
Visual design support in dynamic probabilistic networks
for driver modelling

Axel Vogler1, Patrick Rammelt1, Jörg Herbers1 and Dietmar Neumerkel1

Abstract. Understanding inference in probabilistic networks is an
important point in the design phase. Their causal structure and
locally defined parameters are intuitive to human experts. The
global system induced by the local parameters can lead to results
not intended by the human expert. Comprehending the behaviour
of dynamic probabilistic networks (DPN) for tuning the model is a
time consuming task. Therefore this paper introduces tools
supporting the design phase. The application of these tools is
shown by means of a DPN for human driver modelling.

1 INTRODUCTION
Probabilistic expert systems are a common tool for modelling
under uncertainty. One of their main advantages is the intuitive
knowledge representation with meaningful structure and
parameters. Domain experts can design a model by directly
transferring their specific knowledge to causal links and local
conditional probability distributions. While probabilistic networks
can be constructed by human experts, learning algorithms are
available for estimating parameters and structure from data.

These properties favour the application for human behaviour
modelling. Former publications deal with driving action
recognition or autonomous driving control, e.g. [1]. The driver
modelling application considered in this paper has a different
purpose. The intention using dynamic probabilistic models is to
recognise in which kind of car the driver feels comfortable. It is
investigated whether he feels safe or driving with the specific car is
tiring or uncomfortable.

Applications of probabilistic networks often involve the
inference from any subset of possible observations to particular
variables of interest. Even in small networks, inference from a
single observation can lead to surprising outcomes. In particular, if
inference does not follow the direction of the network links, the
results often do not correspond with human expectations. This is
caused by the fact that only the locally modelled relations are
intuitive to the expert. In a complex global model, however, the
local relations induce global relations that may change with each
new piece of evidence. This can lead to conclusions surprising to a
user having his local dependency models in mind.

Explaining the result of inference in probabilistic networks is
necessary to speed up the design process and to gain acceptance of
the final application. Moreover, tools are needed to supply hints
where to find relevant parameters for a wrong behaviour of the
network.

 1 DaimlerChrysler AG, Research and Technology, Intelligent Systems,
Alt-Moabit 96a, 10559 Berlin, Germany
email: axel.vogler@daimlerchrysler.com

Understanding the inference series of a dynamic system is even
more complex than the conclusion of a static network. The huge
amount of information must be suitably reduced. The aim of this
work is to help the user to understand and debug specified
networks with respect to some hypotheses or test data. It is not
intended to change parameters of the network automatically, but to
support an expert to validate his knowledge versus a given
network. The user should be supported in comprehending how a
specific time series leads to a specific inference result.

Available techniques concerning explanation in probabilistic
networks include conflict analysis and sensitivity analysis. [2]
introduces a conflict measure considering how well an observed
case is covered by the network. Tasks in the field of sensitivity
analysis examine subsets of total or possible evidence. Questions
that might be posed are: what is the crucial set or the minimal
sufficient set of findings regarding a hypothesis.

In the design phase, relevant sets found by a sensitivity analysis
might not fit to the knowledge of the expert. When debugging
probabilistic networks tools are needed not only declaring which
variables have high impact but also explaining why another do not.
The unexpected behaviour of a network may be induced by more
than one design problem. There might be missing edges leading to
missing dependency properties of the model. Another source are
poorly declared conditional probabilities. There might be just one
wrong user input that can even cancel the dependency statement
implied by a connecting edge in the graph. This effect is called
parametric cancellation.

The next chapter introduces shortly DPNs. Chapter three
explains the proposed approach followed by the driver modelling
application. The last chapter describes in detail how the required
values can be calculated.

