi)(!) = u

(2)

�i(!) represents the manner in which the conditional (BijAi) ap-
plies to the possible world !. The neutral element 1 of FR corre-
sponds to the non-applicability of (BijAi) in case that the antecedent

Ai is not satisfied. The function

�R(!) =
Y

16i6n

�i(!) =
Y

16i6n
!j=AiBi

a
+
i

Y
16i6n

!j=AiBi

a
�
i (3)

describes the all-over effect of R on !. �R(!) is called (a represen-
tation of) the conditional structure of ! with respect to R.

Example 2 Consider the set R = f(dja); (djb); (djc)g of condi-
tionals using the atoms a; b; c; d. Let a�1 ;a

�
2 ;a

�
3 be the group gen-

erators associated with (dja); (djb); (djc), respectively. The condi-
tional structure of ! = abcd, e.g., is �R(abcd) = a

+
1 a

+
2 , since abcd

confirms the first two conditionals, and the third conditional is not
applicable to it. Moreover, by conditional structures, it is possible to
compare worlds, or sets of worlds, as to their behavior with respect
to the conditionals in R. For instance, we have

�R(abcd)�R(abcd)�R(abcd) = (a+1 a
+
2 )(a

+
1 a

+
3 )(a

+
2 a

+
3 )

= (a+1 )
2(a+2 )

2(a+3 )
2 = (a+1 a

+
2 a

+
3 )

2 = �R(abcd)2:

That is to say, that the elements of the set fabcd; abcd;abcdg show
collectively the same conditional behavior as two copies of abcd.

To compare worlds conveniently with respect to their conditional
structures, we impose a multiplication on the set of worlds 
 by
considering the worlds ! as formal symbols. That means, we in-
troduce the free abelian group b
 := h! j ! 2 
i, generated
by all ! 2 
, and consisting of all words b! = !1

r1 : : : !m
rm

with !1; : : : ; !m 2 
 and integers r1; : : : rm2. Now �R may be
extended to b
 in a straightforward manner by setting �R(b!) =
�R(!1)

r1 : : : �R(!m)rm , yielding a homomorphism of groups�R :b
 ! FR.
The generators a+i are mere symbols, representing the effects of

the corresponding conditional on worlds. As can easily be seen, how-
ever, the kernel of such a representation homomorphism

ker �R := fb! 2 b
 j �R(b!) = 1g

does not depend on the particular symbols chosen. Therefore, it is an
invariant of R. ker �R contains exactly all group elements b! 2 b

with a balanced conditional structure, that means, where all effects of
conditionals inR on worlds occurring in b! are completely cancelled.

Having the same conditional structure defines an equivalence re-
lation �R on b
: b!1 �R b!2 iff �R(b!1) = �R(b!2), i.e. iffb!1b!�12 2 ker �R. Thus the kernel of �R plays an important part in
identifying the conditional structure of elements b! 2 b
, in particular
of worlds !, with respect to R. No nontrivial relations hold between
different group generators a+1 ;a

�
1 ; : : : ;a

+
n ;a

�
n of FR, so we have

�R(b!) = 1 iff �i(b!) = 1 for all i; 1 6 i 6 n, and this means
ker �R =

Tn

i=1 ker �i. In this way, each conditional in R con-
tributes to ker �R . Besides the explicit representation of knowledge
by R, often implicit normalizing constraints (such as P (>j>) = 1
for probability functions or �(>j>) = 0 for ordinal conditional
functions) have to be taken into account. It is easy to check that
ker �(>j>) = b
0 := fb! = !1

r1 � : : : �!m
rm 2 b
 j

Pm

j=1 rj = 0g.

