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Abstract. Classical stochastic Markov Decision Processes
(MDPs) and possibilistic MDPs (�-MDPs) aim at solving the
same kind of problems, involving sequential decision making
under uncertainty. The underlying uncertainty model (prob-
abilistic / possibilistic) and preference model (reward / satis-
faction degree) change, but the algorithms, based on dynamic
programming, are similar. So, a question maybe raised about
when to prefer one model to another, and for which reasons.
The answer may seem obvious when the uncertainty is of an
objective nature (symmetry of the problem, frequentist infor-
mation) and when the problem is faced repetitively and re-
wards accumulate. It is less clear when uncertainty and prefer-
ences are qualitative, purely subjective and when the problem
is faced only once. In this paper we carry out an empirical
comparison of both types of algorithms (stochastic and pos-
sibilistic), in terms of \quality" of the solutions, and time
needed to compute them.

1 INTRODUCTION

The Subjective Expected Utility theory possesses strong ax-
iomatic justi�cations [12] that have been extensively dis-
cussed. On their side, the qualitative possibilistic utility cri-
teria have also been recently axiomatically justi�ed, both in
a \lottery-style" point of view [4] and in a subjective uncer-
tainty point of view [5]. In this paper we will not focus on
the comparison of these axiomatics, but rather will we focus
on an empirical comparison of dynamic programming algo-
rithms (in both frameworks) for solving a representative class
of problems of sequential decision making under uncertainty.
The comparison will be carried out on a representative al-

though simplistic class of problems frequently used for illus-
trating the use of Markov Decision Processes [10] in AI. These
problems consist of �nding an optimal policy for a robot nav-
igating in a grid-world towards some \more or less" satisfying
goals states. In this framework, uncertainty lies in the e�ects
of actions that may not always be deterministic. These uncer-
tain e�ects, as well as the utility of goal states will be mod-
eled both in the stochastic MDP framework [10] and in the
�-MDP framework [7]. Then, we will compare (according to
the expected utility criterion) the optimal solutions returned
by dynamic programming algorithms in both frameworks, as
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well as the time needed in order to return them. We will see
that possibilistic algorithms do not do badly in terms of qual-
ity (that is, not far from the \optimal" stochastic solutions),
in rather short time.
In Section 2 we will give some background on the MDP

framework and algorithms (stationary case, discounted re-
wards), then in Section 3 we will present the possibilistic
decision criteria, as well as the �-MDP framework, and possi-
bilistic counterparts of MDP algorithms. In Section 4, We will
describe the benchmark problems, as well as the test-protocol,
and we will give the results of the experimental comparisons
and discuss them...

2 MARKOV DECISION PROCESSES

The standard MDP model [10] is de�ned by :
- A set T � IN of stages in which decisions are taken. When
T = f0; : : :Ng is �nite, N is the horizon of the problem.
- For each stage t, a �nite state space, St.
- Sets As;t (�nite) of available actions in state s at stage t
(these sets are denoted As when they are independent of t).
- The rewards r(s; a) (that may be negative) that are obtained
after a has been applied in state s.
- The probability distributions p(�js; a) describing the uncer-
tainty about the possible successor states (in St+1) of s 2 St
when a 2 As;t is applied.
A decision rule dt is an application from St to [s2StAs;t

assigning an action to each possible state of the world in stage
t. A policy � is, in the �nite horizon case, a N-tuple of decision
rules � = (d1; : : : ; dN ) where N is the horizon of the problem.
� = D1 � : : : � DN is the set of applicable policies. In the
in�nite horizon case, or in the stationary �nite horizon case,
the parameter t has no in
uence on the decision problem.
Thus, a policy � is nothing but the repetition of an identical
decision rule d.
A policy �, applied in an initial state s0, de�nes a Markov

chain that describes the sequence of states occupied by the
system (trajectory � = fs0; : : : ; sNg). The value of a policy in
a given state is the expected sum of the rewards gained along
the possible trajectories. In the �nite horizon case :

v(�; s0) = E(

NX

t=0

r(st; dt(st))) (1)

