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Abstract. Understanding inference in probabilistic networks is an 
important point in the design phase. Their causal structure and 
locally defined parameters are intuitive to human experts. The 
global system induced by the local parameters can lead to results 
not intended by the human expert. Comprehending the behaviour 
of dynamic probabilistic networks (DPN) for tuning the model is a 
time consuming task. Therefore this paper introduces tools 
supporting the design phase. The application of these tools is 
shown by means of a DPN for human driver modelling. 

1 INTRODUCTION 
Probabilistic expert systems are a common tool for modelling 
under uncertainty. One of their main advantages is the intuitive 
knowledge representation with meaningful structure and 
parameters. Domain experts can design a model by directly 
transferring their specific knowledge to causal links and local 
conditional probability distributions. While probabilistic networks 
can be constructed by human experts, learning algorithms are 
available for estimating parameters and structure from data. 

These properties favour the application for human behaviour 
modelling. Former publications deal with driving action 
recognition or autonomous driving control, e.g. [1]. The driver 
modelling application considered in this paper has a different 
purpose. The intention using dynamic probabilistic models is to 
recognise in which kind of car the driver feels comfortable. It is 
investigated whether he feels safe or driving with the specific car is 
tiring or uncomfortable. 

Applications of probabilistic networks often involve the 
inference from any subset of possible observations to particular 
variables of interest. Even in small networks, inference from a 
single observation can lead to surprising outcomes. In particular, if 
inference does not follow the direction of the network links, the 
results often do not correspond with human expectations. This is 
caused by the fact that only the locally modelled relations are 
intuitive to the expert. In a complex global model, however, the 
local relations induce global relations that may change with each 
new piece of evidence. This can lead to conclusions surprising to a 
user having his local dependency models in mind. 

Explaining the result of inference in probabilistic networks is 
necessary to speed up the design process and to gain acceptance of 
the final application. Moreover, tools are needed to supply hints 
where to find relevant parameters for a wrong behaviour of the 
network. 
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Understanding the inference series of a dynamic system is even 
more complex than the conclusion of a static network. The huge 
amount of information must be suitably reduced. The aim of this 
work is to help the user to understand and debug specified 
networks with respect to some hypotheses or test data. It is not 
intended to change parameters of the network automatically, but to 
support an expert to validate his knowledge versus a given 
network. The user should be supported in comprehending how a 
specific time series leads to a specific inference result. 

Available techniques concerning explanation in probabilistic 
networks include conflict analysis and sensitivity analysis. [2] 
introduces a conflict measure considering how well an observed 
case is covered by the network. Tasks in the field of sensitivity 
analysis examine subsets of total or possible evidence. Questions 
that might be posed are: what is the crucial set or the minimal 
sufficient set of findings regarding a hypothesis. 

In the design phase, relevant sets found by a sensitivity analysis 
might not fit to the knowledge of the expert. When debugging 
probabilistic networks tools are needed not only declaring which 
variables have high impact but also explaining why another do not. 
The unexpected behaviour of a network may be induced by more 
than one design problem. There might be missing edges leading to 
missing dependency properties of the model. Another source are 
poorly declared conditional probabilities. There might be just one 
wrong user input that can even cancel the dependency statement 
implied by a connecting edge in the graph. This effect is called 
parametric cancellation. 

The next chapter introduces shortly DPNs. Chapter three 
explains the proposed approach followed by the driver modelling 
application. The last chapter describes in detail how the required 
values can be calculated.  

2 DYNAMIC PROBABILISTIC NETWORKS 
A (static) probabilistic network is defined by a DAG G (directed 
acyclic graph) consisting of a set of nodes N and directed edges E 
between these nodes. Further the conditional probability for each 
node given its parents is needed (for each node state given each 
parent configuration). The independence relations encoded by the 
graph allow the joint probability of all variables to be calculated as 
follows: 
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A dynamic probabilistic network is a replication of a static 
network for every time slice. Apart from the intra-slice edges there 
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exist inter-slice edges (temporal edges) between subsequent time 
slices, which are the same for any time slice. Only networks with 
the first-order Markov property are considered. The parents of a 
node in time slice t must be members of time slice t or t-1. This 
ensures the time t+1 slice to be independent of time slices 1,…,t-1 
given time slice t (Markov property). The conditional probabilities 
attributed to the temporal edges are assumed to be constant at all 
times. 

In this paper dynamic probabilistic networks are considered as 
endlessly running systems. The inference at a time slice t takes into 
account only evidence observed so far. This task is also known as 
filtering, while the inference including future observations is called 
(backward) smoothing. The need for an inference result at any time 
step does not allow the inclusion of future information. 

For the first time slice a simplified structure is considered. It is 
assumed that priori probabilities exist for all nodes connected by 
temporal edges. 