Two elements b!1 = !
r1
1 : : : !rmm ; b!2 = �

s1
1 : : : �

sp
p 2 b
 are

equivalent modulo b
0, b!1 �> b!2, iff b!1b
0 = b!2b
0, i.e. iffP
16j6m rj =

P
16k6p sk . This means that b!1 and b!2 are equiv-

alent modulo b
0 iff they both are a (cancelled) product of the same

2 We will often use fractional representations for the elements of b
, that is,

for instance, we will write
!1

!2
instead of !1!

�1
2 .



number of generators, each generator being counted with its corre-
sponding exponent. Set

ker0 �R := ker �R \ b
0 = ker �R[f(>j>)g:

4 Indifferent representations of conditional
knowledge

In this section, we will study conditional interactions in positive
probability functions P . Each such function may be extended to a
homomorphism P : b
! (R+; �) from b
 into the positive real num-
bers by setting P (!1

r1 : : : !m
rm ) = P (!1)

r1 � : : : �P (!m)rm . This
allows us to analyze numerical relationships in order to elaborate the
conditionals whose structures P follows, that means, to determine
sets of conditionalsR with respect to which P is indifferent:

Definition 3 Suppose P is a positive probability distribution, and
let R = f(B1jA1); : : : ; (BnjAn)g be a set of conditionals.
P is indifferent with respect to R iff P (b!1) = P (b!2) whenever

�R(b!1) = �R(b!2), for all b!1; b!2 2 b
 with b!1 �> b!2.

If P is indifferent with respect to R, then it does not distinguish
between elements b!1 �> b!2 with the same conditional structure
with respect to R. Conversely, any deviation P (b!) 6= 1 can be ex-
plained by the conditionals in R acting on b! in a non-balanced way.
Note that the notion of indifference only aims at observing condi-
tional structures, without making use of any probabilities associated
with the conditionals.

The following proposition rephrases conditional indifference by
establishing a relationship between the kernels of �R and P :

Proposition 4 Suppose P is a positive probability distribution, and
let R = f(B1jA1); : : : ; (BnjAn)g be a set of conditionals. P is
indifferent with respect to R iff ker0 �R � ker0 P .

If ker0 �R = ker0 P , then P (b!1) = P (b!2) iff �R(b!1) = �R(b!2)
and b!1 �> b!2. In this case, P completely follows the conditional
structures imposed by R – it observesR faithfully.

The next theorem characterizes indifferent probability functions:

Theorem 5 A (positive) probability function P is indifferent with
respect to a set R = f(B1jA1); : : : ; (BnjAn)g iff there are positive
real numbers�0; �+1 ; �

�
1 ; : : : ; �

+
n ; �

�
n 2R+, such that

P (!) = �0
Y

16i6n
!j=AiBi

�
+
i

Y
16i6n

!j=AiBi

�
�
i ; ! 2 
: (4)

Conditional indifference is the crucial ingredient to realize the prin-
ciple of conditional preservation in belief revision theory which may
govern the revision of an epistemic state by a set of conditionals (cf.
[5]). This principle may be reformulated for the inductive represen-
tation of conditional probabilistic knowledge, as follows:
Principle of conditional preservation for representations:
A probability distribution P representing a set Rprob of condition-
als satisfies the principle of conditional preservation (with respect to
Rprob) iff P is indifferent with respect to R.

Representations observing this principle handle even complex in-
terdependencies between the conditionals involved in a very accurate
way. Therefore, they are especially well-designed for conditional in-
ferences (see [5]).

In particular, each ME-distribution ME(Rprob) is indifferent with
respect to its generating set of conditionals, which may be seen di-
rectly from Theorem 5 (cf. [3]). As an example in a qualitative frame-
work, each system-Z� representation satisfies the principle of condi-
tional preservation, too (cf. [5]).

5 Discovering conditional structures

In this section, as the main result of this paper, we will present an
approach to computing setsR, orRprob, respectively, of conditionals
that may be apt to generate some given (positive) probability function
P via an appropriate inductive inference method. Appropriate here
means obeying the principle of conditional preservation, as e.g. ME-
inference (see Section 4 above). Our method addresses quite new
aspects in knowledge discovery:

� It is based on numbers but not on probabilities close to 1; actually
it aims at discovering structures of conditional knowledge.