When the horizon is in�nite, the above expected sum may be
unbounded. Therefore, future rewards are usually discounted,



which is in accordance with the fact that immediate rewards
shall be more important than future ones. In this case, the
discounted value of a policy is de�ned by :

v(�; s0) = E(

1X

t=0


t � r(s; dt(s))) (2)

where 0 < 
 < 1 is the discounting factor (the sum converges,
since 
 < 1).
Solving a MDP amounts to �nding a policy �� maximiz-

ing v(�; s0). The dynamic programming methods [9] are based
on the decomposition of the sequential decision problem into
one-stage decision problems, by making use of the Bellman's
equations [1].
In the �nite horizon case, an optimal policy for an MDP is

obtained as the solution of the following system of equations:
8t 2 0; : : : ; N � 1;8s 2 St,

vt(s) = max
a2As;t

fr(s; a) + 
 � (
X

s02St+1

pa(s
0js) � vt+1(s0))g (3)

and vN (s) = maxa2As;N
r(s; a).

Optimal policies can be computed by the backwards in-
duction algorithm [9], which solves the above equations2 in
decreasing order of t.
In the discounted in�nite horizon case, optimal policies

(which, by the way, are stationary) can be obtained as �xed
points of equation (3). Methods such as the value iteration
algorithm [1], [2] can be used to compute optimal policies.

Algorithm 1: Value iteration.

begin

Arbitrary initialization of v on S ;
repeat

for s 2 S do

for a 2 A do Q(s; a)  r(s; a) + 
 �P
s02S

p(s0js; a) � v(s0) ;
v(s) maxaQ(s; a) ;

until Q converges to Q�;
return Q�

end

In the value iteration algorithm, the function Q�(s;a) rep-
resents the value of performing action a in state s. It is used
instead of v(s), which is the value of performing the optimal
action in state s. Q�(s; a) is de�ned by

Q�(s; a) = r(s; a) + 
 �
X

s02S

p(s0js;a) � v�(s0) (4)

and 8s 2 S; v�(s) = maxa2As Q
�(s; a).

Results about the convergence of algorithm 1 can be found
in [2]. It is easy to get an optimal, stationary, policy �� from
Q�, since ��(s) = argmaxaQ

�(s; a).
Many other algorithms have been designed to solve in�-

nite horizon MDPs, such as policy iteration, modi�ed policy
iteration... a review of which can be found in [10].

2 For the undiscounted case, 
 = 1.

3 POSSIBILISTIC MULTISTAGE
DECISION

3.1 Possibilistic decision criteria

[4] proposed an ordinal counterpart, based on possibility the-
ory, of the expected utility theory for one-stage decision mak-
ing. In this framework, S and X are respectively the (�nite)
sets of possible states of the world and consequences of ac-
tions. L is a �nite totally ordered (qualitative) scale, with
lowest and greatest elements denoted ?L and >L respectively.
The uncertainty of the agent about the e�ect of an action

a taken in state s is represented by a possibility distribution
�(�js; a) : X ! L. �(xjs; a) measures to what extent x is a
plausible consequence of a in s. �(xjs;a) = >L means that x
is completely plausible, whereas �(xjs; a) = ?L means that
it is completely impossible. In the same way, consequences
are ordered in terms of levels of satisfaction by a qualitative
utility function � : X ! L. �(x) = >L means that x is
completely satisfactory, whereas if �(x) = ?L, it is totally
unsatisfactory. Notice that � is normalized (there shall be at
least one completely possible state of the world), but � may
not be (it can be that no consequence is fully satisfactory).
[4] proposed the two following qualitative decision criteria:

u�(a; s0) = max
x2X

minf�(xjs0; a); �(x)g (5)

u�(a; s0) = min
x2X

maxfn(�(xjs0; a)); �(x)g (6)

where n is the order reversing map of L.
u� can be seen as an extension of the maximax criterion

which assigns to an action the utility of its best possible conse-
quence. On the other hand, u� is an extension of themaximin
criterion which corresponds to the utility of the worst possi-
ble consequence (both u� and u� shall be maximized). u�
measures to what extent every plausible consequence is satis-
factory, while u� measures to what extent there exists a satis-
factory plausible consequence. u� corresponds to an adventur-
ous (optimistic) attitude in front of uncertainty, whereas u� is
conservative (cautious). In [7], the possibilistic qualitative de-
cision theory has been extended to �nite-horizon, multistage
decision making.