3 PRINCIPLE 
Modelling human action is a quite uncertain domain. In general, 
first approaches of dynamic probabilistic models will not 
immediately fit real world data. Consequently tools are needed to 
understand how a resulting series of inferences was achieved. As a 
motivation for this work a look at a very simple dynamic 
probabilistic network is helpful. A simple HMM (Hidden Markov 
Model) like the model shown in figure 1 has only one hidden and 
one observed node. The hidden node is parent of the observed node 
in the same time slice and its copy in the next time slice. 
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Figure 1. Simple dynamic probabilistic network 

The task might be to comprehend how an observed time series 
leads to wrong inference results. In this simple model it is useful to 
visualise whether the observations Ot have too strong impact on the 
hidden node Ht. The hidden node state would be directly 
determined by the observation at any time step. In the opposite, a 
too strong temporal influence could prevent the hidden node from 
changing its state. 

This work is based on [3] and [4] who presented an approach to 
visualise the flow of evidence between the variables along the 
edges of a static network. First a single hypothesis variable is 
established. This means the analysis is directed to explain how a 
single variable is affected at any time step by impacts of evidence.  

It is common to start designing a probabilistic network by 
drawing causal edges between the nodes in the model. Therefore it 
is straightforward to explain the inference result by showing the 
strength of the influences along the edges of the network. Starting 
from the observed nodes, the evidence flow is visualised along the 
edges up to the hypothesis node. This allows to recognise the type 
and strength of influence originated by observed nodes. Conflicts 
and confirmation in different pieces of evidence can be realised at 
nodes where they combine. Moreover, the blocking and weakening 
along the graph can be traced. 

In a dynamic model the procedure can be applied by unrolling 
the network over the time and visualising evidence flows along the 

edges of the graph is possible only for a very short time period. To 
support a user the influences reaching a node at all times from the 
different directions will be combined into a chart attached to the 
nodes. Together with the probabilities over the time this allows to 
identify time slices with high influence. Further conflicts between 
the different sources of influences can be recognised. 
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Figure 2. Sample edge d-connecting sets 

To explain how the hypothesis node Ct (see figure 2) is affected 
by evidence (thicker lines) the influences along different edges will 
be visualised. Evidence flows not affecting the hypothesis node are 
not shown in the graph. E.g. the influence of D1 and E1 reaching A1 
over the hypothesis node C1 is not considered. 
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Figure 3. Example node chart 

Charts are attached to the nodes indicating the influences 
reaching the node from different directions over time (starting on 
the left). The above figure shows the chart of the hypothesis node 
(Ct) for the example in figure 2. It can be realised that in the first 
time slice strong positive (above the line) influences from E and D 
is apparent. This effect keeps on influencing the node C over the 
time. Furthermore the instantiation of B in the second time slice 
has nearly no consequences on C. In the last time slice there is a 
negative (below the line) joint effect of D and E on C. These two 
nodes became dependent by observing their common child F. Joint 
effects are shown grey shaded. The maximum value of the weight 
of evidence (see section 5.3) is indicated in the upper right corner 
of the box. 

4 DRIVER MODELLING APPLICATION 
The example used in this paper to show network visualisation is a 
driver modelling application. A test group was asked for their 
preference on two different cars. The car handling was experienced 
by means of a driving simulator.  

The driving simulator consists of a dome with a complete car 
mounted inside. In front of the car a 180 degrees image projection 
system shows the traffic scene in front of the car. By means of 
hydraulic actuators the whole dome is accelerated and moved 
according to the car’s driving dynamics. The properties of the 
different cars were supplied by different models of the car 
dynamics. 



The testers’ task was to drive on a highway and to carry out a 
number of overtaking manoeuvres with each of the two cars. After 
the experiment the participants were asked for their preference 
concerning the two cars. The example network in this paper models 
the final preference as a function of physical parameters which 
were recorded during the tests. The network presented is not 
intended to solve the driver modelling task. However, it illustrates 
the benefits of visualisation tools in order to design dynamic 
networks. 

The example network models the driver’s feeling of comfort 
while handling the car. It is based on analysis of overtaking 
manoeuvres. The idea behind the model is that a content driver 
shows a different behaviour in handling the car compared to a 
driver having problems in controlling the dynamics of the car. A 
test driver feeling comfortable with the car tends to execute precise 
or smooth manoeuvres. A driver stressed by the car’s behaviour 
might need more steering activity to position the car in a new lane. 