� The method is able to disentangle highly complex interactions be-
tween conditionals.

� We are going to discover not single, isolated rules but a set of
rules, thus taking into regard the collective effects of several con-
ditionals.

The method to be presented is guided by the following idea: If P is
the result of an inductive inference procedure using a set Rprob of
conditionals as knowledge base and observing the principle of con-
ditional preservation (e.g. P = ME(Rprob)), then P is necessarily
indifferent with respect to R, i.e. ker0 �R � ker0 P by Proposition
4. Ideally, we would have P to representR faithfully, that is,

P j= R and ker0 P = ker0 �R: (5)

Assuming faithfulness means presupposing that no equationP (b!) =
1 is fulfilled accidentally, but that any of these equations is induced
by R. Thus the structures of the conditionals in R become manifest
in the elements of ker0 P , that is, in elements b! 2 b
 with P (b!) = 1.
As a further prerequisite, we will assume that this knowledge inher-
ent to P is representable by a set of single-elementary conditionals.
This restriction should not be considered as a heavy drawback, bear-
ing in mind the expressibility of single-elementary conditionals.

So assume Rprob = f(b1jA1)[x1]; : : : ; (bnjAn)[xn]g is an ex-
isting, but hidden set of single-elementary conditionals, such that
(5) holds. Let us further suppose that ker0 P is known from ex-
ploiting numerical relationships. Without loss of generality, only
to simplify notation, we assume all consequents bi to be positive
literals. Since conditional indifference is a structural notion, we
omit the quantifications xi of the conditionals in what follows. Let
�R : b
! FR = ha+1 ;a

�
1 ; : : : ;a

+
n ;a

�
n i denote a conditional struc-

ture homomorphism with respect to R .
Our method is a bottom-up approach generalizing conditionals in

accordance with the conditional structure revealed by ker0 P . We
start with considering basic single-elementary conditionals, which
are single-elementary conditionals with antecedents of maximal
length. For each atom v 2 L, choose an arbitrary, but fixed num-
bering of the remaining atoms w 6= v, (w0; w1; : : : ; w#(atoms)�1).
Then basic single-elementary conditionals are conditionals of the
form

 v;l = (v j
^
j

w
�j
j ) (6)

with �j 2 f0; 1g; w1
j := wj; w

0
j := wj; 0 6 j 6 #(atoms)� 1 and

l =
P

j �j2
j . We will abbreviate the antecedent of  v;l byCv;l. Let

B = f v;l j v atom in L; 0 6 l 6 2#(atoms)�1 � 1g

denote the set of all basic single-elementary conditionals in (L j L),
and let FB = hb+v;l;b

�
v;l j v atom in L; 0 6 l 6 2#(atoms)�1 �



1i be the free abelian group corresponding to B with conditional
structure homomorphism �B : b
 ! FB,

�B =
Y
v;l

�v;l; �v;l(!) =

8<
:

b
+
v;l; if ! = Cv;lv

b
�
v;l; if ! = Cv;lv

1; else

Lemma 6 �B is injective, i.e. ker0 �B = f1g.

So �B provides the most finely grained conditional structure on b
:
No different elements b!1 6= b!2 are equivalent with respect to B.

Next, we define a homomorphism g : FB ! FR via

g(b�v;l) =
Y

16i6n
 v;lv(bijAi)

a
�
i =

Y
16i6n

bi=v;Cv;lj=Ai

a
�
i ; (7)

where the equalities hold according to Lemma 1. Note that g – as R
– is not known but only assumed to exist.