3.2 �-MDP : A value-iteration algorithm

In [11], a value-iteration like algorithm has been proposed for
solving speci�c kinds of stationary problems with an in�nite
horizon and absorbing goal states. This form of �-MDP is par-
ticularly well-suited for modeling problems of goal-reaching
under uncertainty. It also admits stationary optimal policies.
First of all, the problem is supposed to be Markovian and

stationary. Suppose also that a utility function � on S is given,
that expresses the preferences of the agent on the states that
the system shall reach and stay in). Then, under these as-
sumptions, we are able to de�ne a possibilistic counterpart of
the value iteration algorithm, that computes optimal policies
from iterated modi�cations of a possibilistic value function.
First, we have to de�ne ~Q�, the possibilistic counterpart of

Q-functions. As in the stochastic case, ~Q�(s; a) evaluates the
\utility" of performing a in s. We have a similar property as
in the stochastic case, that is that the optimal possibilistic
strategy can be obtained from the solution of the following
equations :



Proposition 1 The optimal pessimistic and optimistic
strategies can be obtained respectively from the solutions of
the following sets of equations (for all s) [11]:

~Q�
opt(s; a) = max

s02S
minf�(s0js; a); uopt(s

0)g; (7)

~Q�
pes(s;a) = min

s02S
maxfn(�(s0js; a)); upes(s

0)g; (8)

where upes(s) = maxa ~Q�
pes(s; a) and

uopt(s) = maxa ~Q�
opt(s; a).

Then, we can de�ne two possibilistic versions of the value it-
eration algorithm that computes ~Q� : the possibilistic value
iteration algorithms (algorithm 2). A \pessimistic" algorithm

Algorithm 2: Possibilistic value iteration (optimistic)

begin

u(s) = �(s);8s 2 S ;
repeat

for s 2 S do

for a 2 A do
~Q(s; a) maxs02Sminf�(s0js; a); u(s0)g ;
u(s) maxa ~Q(s; a) ;

until ~Q converges to ~Q�
opt;

return ~Q�
opt

end

can be de�ned similarly to algorithm 2, replacing the com-
putation of ~Q(s; a) by its pessimistic form. These algorithms
converge to the actual values (optimistic or pessimistic) of ~Q�

in a �nite number of steps. Notice that unlike in the stochastic
value iteration algorithm, the initialization of u is not arbi-
trary.

Example
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Figure 1. State space and utility function.

The point is to de�ne a policy that is able to bring a robot
into the bottom-right square of the room shown in Figure 1.
The objective will be partially satis�ed if the robot ends in one
of the neighbor squares. The state-space and the utility func-
tion � on the objective states (taking its values in the �nite
ordinal scale L = f0 = ?L; 1; 2; 3; 4; 5 = >Lg) are depicted
in Figure 1. �(s33) = 5, �(s23) = �(s32) = 3 and �(s) = 0
for the other states. The available actions are to move (T)op,
(D)own, (L)eft, (R)ight or to (S)tay in place. If the robot
chooses to stay, it will certainly remain in the same square. If
it goes T, D, L or R it will (entirely) possibly reach the desired
square (� = 5 = >L) if it is free but it will be possible that it
reaches a neighbor square, as depicted in Figure 2 for action
R. The other transition possibility functions are symmetric.
For every action a and state s, after the �rst iteration of the
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Figure 2. Transition possibilities for moving right.

algorithm, we have ~Q1(s;a) = maxs02Smin(�(s0js;a); �(s0))
and u1�(s) = maxa2fT;D;L;R;Sg ~Q

1(s; a).
Figure 3.b sums up the utility of each state after one it-

eration, as well as an action that is optimal if the problem
is assumed to be solved in one iteration only, for each state
with a non-null pessimistic utility. We can iterate the process
and get an optimal optimistic policy. The iterated process is
described in Figure 3. Note that after 4 iterations, the utility
of each state and the associated optimal action do not change
anymore. Note also that on this example, the returned policy
is also optimal according to the pessimistic criterion.
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Figure 3. Optimistic optimal policy computation.