2 DYNAMIC PROBABILISTIC NETWORKS
A (static) probabilistic network is defined by a DAG G (directed
acyclic graph) consisting of a set of nodes N and directed edges E
between these nodes. Further the conditional probability for each
node given its parents is needed (for each node state given each
parent configuration). The independence relations encoded by the
graph allow the joint probability of all variables to be calculated as
follows:

() ()()∏
∈

=
N

N
V

VVpp pa

A dynamic probabilistic network is a replication of a static
network for every time slice. Apart from the intra-slice edges there

(1)

exist inter-slice edges (temporal edges) between subsequent time
slices, which are the same for any time slice. Only networks with
the first-order Markov property are considered. The parents of a
node in time slice t must be members of time slice t or t-1. This
ensures the time t+1 slice to be independent of time slices 1,…,t-1
given time slice t (Markov property). The conditional probabilities
attributed to the temporal edges are assumed to be constant at all
times.

In this paper dynamic probabilistic networks are considered as
endlessly running systems. The inference at a time slice t takes into
account only evidence observed so far. This task is also known as
filtering, while the inference including future observations is called
(backward) smoothing. The need for an inference result at any time
step does not allow the inclusion of future information.

For the first time slice a simplified structure is considered. It is
assumed that priori probabilities exist for all nodes connected by
temporal edges.

3 PRINCIPLE
Modelling human action is a quite uncertain domain. In general,
first approaches of dynamic probabilistic models will not
immediately fit real world data. Consequently tools are needed to
understand how a resulting series of inferences was achieved. As a
motivation for this work a look at a very simple dynamic
probabilistic network is helpful. A simple HMM (Hidden Markov
Model) like the model shown in figure 1 has only one hidden and
one observed node. The hidden node is parent of the observed node
in the same time slice and its copy in the next time slice.

O1

H1

O2

H2

O3

H3

Figure 1. Simple dynamic probabilistic network

The task might be to comprehend how an observed time series
leads to wrong inference results. In this simple model it is useful to
visualise whether the observations Ot have too strong impact on the
hidden node Ht. The hidden node state would be directly
determined by the observation at any time step. In the opposite, a
too strong temporal influence could prevent the hidden node from
changing its state.

This work is based on [3] and [4] who presented an approach to
visualise the flow of evidence between the variables along the
edges of a static network. First a single hypothesis variable is
established. This means the analysis is directed to explain how a
single variable is affected at any time step by impacts of evidence.

It is common to start designing a probabilistic network by
drawing causal edges between the nodes in the model. Therefore it
is straightforward to explain the inference result by showing the
strength of the influences along the edges of the network. Starting
from the observed nodes, the evidence flow is visualised along the
edges up to the hypothesis node. This allows to recognise the type
and strength of influence originated by observed nodes. Conflicts
and confirmation in different pieces of evidence can be realised at
nodes where they combine. Moreover, the blocking and weakening
along the graph can be traced.

In a dynamic model the procedure can be applied by unrolling
the network over the time and visualising evidence flows along the

edges of the graph is possible only for a very short time period. To
support a user the influences reaching a node at all times from the
different directions will be combined into a chart attached to the
nodes. Together with the probabilities over the time this allows to
identify time slices with high influence. Further conflicts between
the different sources of influences can be recognised.

C1

A1 B1

D1 E1

F1

C2

A2 B2

D2 E2

F2

C3

A3 B3

D3 E3

F3

D1 E1

B2
D1 E1 D1 E1 B2

F3

F3F3

F3

Figure 2. Sample edge d-connecting sets

To explain how the hypothesis node Ct (see figure 2) is affected
by evidence (thicker lines) the influences along different edges will
be visualised. Evidence flows not affecting the hypothesis node are
not shown in the graph. E.g. the influence of D1 and E1 reaching A1
over the hypothesis node C1 is not considered.

C 1.9
C
B
E
D
all

P(True)

Figure 3. Example node chart

Charts are attached to the nodes indicating the influences
reaching the node from different directions over time (starting on
the left). The above figure shows the chart of the hypothesis node
(Ct) for the example in figure 2. It can be realised that in the first
time slice strong positive (above the line) influences from E and D
is apparent. This effect keeps on influencing the node C over the
time. Furthermore the instantiation of B in the second time slice
has nearly no consequences on C. In the last time slice there is a
negative (below the line) joint effect of D and E on C. These two
nodes became dependent by observing their common child F. Joint
effects are shown grey shaded. The maximum value of the weight
of evidence (see section 5.3) is indicated in the upper right corner
of the box.