It should be remarked that the whole driver action highly 
depends on the driver’s experience and personal driving style. 
Furthermore the manoeuvres of a specific driver have a high 
variety. For that reason a human driver model should allow for 
extreme values in other directions. 
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Figure 4. DPN incorrectly predicting driver’s preference of car 1 

While a wider group of drivers are modelled correctly by the 
first designed network, the network did not correctly predict the 
preference of some drivers. In figure 4 the probability of the 
hypothesis node Preference (of car one) oscillates up and down. 
This is caused by the changing impacts from node LaneChange, 
which nearly corresponds with the whole impact Preference 
receives. The whole impact is shown in the node box marked with 
“all”. The SafetyFeeling and the “temporal edge” have no impact. 
Most observations favour correctly the hypothesis (driver prefers 
car 1). Instantiated nodes are marked with black boxes. A box over 
the dividing line is a positive observation, while a box below the 
line is negative. 

From these hints the networks parameters were adapted. The 
conditional probabilities attached to the temporal edge were 
strengthened to keep the node from changing its state too fast. 
Figure 5 shows a higher impact from LaneChange on Preference in 
the first time steps. In later time steps the negative impact is quite 

low. This is achieved by adapting the prior probability and the 
conditional probability attached to the temporal edge. 
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Figure 5. DPN correctly predicting driver’s preference of car 1 
(the remaining are unchanged, see figure 4) 

5 ALGORITHMIC DETAILS 
Most inference algorithm for static probabilistic networks perform 
computations efficiently in a secondary structure called junction or 
join tree (e.g. [5]). These structures for efficient inference can be 
constructed in advance. For exact inference in dynamic networks 
an online junction tree construction for each time window could be 
performed (e.g. [6]). Unfortunately, this approach is quite time 
consuming. 

In [7] it is shown that the junction tree of an unrolled DPN has a 
unique backbone and a cyclic structure. Due to this fact, large 
junction trees are constructed in advance. The parts of the junction 
tree corresponding to the first and last time slice differ. Because of 
the cyclic structure spare time slices can be cut and the edges of the 
junction tree redirected to the part of the tree representing the last 
time slice. 

When considering an “endlessly” running system, like a driver 
model, the junction trees can not be constructed in advance. 
Another important point is the need for an inference result at any 
time step. This does not allow to take into account future evidence. 
The inference task is reduced compared to a full forward backward 
calculation. 

5.1 Time sliced junction tree 
Following the ideas in [7] a generic junction tree is constructed 
usable for every time slice except the first. The first time slice 
needs some special care because of the missing nodes. 

The generic time slice junction tree is constructed from the 
nodes of the first two time slices. First the interface nodes (nodes 
with children in the next time slice) are fully connected. These 
connections would be filled in by eliminating the future time slice. 
This is shown in [6] following from properties in [8]. Next, all 
nodes of the time slice are eliminated - children before their 
parents. The junction tree construction starts with the clique 
resulting from the first node elimination. Every clique is connected 
to a clique eliminated later. The clique is selected as the neighbour 
which contains all member nodes except the node which created 
the clique by its elimination. 

This results in a junction tree preserving as much as possible 
from the structure of the original graph. Depending on the structure 
of the graph the junction tree is larger compared to the HUGIN-
approach in [5]. The junction tree can be further condensed by 
contracting cliques containing all member nodes of other cliques. 
An appropriate algorithm can be found in [7]. 
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Figure 6. Example network and its junction tree. The elimination order 
is Dt, Et, Ct, At, Bt. Dashed lines are moral edges, solid lines 

are created by triangulation. 

Inference in a single time slice is divided into three phases. The 
first phase is a distribute-evidence phase starting from the last time 
slice forward interface clique without evidence. This is needed to 
achieve a-priori probabilities for the current time slice. Further it is 
used for evidence retraction. 

For inference and weights of evidence calculation two phases of 
lazy propagation with evidence entered are carried out. A detailed 
description of lazy propagation can be found in [9]. In the collect-
evidence phase the last time slice forward interface clique collects 
messages from all cliques belonging to the current time slice. In the 
distribute-evidence phase messages from this clique are sent to all 
cliques in the current time slice. 
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Figure 7. Distribute-evidence in a generic time slice junction tree 

The aim of the lazy propagation algorithm is to maintain 
multiplicative decomposition of potentials and to postpone their 
combination. Opposite to the HUGIN propagation, the cliques are 
not initialised with joint potentials over their member nodes. The 
conditional probability tables of each node are assigned to the 
clique created by the node’s elimination. A further important point 
is that like in the Shafer-Shenoy-Architecture (e.g. [10]) messages 
sent from one clique to the other are not considered when 
generating the opposite direction message. 

5.2 Absorption 
The creation and integration of a message from a clique Ci  to 
another clique Cj is called absorption (Cj absorbs from Ci). In order 
to build a message first all potentials obtained from neighbouring 
separators are collected except for the message-receiving separator. 
When marginalising down to the separator potential, first barren 
nodes are eliminated. A variable is said to be barren if it is not an 
evidence variable and has only barren descendants. These variables 

do not affect the posterior probability of other variables. When 
marginalised first their probability sums to one. 