It is important to note that for different atoms v and v0 , only dif-
ferent a+i occur in g(b+v;l) and g(b+

v0;l0
), respectively, by Lemma 1

(analogically for a�i and g(b�v;l) and g(b�
v0;l0

)). Moreover, each a+i
and a�i occurs at most once in each g(b+

v;l) and g(b�v;l), respectively.
This will be used several times in the sequel. g establishes a connec-
tion between the conditional structures with respect to B and to – the
unknown, but existing – R:

Theorem 7 Let g : FB ! FR be as in (7). Then �R = g � �B .

Theorem 7 provides immediately a method for determining ker g by
considering �B and ker0 �R = ker0 P (cf. (5)).

Corollary 8 b! 2 ker0 �R iff b! 2 b
0 and �B(b!) 2 ker g.

Proposition 9 Let b! = !
r1
1 � : : : � !rmm 2 b
0.

Then �B(!
r1
1 � : : : � !rmm ) 2 ker g iff for all atoms v in L,Y
16k6m
!k=Cv;lv

(b+v;l)
rk ;

Y
16k6m
!k=Cv;lv

(b�v;l)
rk 2 ker g: (8)

So each (generating) element of ker0 �R gives rise to an equation
modulo ker g for the generators b+v;l;b

�
v;l of FB.

Corollary 10 Let v be an atom of the languageL. Set bv;l =
b
+
v;l

b
�
v;l

.Q
16k6m(b+v;lk)

rk 2 ker g iff
Q

16k6m(b�v;lk)
rk 2 ker g iffQ

16k6m(bv;lk)
rk 2 ker g.

The idea of the procedure to be described in the sequel is to exploit
the relations mod ker g holding between the group elements bv;l 2
FB with the aim to define a finite sequence of sets S (0);S(1); : : : of
conditionals approximating R:

ker0 �S(0) � ker0 �S(1) � : : : � ker0 �R (9)

We will first present the fundamental techniques and state the nec-
essary theoretical results. In the next section, the procedure will be
explained by an example and applied to ME-reasoning.

We start with setting S(0) = B. Lemma 6 states ker0 �S(0) = 1,
so (9) trivially holds. Let �g denote the equivalence relation mod
ker g onFB , i.e. b1 �g b2 iff g(b1) = g(b2) for any two elements
b1;b2 2 FB. For each (generating) element b! = !

r1
1 � : : : � !rmm of

ker0 P = ker0 �R , set up an equation modulo ker g:

�B(b!) �g 1;

and split up these equations according to Proposition 9 and Corollary
10. Set g(0) := g. The basic idea of the method is to eliminate, or to
join conditionals byt, respectively, in accordance with the equations
modulo ker g. We first summarize the technical prerequisites for each
step:
Prerequisites: S (t) is a set of conditionals '(t)v;j with a single atom

v in the conclusion, and the antecedent D (t)
v;j of '(t)v;j is a disjunc-

tion of elementary conjunctions not containing v. Let FS(t) =

hs(t)v;j
+
; s
(t)
v;j

�
iv;j be the free abelian group associated with S (t), and

let g(t) : FS(t) ! FR be the homomorphism defined by

g
(t)(s

(t)
v;j) =

Y
16i6n

v=bi;D
(t)
v;j

j=Ai

ai

such that g(t) � �S(t) = �R. Let �g(t) mean � modulo ker g(t) .
We show how to exploit equations of the form

s
(t)
v;j0

�g(t) s
(t)
v;j1

: : : s
(t)
v;jm

(10)

to modify S(t) appropriately. To obtain this modified set S (t+1),

1. eliminate '(t)v;j0 from S(t);

2. replace each '(t)v;jk by

'
(t+1)
v;jk

= '
(t)
v;j0

t '(t)v;jk = (v j D(t)
v;j0

_D(t)
v;jk

);

for 1 6 k 6m. Set D(t+1)
v;jk

= D
(t)
v;j0

_D(t)
v;jk

, 1 6 k 6 m;

3. retain all other '(t)w;l , i.e.