4 EXPERIMENTAL COMPARISON OF
THE ALGORITHMS

4.1 Benchmark problem and test protocol

In order to compare the performances of the classical MDP
and �-MDP algorithms, we chose to apply both methods to
problems of navigation similar to the one described in the
preceding example.

4.1.1 Benchmark problem

The state space consists in a grid world of size 20 � 20 which
admits a given proportion of obstacles placed at random, as
well as a given proportion of goal states also placed at random.
For the classical MDP algorithm, we use a discount factor

 = 0:999. For the �-MDP framework, we use the ordinal
scale L = f0; 1; 2; 3; 4; 5g.
State space. The size of the state space is 20 � 20 = 400

states, with obstacles placed at random (each state has a 30%
chance of being an obstacle).
Goal states. Two con�gurations were used for the random

generation of goal states:



- Binary goals. In this case, each non-obstacle state has a
chance of 10% to be a goal state, that is of value � = 5 in
the possibilistic framework and of any arbitrary �xed value in
the stochastic case (we used value 50, but the precise value
neither in
uences the optimal policy, nor the relative values
of policies).
- gradual goals. After choosing at random one completely sat-
isfying goal (� = 5), each non-obstacle state has a 15% chance
to be a goal state. Its possibilistic utility is then chosen at ran-
dom (uniformly) in f1; 2; 3; 4; 5g. The utility of goal states for
classical MDPs was chosen arbitrarily to be linearly increas-
ing with their possibilistic utility degrees (namely, they were
chosen in f10; 20; 30; 40; 50g).
Actions. We distinguished four kinds of actions with

uncertain e�ects, namely: deterministic, non-deterministic,
pseudo deterministic and pseudo non-deterministic. We en-
code the e�ects of the actions both in a probabilistic and in
a possibilistic framework in a compatible way, in the sense of
[6] for instance. This compatibility condition can be assessed
as follows3:

8s 2 S we shall have p(s) > Pr(fs0; �(s0) <L �(s)g) (9)

- Deterministic actions. When actions are deterministic, the
e�ect of action a in state s is a(s), uniquely de�ned. In this
case, the probabilistic and possibilistic transition functions
are obviously de�ned.
- Non-deterministic actions. In this case, action a, performed
in state s, may result in any state s0 2 Succ(s; a), and no
further information is known. This can be modeled in the
possibilistic framework, by �(s0js; a) = >L;8s

0 2 Succ(s;a)
and �(s0js;a) = ?L;8s

0 =2 Succ(s; a). Using the principle of
insu�cient reason, this may be modeled in the probabilistic
framework by p(s0js;a) = 1=jSucc(s;a)j;8s0 2 Succ(s;a) and
p(s0js;a) = 0;8s0 =2 Succ(s; a)4.
- Pseudo non-deterministic actions. In this case, as in the fol-
lowing, there exists a nominal successor state of s in a, that
is a(s), and as shown in Figure 2, there may be up to two
other possible successor states, which are \nearly as possi-
ble as" a(s). This is encoded, in the possibilistic framework
by �(a(s)js; a) = >L, �(s

0js; a) = >L for the other possi-
ble successors where >L is the level of L just below >L (in
our example, >L = 4), and �(s0js; a) = ?L for the other
states. How to encode this in the probabilistic framework?
An easy way to ensure the compatibility condition is to pose
Pr(Si) = K � Pr(Si�1) where Si is the set of possible suc-
cessors of possibility iL, and use the principle of insu�cient
reason in Si. In practice, we chose K = 2 which is here
high enough in order to insure the compatibility condition
(9). Then, Pr(S5) = K=(1 + K) and Pr(S4) = 1=(1 + K),
in order to have a normalized probability distribution. With
K = 2; Pr(S5) = 0:66 and Pr(S4) = 0:33.
- Pseudo deterministic actions. The non-nominal succes-
sor states shall have a low possibility / probability. Now,
�(a(s)js; a) = >L, �(s0js; a) = ?L for the other possi-
ble successors (?L = 1 is the level just above ?L), and

3 For instance, if �(s1) > �(s2) = �(s3) > �(s4) we shall have
p(s3) > p(s4); p(s2) > p(s4) and p(s1) > p(s2) + p(s3) + p(s4).
Note that similar works on approximation of probabilities by or-
dinal measures of uncertainty have been proposed, by e.g. [3, 8]

4 Notice by the way that this probability distribution encodes more
than the initial knowledgemodeled by Succ(s; a) since it assumes
equiprobability between the possible states.