4 DRIVER MODELLING APPLICATION
The example used in this paper to show network visualisation is a
driver modelling application. A test group was asked for their
preference on two different cars. The car handling was experienced
by means of a driving simulator.

The driving simulator consists of a dome with a complete car
mounted inside. In front of the car a 180 degrees image projection
system shows the traffic scene in front of the car. By means of
hydraulic actuators the whole dome is accelerated and moved
according to the car’s driving dynamics. The properties of the
different cars were supplied by different models of the car
dynamics.

The testers’ task was to drive on a highway and to carry out a
number of overtaking manoeuvres with each of the two cars. After
the experiment the participants were asked for their preference
concerning the two cars. The example network in this paper models
the final preference as a function of physical parameters which
were recorded during the tests. The network presented is not
intended to solve the driver modelling task. However, it illustrates
the benefits of visualisation tools in order to design dynamic
networks.

The example network models the driver’s feeling of comfort
while handling the car. It is based on analysis of overtaking
manoeuvres. The idea behind the model is that a content driver
shows a different behaviour in handling the car compared to a
driver having problems in controlling the dynamics of the car. A
test driver feeling comfortable with the car tends to execute precise
or smooth manoeuvres. A driver stressed by the car’s behaviour
might need more steering activity to position the car in a new lane.

It should be remarked that the whole driver action highly
depends on the driver’s experience and personal driving style.
Furthermore the manoeuvres of a specific driver have a high
variety. For that reason a human driver model should allow for
extreme values in other directions.

Oscillations 0.9

all

SafetyFeeling 0.9

Oscillations

all

LaneChange 0.9
LaneChangeTime

LaneChangeSpeed

all

LaneChangeTime0.9
all

LaneChangeSpeed 0.9
LaneChangeTime

all

Preference 0.3
Preference

SafetyFeeling

LaneChange

all

P(car1)

Figure 4. DPN incorrectly predicting driver’s preference of car 1

While a wider group of drivers are modelled correctly by the
first designed network, the network did not correctly predict the
preference of some drivers. In figure 4 the probability of the
hypothesis node Preference (of car one) oscillates up and down.
This is caused by the changing impacts from node LaneChange,
which nearly corresponds with the whole impact Preference
receives. The whole impact is shown in the node box marked with
“all”. The SafetyFeeling and the “temporal edge” have no impact.
Most observations favour correctly the hypothesis (driver prefers
car 1). Instantiated nodes are marked with black boxes. A box over
the dividing line is a positive observation, while a box below the
line is negative.

From these hints the networks parameters were adapted. The
conditional probabilities attached to the temporal edge were
strengthened to keep the node from changing its state too fast.
Figure 5 shows a higher impact from LaneChange on Preference in
the first time steps. In later time steps the negative impact is quite

low. This is achieved by adapting the prior probability and the
conditional probability attached to the temporal edge.

Preference 0.3

Preference

SafetyFeeling

LaneChange

all

P(car1)

Figure 5. DPN correctly predicting driver’s preference of car 1
(the remaining are unchanged, see figure 4)

5 ALGORITHMIC DETAILS
Most inference algorithm for static probabilistic networks perform
computations efficiently in a secondary structure called junction or
join tree (e.g. [5]). These structures for efficient inference can be
constructed in advance. For exact inference in dynamic networks
an online junction tree construction for each time window could be
performed (e.g. [6]). Unfortunately, this approach is quite time
consuming.

In [7] it is shown that the junction tree of an unrolled DPN has a
unique backbone and a cyclic structure. Due to this fact, large
junction trees are constructed in advance. The parts of the junction
tree corresponding to the first and last time slice differ. Because of
the cyclic structure spare time slices can be cut and the edges of the
junction tree redirected to the part of the tree representing the last
time slice.