'
(t+1)
w;l = '

(t)
w;l for w 6= v or l 62 fj0; j1; : : : ; jmg:

This also includes the case m = 0, i.e. '(t)v;j0 �g(t) 1; in this case,
Step 2 is vacuous and therefore is left out. Define homomorphisms
h(t+1) : FS(t) ! FS(t+1) and g(t+1) : FS(t+1) ! FR by

h
(t+1)(s(t)w;l) =

8>><
>>:
Q

16k6m s
(t+1)
v;jk

if w = v; l = j0

s
(t+1)
v;jk

if w = v; l = jk; 1 6 k 6m

s
(t+1)
w;l else

and
g
(t+1)(s(t+1)w;l ) =

Y
16i6n

w=bi;D
(t+1)
w;l

j=Ai

ai:

Lemma 11 Let S (t+1); h(t+1); g(t+1) be defined as above. Then the
following relationships hold:

(i) g(t+1) � h(t+1) = g(t);
(ii) h(t+1) � �S(t) = �S(t+1) ;
(iii) g(t+1) � �S(t+1) = �R .

So the new set S (t+1) is apt to continue the set chain (9):

Corollary 12 With the same notation as in Lemma 11, it holds that

ker0 �S(t) � ker0 �S(t+1) � ker0 �R (11)

By replacing each group element s(t)v;l by h(t+1)(s(t)v;l), equations

holding modulo ker g(t) are transformed into equations modulo
ker g(t+1):

g
(t)(
Y
k

(s
(t)
v;lk

)rk ) = 1 iff g
(t+1)(

Y
k

h
(t+1)(s

(t)
v;lk

)rk ) = 1;



due to Lemma 11(i). Note that while neither R nor g are known, the
homomorphisms h(t) will approximateR in a constructive way.

If all equations modulo ker g can be solved successfully, then,
finally, no non-trivial equations modulo ker g(t

0) are left for some
t0 . That is, for any b! 2 ker0 �R , 1 = �R(b!) = g(t

0) � �
S(t

0) (b!)
holds trivially, i.e. due to �

S(t
0)(b!) = 1. But this means ker0 �R �

ker0 �S(t0) � ker0 �R, so ker0 �S(t0) = ker0 �R. In this case,

repeating the procedure described above yields a suitable set S (t0) of
conditionals which is faithfully represented by P . The appertaining
probabilities may be calculated directly from P .

6 Example – solving the inverse maxent problem

We will now illustrate the method described in the previous section
by an example. Given some positive probability distribution P , we
will show how to calculate efficiently a set Sprob of (probabilistic)
conditionals such that P = ME(S prob). P is indifferent with respect
to each such set S prob , so we have ker0 S � ker0 P =: K .

We consider formulas involving the three atomic propositions a -
being a student, b - being young, and c - being single (i.e. unmarried).
The distribution P over a; b; c is given as follows:

! P (!) ! P (!) ! P (!) ! P (!)

abc 0:1950 abc 0:1758 abc 0:0408 abc 0:0519
abc 0:1528 abc 0:1378 abc 0:1081 abc 0:1378

Here important relationships between probabilities are revealed by
P (abc) = P (abc); P (abc

abc
) = P (abc

abc
); P (abc

abc
) = P (abc

abc
), deter-

mining the kernel of P asK =

�
abc

abc
;
abc � abc

abc � abc
;
abc � abc

abc � abc

�
.