�(s0js;a) = ?L for other states. Pr(S5) = K4=(1 +K4) and
Pr(S1) = 1=(1 +K4), so Pr(S5) = 0:94 and Pr(S1) = 0:06.

4.1.2 Test protocol

We tested the eight con�gurations fbinary goals, gradual
goalsg�fdet. actions, pseudo det. actions, pseudo non-det. ac-
tions, non-det. actionsg. For each con�guration 50 grid-worlds
were generated randomly and we solved the corresponding
MDPs and �-MDPs (optimistic and pessimistic) using the
value-iteration algorithms5 . Then, in order to measure the
\distance" between stochastic optimal and possibilistic opti-
mal strategies, we computed the ratio of the average stochas-
tic value (discounted expected reward) of the possibilistic op-
timal strategies, to the stochastic optimal one. Of course, this
ratio cannot be more than one, but a ratio close to one means
that the possibilistic optimal strategies are not very di�erent
from the stochastic optimal ones.
Another matter of importance is the cost of the computa-

tion of these strategies. This cost was measured both in terms
of the amount of CPU time needed and in terms of the number
of iterations of the algorithms (the amount of time necessary
for an iteration of the possibilistic Val. It. algorithms is less
than for one of the stochastic Val. It., because in the �rst case,
only comparisons and a�ectations are necessary, whereas in
the second, more time-consuming operations are needed).

4.2 Results

� Optimistic �-MDP value iteration

Binary goals Det. Pseudo D. Pseudo ND ND
Av value (p) 47.80 47.33 47.70 47.96
Av value (�) 47.65 47.19 47.55 46.31
Av value ratio 0.997 0.997 0.997 0.966
Av N. It. (p) 14.88 16.32 19.32 22.16
Av N. It. (�) 13.48 13.80 13.82 9.94
Av CPU (p) 2.40 2.62 3.10 3.55
Av CPU (�) 1.63 1.66 1.66 1.20
Av CPU ratio 0.676 0.636 0.537 0.338

Gradual goals Det. Pseudo D. Pseudo ND ND
Av value (p) 48.83 48.98 48.73 48.81
Av value (�) 48.74 48.90 48.65 48.47
Av value ratio 0.998 0.998 0.998 0.993
Av N. It. (p) 7.16 8.02 10.10 12.38
Av N. It. (�) 7.40 6.68 6.80 5.18
Av CPU (p) 1.15 1.29 1.63 1.99
Av CPU (�) 0.89 0.81 0.82 0.63
Av CPU ratio 0.773 0.624 0.504 0.315

� Pessimistic �-MDP value iteration

Binary goals Det. Pseudo D. Pseudo ND ND
Av value (p) 47.33 48.14 47.66 47.57
Av value (�) 47.19 43.94 30.24 6.63
Av value ratio 0.997 0.913 0.634 0.139
Av N. It. (p) 14.52 16.54 18.56 21.90
Av N. It. (�) 13.00 11.08 8.80 6.74
Av CPU (p) 2.34 2.67 2.99 3.53
Av CPU (�) 1.62 1.39 1.10 0.84
Av CPU ratio 0.691 0.521 0.369 0.239

5 By the way, in our stochastic Val. It. algorithm, the absolute
precision required before convergence is " = 0:01.



Gradual goals Det. Pseudo D. Pseudo ND ND
Av value (p) 48.75 48.72 48.55 48.78
Av value (�) 48.67 48.65 48.48 16.86
Av value ratio 0.998 0.999 0.999 0.346
Av N. It. (p) 6.88 8.54 10.38 12.86
Av N. It. (�) 6.96 8.52 8.48 7.68
Av CPU (p) 1.12 1.38 1.68 2.09
Av CPU (�) 0.87 1.06 1.06 0.97
Av CPU ratio 0.779 0.770 0.631 0.461