When considering an “endlessly” running system, like a driver
model, the junction trees can not be constructed in advance.
Another important point is the need for an inference result at any
time step. This does not allow to take into account future evidence.
The inference task is reduced compared to a full forward backward
calculation.

5.1 Time sliced junction tree
Following the ideas in [7] a generic junction tree is constructed
usable for every time slice except the first. The first time slice
needs some special care because of the missing nodes.

The generic time slice junction tree is constructed from the
nodes of the first two time slices. First the interface nodes (nodes
with children in the next time slice) are fully connected. These
connections would be filled in by eliminating the future time slice.
This is shown in [6] following from properties in [8]. Next, all
nodes of the time slice are eliminated - children before their
parents. The junction tree construction starts with the clique
resulting from the first node elimination. Every clique is connected
to a clique eliminated later. The clique is selected as the neighbour
which contains all member nodes except the node which created
the clique by its elimination.

This results in a junction tree preserving as much as possible
from the structure of the original graph. Depending on the structure
of the graph the junction tree is larger compared to the HUGIN-
approach in [5]. The junction tree can be further condensed by
contracting cliques containing all member nodes of other cliques.
An appropriate algorithm can be found in [7].

C1

A1 B1B0

E1D1E0

EtCtBtEt-1

DtCt

CtBtAtEt-1

AtBtEt-1

BtEt-1Bt-1

Et+1Ct+1Bt+1Et

Dt+1Ct+1

Ct+1Bt+1At+1Et

At+1Bt+1Et

Bt+1EtBt

time slice t time slice t+1

Figure 6. Example network and its junction tree. The elimination order
is Dt, Et, Ct, At, Bt. Dashed lines are moral edges, solid lines

are created by triangulation.

Inference in a single time slice is divided into three phases. The
first phase is a distribute-evidence phase starting from the last time
slice forward interface clique without evidence. This is needed to
achieve a-priori probabilities for the current time slice. Further it is
used for evidence retraction.

For inference and weights of evidence calculation two phases of
lazy propagation with evidence entered are carried out. A detailed
description of lazy propagation can be found in [9]. In the collect-
evidence phase the last time slice forward interface clique collects
messages from all cliques belonging to the current time slice. In the
distribute-evidence phase messages from this clique are sent to all
cliques in the current time slice.

forward
interface

forward
interface

backward
interface

time t-1 time t

Figure 7. Distribute-evidence in a generic time slice junction tree

The aim of the lazy propagation algorithm is to maintain
multiplicative decomposition of potentials and to postpone their
combination. Opposite to the HUGIN propagation, the cliques are
not initialised with joint potentials over their member nodes. The
conditional probability tables of each node are assigned to the
clique created by the node’s elimination. A further important point
is that like in the Shafer-Shenoy-Architecture (e.g. [10]) messages
sent from one clique to the other are not considered when
generating the opposite direction message.

5.2 Absorption
The creation and integration of a message from a clique Ci to
another clique Cj is called absorption (Cj absorbs from Ci). In order
to build a message first all potentials obtained from neighbouring
separators are collected except for the message-receiving separator.
When marginalising down to the separator potential, first barren
nodes are eliminated. A variable is said to be barren if it is not an
evidence variable and has only barren descendants. These variables

do not affect the posterior probability of other variables. When
marginalised first their probability sums to one.

Evidence nodes are instantiated before combination. Evidence
on a node is only entered by reducing the potential dimension if the
observed node is not member of the receiving clique. For later
analysis evidence nodes and combined conditional probabilities are
noted with every potential.