Evidence nodes are instantiated before combination. Evidence 
on a node is only entered by reducing the potential dimension if the 
observed node is not member of the receiving clique. For later 
analysis evidence nodes and combined conditional probabilities are 
noted with every potential. 
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Figure 8. Example part of a collect-evidence phase 

Together with the structure of the junction tree this propagation 
method allows for tracing the combination and decomposition of 
potentials. Barren variables do not influence other nodes and their 
potentials are not propagated through the junction tree. If a node 
with multiple parents is observed (like H in figure 8) an 
instantiated potential over its parents is created. The figure only 
shows the first part of the collect evidence phase. On the left of the 
junction tree the conditional probabilities attached to the cliques 
are displayed and on the right the potentials sent. Messages 
received from a neighbour clique are not considered when sending 
a message. Potentials are marked with their combined conditional 
probabilities as superscript and evidence nodes as subscripts. The 
instantiation of E at the next clique reduces the dimension of the 
message sent by H and creates a new potential over B. The same 
holds for the instantiation of F at the following clique. These three 
effects can be decomposed reaching C. If F were not observed the 
conditional probability of F and the potential over F and G would 
have been combined. Then only two effects – one over B and a 
joint effect over C and D – could be decomposed reaching C. 

5.3 Weight of evidence 
The most basic definition needed is a measure of influence. Using 
weights of evidence for measuring influence is motivated by a 
remark in [11]. It is mentioned that in analogy to the decibel in 
acoustics a relation between units perceptible to human judgement 
and weights of evidence exists. The weight of evidence will be 
used for measuring the impact of evidence reaching a node along 
its edges. This allows to recognise the origin and the kind of effects 
arriving from different directions. The weight of evidence 
influencing a node X over an edge e is calculated by 
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impacts for the node of interest all over the graph. Further it 
supports recognition of conflicting evidence regarding the 
hypothesis at a first glance. Different to others approaches no 
explicit graph traversing is necessary to inspect evidences reaching 
a node along the individual edges. Favoured by the structure of the 
junction tree the influencing evidence can be analysed in the clique 
created by the node elimination. Graph traversal is just used to 
exclude flows not reaching the hypothesis node. 
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Figure 9. Example part of a junction tree with messages 

To calculate the flow to a node X from one of its children the 
potentials sent to its home clique are analysed. The home clique of 
X is the clique created by the elimination of X. First, potentials are 
selected based on a combination of the child’s conditional 
probability (superscript tags) with other potentials. By the 
construction of the junction tree the child is not a member of its 
parent’s clique. It was eliminated prior to its parent and therefore it 
is no member of any subsequent clique. Next, all potentials sent to 
the clique are added containing nodes that are members of already 
selected potentials. The conditional probability of X given its 
parents located at the clique is appended together with the prior 
probability of the parents not included in one of the potentials 
before. These potentials are combined and marginalised down to X 
to get the joint probability of X and the evidence the child is 
involved in. From this joint probability it is straightforward to 
calculate the conditional probability needed to compute weights of 
evidence. The weight of evidence originating from parents are 
calculated analogously. Instead of inspecting the conditional 
probabilities combined into a potential (superscript tags) its current 
member nodes are considered. 

Figure 9 shows a probabilistic network with a part of its 
uncondensed junction tree and the messages of lazy propagation. 
The upper messages were created by distribute-evidence and the 
messages below by collect-evidence. The missing part of the 
junction tree can be found in figure 8. When applying the above 
algorithm two influences on node A will be identified – the impact 
of instantiating E reaching A over B and a joint effect over C and D 
originating from the instantiation of H.  
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It is important to note that effects on a node cannot always be 
decomposed and assigned to individual variables, e.g. the effect of 
two children with an instantiated common child on their parent. 
The method described above automatically returns an existing joint 
or an individual effect. The kind of influence can be easily 
recognised and marked with a different colour or grey shading 
from the received potentials at the clique. 

6 CONCLUSIONS 
Visualising the effects reaching a node along its different edges in 
a graph can help to understand how a variable of interest is 
influenced over the time. It allows for recognising the type and 
strength of influence originated by observed nodes. Moreover, 
blocking and weakening along the graph can be traced. Strong 
temporal edges determining the state of other nodes over multiple 
time steps can be identified as well as weak time links allowing a 
switching behaviour of the affected nodes. 

The propagation algorithm described supports the access to 
partial evidence necessary for the explanation tools without the 
generation of additional messages or variable propagation. Future 
research will be directed to a more detailed analysis of the enlarged 
junction tree depending on the structure of the graph compared to 
the savings gained by neglecting d-separated evidence and barren 
nodes. Another point of interest is the use of approximate methods. 
For visualisation purpose a user needs to discover differences in 
influences rather than exact values. Here a wide range of 
algorithms is available. Another direction would be to exploit the 
knowledge of low influence values for faster approximate 
inference. 
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