The results show that the possibilistic optimistic value it-
eration algorithm performs very well for approximating opti-
mal strategies of classical stochastic MDPs in our grid-world
navigation problems, with the kind of actions we considered.
Nearly optimal solutions (96%�99% of the optimal) are found
in relatively small CPU time, compared to classical stochastic
value iteration (31% � 77%).
The possibilistic pessimistic value iteration algorithm does

not perform so well, and performs clearly poorly when non-
deterministic actions are concerned. This can be easily ex-
plained: there are relatively few goal states, so they are scat-
tered, and it is highly plausible that a non-deterministic ac-
tion that may lead to a goal state also leads to a ?L-utility
state. Such an action has a pessimistic utility of ?L. Thus,
it is observed that in most states all actions have utility ?L
(then, \optimal" action stay is arbitrarily chosen). In this way,
the high proportion of \non-goal states" incurs a lack of de-
cisiveness power.

4.3 Robustness of the returned policies

In order to compare the robustness of �-MDP and classical
MDP algorithms, when information on the uncertain e�ects
of actions is incomplete, we performed another range of exper-
imentations. Namely, for each grid-world problem generated
we evaluated the stochastic and possibilistic optimal policies
returned by our algorithms, according to a new stochastic
MDP model with transition probabilities chosen at random6.
More precisely, we computed the ratios between the average
values of these policies, to the value of the optimal one. In this
way, the optimal stochastic policy that is computed is only a
solution to an approximation of the real problem7 , as are the
optimal possibilistic policies.

Binary goals Det. Pseudo D. Pseudo ND ND
r. approx/nom. 1 0.47 0.72 1
r. �-opt/nom. 1 0.39 0.53 0.9
r. �-pes/nom. 1 0.41 0.57 0.13

Gradual goals Det. Pseudo D. Pseudo ND ND
r. approx/nom. 1 0.77 0.72 0.99
r. �-opt/nom. 1 0.65 0.59 0.96
r. �-pes/nom. 1 0.62 0.57 0.37

We observe a slight deterioration of the quality of the possi-
bilistic optimal policies, relatively to the stochastic solution to
the approximate problem. Nevertheless, for the \optimistic"
policies, the degradation of the quality, with respect to the

6 For the pseudo deterministic case, the probability of the nom-
inal successor was chosen at random in [0.9;1], the probabili-
ties of the other possible successors being also chosen at ran-
dom. For the pseudo non-deterministic case, the probability of
the nominal successor was chosen at random in [0.5;1], and for
the non-deterministic case, the probabilities of the possible suc-
cessors where chosen at random with no constraint.

7 Notice that compatibility condition (9) is veri�ed.

stochastic approximate ones, is never more than 25%. We
conclude that the policies computed by the possibilistic al-
gorithm (optimistic) are less robust than those computed by
classical MDPs algorithms. Nevertheless, the loss in robust-
ness is counterbalanced by the low cost (in CPU time) of
computing them.

5 CONCLUDING REMARKS

In this work we have carried out an empirical comparison
between two types of algorithms, based on dynamic program-
ming, for solving a special class of multistage decision prob-
lems. Namely, we compared the classical \stochastic" Value
Iteration algorithm, with an ordinal counterpart, based on the
qualitative possibility theory framework. On the illustrative
class of problems that we studied, the possibilistic approach
proved to be very interesting (at least, the \optimistic" ap-
proach): it gave rather good approximations of stochastic op-
timal policies, in signi�cantly shorter time.
The conclusion is not that �-MDP algorithms should be

used instead of classical algorithms for solving classical MDP,
but rather that on a certain class of problems in which in-
formation is initially qualitative and poor on both uncertain
e�ects of actions and utility of goals, the use of qualitative
models and algorithms should be preferred to the use of arbi-
trary probability levels and quantitative utilities, in so far as
policies returned by the qualitative methods may seem reason-
able to Expected Utility-maximizers, and computed in shorter
time than optimal ones.
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