A

CB D

GFE

H

EFGB

HEFG

FGBC

GBCD

root

()EFGHp

()BEp

()CFp

()DGp

()EFGH
hφ

() ()FGB H
he

E
e φφ ,

() () ()GCB H
hef

F
f

E
e φφφ , ,

Figure 8. Example part of a collect-evidence phase

Together with the structure of the junction tree this propagation
method allows for tracing the combination and decomposition of
potentials. Barren variables do not influence other nodes and their
potentials are not propagated through the junction tree. If a node
with multiple parents is observed (like H in figure 8) an
instantiated potential over its parents is created. The figure only
shows the first part of the collect evidence phase. On the left of the
junction tree the conditional probabilities attached to the cliques
are displayed and on the right the potentials sent. Messages
received from a neighbour clique are not considered when sending
a message. Potentials are marked with their combined conditional
probabilities as superscript and evidence nodes as subscripts. The
instantiation of E at the next clique reduces the dimension of the
message sent by H and creates a new potential over B. The same
holds for the instantiation of F at the following clique. These three
effects can be decomposed reaching C. If F were not observed the
conditional probability of F and the potential over F and G would
have been combined. Then only two effects – one over B and a
joint effect over C and D – could be decomposed reaching C.

5.3 Weight of evidence
The most basic definition needed is a measure of influence. Using
weights of evidence for measuring influence is motivated by a
remark in [11]. It is mentioned that in analogy to the decibel in
acoustics a relation between units perceptible to human judgement
and weights of evidence exists. The weight of evidence will be
used for measuring the impact of evidence reaching a node along
its edges. This allows to recognise the origin and the kind of effects
arriving from different directions. The weight of evidence
influencing a node X over an edge e is calculated by

()
()

()supp

supplog:
¬=

=
=

xXEP

xXEP
EXW

e

e
e

Ee is the evidence reaching node X over edge e. The imp
measured according to the state xsupp of node X supportin
hypothesis H. It is important to consider the hypothesis in
edge flow. This allows a user to distinguish positive and ne

)
(2
act is
g the

 every
gative

impacts for the node of interest all over the graph. Further it
supports recognition of conflicting evidence regarding the
hypothesis at a first glance. Different to others approaches no
explicit graph traversing is necessary to inspect evidences reaching
a node along the individual edges. Favoured by the structure of the
junction tree the influencing evidence can be analysed in the clique
created by the node elimination. Graph traversal is just used to
exclude flows not reaching the hypothesis node.

A

CB D

GFE

H

CDA

BCDA

DA

A

root

()ABp

()ACp

()ADp

()Ap

() ()CDA HFG
he

EB
e φφ ,

() ()DAA HFGC
he

EB
e φφ ,

() ()AA HFGCD
he

EB
e φφ ,

() ()ApADp ,

() () ()ACpApADp , ,

()Ap

Figure 9. Example part of a junction tree with messages

To calculate the flow to a node X from one of its children the
potentials sent to its home clique are analysed. The home clique of
X is the clique created by the elimination of X. First, potentials are
selected based on a combination of the child’s conditional
probability (superscript tags) with other potentials. By the
construction of the junction tree the child is not a member of its
parent’s clique. It was eliminated prior to its parent and therefore it
is no member of any subsequent clique. Next, all potentials sent to
the clique are added containing nodes that are members of already
selected potentials. The conditional probability of X given its
parents located at the clique is appended together with the prior
probability of the parents not included in one of the potentials
before. These potentials are combined and marginalised down to X
to get the joint probability of X and the evidence the child is
involved in. From this joint probability it is straightforward to
calculate the conditional probability needed to compute weights of
evidence. The weight of evidence originating from parents are
calculated analogously. Instead of inspecting the conditional
probabilities combined into a potential (superscript tags) its current
member nodes are considered.

Figure 9 shows a probabilistic network with a part of its
uncondensed junction tree and the messages of lazy propagation.
The upper messages were created by distribute-evidence and the
messages below by collect-evidence. The missing part of the
junction tree can be found in figure 8. When applying the above
algorithm two influences on node A will be identified – the impact
of instantiating E reaching A over B and a joint effect over C and D
originating from the instantiation of H.