We list the twelve basic single-elementary conditionals  v;l of B:

 a;0=(a j bc)  b;0=(b j a c)  c;0=(c j ab)
 a;1=(a j bc)  b;1=(b j ac)  c;1=(c j ab)

 a;2=(a j bc)  b;2=(b j ac)  c;2=(c j ab)
 a;3=(a j bc)  b;3=(b j ac)  c;3=(c j ab)

with corresponding generatorsb+v;l;b
�
v;l ofFB. The generators ofK

yield the following equations modulo ker g, due to Corollary 8:

1 �g �B

�
abc

abc

�
=

b
�
a;2b

+
b;0b

�
c;1

b
�
a;0b

�
b;0b

�
c;0

1 �g �B

�
abc � abc

abc � abc

�
=

b
+
a;3b

+
b;3b

+
c;3�b

�
a;2b

+
b;0b

�
c;1

b
+
a;2b

+
b;2b

�
c;3�b

�
a;3b

+
b;1b

+
c;1

1 �g �B

�
abc � abc

abc � abc

�
=

b
+
a;1b

�
b;3b

+
c;2�b

�
a;0b

�
b;0b

�
c;0

b
+
a;0b

�
b;2b

�
c;2�b

�
a;1b

�
b;1b

+
c;0

Considering these equations for each atom a; b; c separately and
omitting the f+;�g-signs (see Proposition 9 and Corollary 10), we
obtain

ba;0 �g ba;2;bc;0 �g bc;1;bb;0 �g 1;
ba;2 �g ba;3;bc;1 �g bc;3;bb;0bb;3 �g bb;1bb;2;

ba;0 �g ba;1;bc;0 �g bc;2:

This yields ba;0 �g ba;1 �g ba;2 �g ba;3;

bc;0 �g bc;1 �g bc;2 �g bc;3;

bb;0 �g 1;bb;3 �g bb;1bb;2:

Eliminating  b;0 and joining conditionals according to these equa-
tions, as described by the algorithm in Section 5, results in the fol-
lowing conditionals:

 a;0 t  a;1 t  a;2 t  a;3 � (aj>);
 c;0 t  c;1 t  c;2 t  c;3 � (cj>);
 b;3 t  b;1 � (bjc);  b;3 t  b;2 � (bja):

Associating the proper probabilities with these struc-
tural conditionals, we obtain Sprob = f(aj>)[0:4635];
(cj>)[0:4967];(bja)[0:8]; (bjc)[0:7]g as an ME-generating set
for P , i.e. P = ME(Sprob).

7 Outlook

In general, the techniques described in Section 5 will not suffice to
eliminate all equations modulo ker g, and we will be left with more
complex equations modulo ker g (t) of the formY

k

(s(t)v;jk)
rk �g(t)

Y
l

(s(t)v;jl )
sl; (12)

all rk ; sl > 0. The great variety of relationships possibly holding
between the conditionals involved makes it difficult, if not impossible
in general, to construct a new appropriate set S (t+1) of conditionals
in a straightforward way.

Nevertheless, the method developed so far already illustrates the
central idea of how to find the conditionals whose structures some
probability function P (or some ordinal conditional function �) fol-
lows: By investigating relationships between the numerical values of
P , the effects of conditionals are analyzed and isolated, and condi-
tionals are joined suitably so as to fit the conditional structures in-
herent to P . The operations on conditionals are based on equations
between group elements representing these conditionals.

The applicability of the method presented in this paper neither de-
pends on the presupposition of P being a faithful respresentation nor
on having a complete description of ker0 P available: Each numer-
ical relationship found amongst the values of P corresponds to an
element of ker0 P and may be used to set up equations for the group
elements in FB modulo ker g. The generators of ker0 P are particu-
larly appropriate for this task, in that they yield basic equations, but
any other element will do, too. If P fails to be a faithful represen-
tation of some suitable set of conditionals, then too many equations
modulo ker g will have to be solved trivially. In this case, backtrack-
ing will be necessary, undoing the last joining of conditionals.

Though at the present state, the method is not guaranteed to ter-
minate successfully, we will find that in many cases, it will yield a
useful approximation of the hidden set R of conditionals. Treating
equations of form (12) is a topic of our ongoing research, and results
will be published in a further paper.
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[7] J.B. Paris and A. Vencovská, ‘In defence of the maximum entropy in-
ference process’, International Journal of Approximate Reasoning, 17,
77–103, (1997).