() () ()
() () () ()ApAeAeA

ApAeA
HFGCD
heDC

EB
eA

⋅==

⋅=

φφφ

φφ
rr

r

,,

,

It is important to note that effects on a node cannot always be
decomposed and assigned to individual variables, e.g. the effect of
two children with an instantiated common child on their parent.
The method described above automatically returns an existing joint
or an individual effect. The kind of influence can be easily
recognised and marked with a different colour or grey shading
from the received potentials at the clique.

6 CONCLUSIONS
Visualising the effects reaching a node along its different edges in
a graph can help to understand how a variable of interest is
influenced over the time. It allows for recognising the type and
strength of influence originated by observed nodes. Moreover,
blocking and weakening along the graph can be traced. Strong
temporal edges determining the state of other nodes over multiple
time steps can be identified as well as weak time links allowing a
switching behaviour of the affected nodes.

The propagation algorithm described supports the access to
partial evidence necessary for the explanation tools without the
generation of additional messages or variable propagation. Future
research will be directed to a more detailed analysis of the enlarged
junction tree depending on the structure of the graph compared to
the savings gained by neglecting d-separated evidence and barren
nodes. Another point of interest is the use of approximate methods.
For visualisation purpose a user needs to discover differences in
influences rather than exact values. Here a wide range of
algorithms is available. Another direction would be to exploit the
knowledge of low influence values for faster approximate
inference.

References
[1] J. Forbes, N. Oza, R. Parr and S. Russell: Feasibility study of fully

automated traffic using decision-theoretic control, California PATH
Research Report UCB-ITS-PRR-97-18, Institute of Transportation
Studies, University of California, Berkeley, 1997

[2] F.V. Jensen, S.H. Aldenryd, K.B. Jensen: Sensitivity analysis in
Bayesian networks, Symbolic and Quantitative Approaches to
Reasoning and Uncertainty, Froidevaux, C. & Kohlas, J. (eds.),
Springer Lecture Notes in Artificial intelligence 946, Springer
Verlag, Berlin, 243-250, 1995

[3] D. Madigan, K. Mosurski, R.G. Almond: Graphical explanation in
belief networks, Journal of Computational and Graphical Statistics, 6,
2, 160-181, 1997

[4] A. Vogler: Visual design support for probabilistic network
application, in Proceedings of the seventh international Workshop on
Artificial Intelligence and Statistics (Uncertainty 99), Morgan
Kaufmann, 309-314, 1999

[5] F.V. Jensen, S.L Lauritzen., K.G. Oleson: Bayesian updating in
causal probabilistic networks by local computations, Computational
Statistics Quarterly 4, 269-282, 1990

[6] U. Kjærulff: A computional scheme for reasoning in dynamic
bayesian networks, in Proceedings of the Eighth Conference on
Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Mateo,
California, 121-129, 1992

[7] G. Zweig: Speech Recognition with dynamic Bayesian networks, PhD
dissertation, University of California, Berkeley, 1998

[8] D.J. Rose, R.E. Tarjan, G.S. Lueker: Algorithmic aspects of vertex
elimation on graph, SIAM Journal on Computing, 5, 266-283, 1976

[9] A.L. Madsen, F.V. Jensen: Lazy Propagation: A Junction Tree
Inference Algorithm based on Lazy Evaluation, Artificial
Intelligence, 113 (1-2), 203-245, 1999.

[10] P. Shenoy, J. Kohlas: Computation in Valuation Algebras, in and S.
Moral (eds.), Handbook of Defeasible Reasoning and Uncertainty
Management Systems, Kluwer Academic Press, in press, 2000

[11] I.J. Good: Weights of evidence: a brief survey, Bayesian Statistics 2:
Proceedings of the Second Valencia International Meeting, 1983,
J.M. Bernado, M.H. DeGroot, D.V. Lindley and A.F.M. Smith (eds.).
New York: North Holland, 249-269, 1985

(3)

