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Abstract. We describea methodfor symmetrybreakingduring
search(SBDS) in constraintprogramming.It hasthe greatadvan-
tageof not interfering with heuristicchoices.It guaranteesto re-
turn a unique solution from eachset of symmetricallyequivalent
ones,which is theonefoundfirst by thevariableandvalueordering
heuristics.Wedescribeanimplementationof SBDSin ILOG Solver,
andapplicationsto low autocorrelationbinarysequencesandthe � -
queensproblem.We discusshow SBDScanbe appliedwhenthere
aretoomany symmetriesto reasonwith individually, andgive appli-
cationsin graphcolouringandRamsey theory.

1 INTRODUCTION

Many constraintsatisfactionproblems(CSPs)containsymmetries,
sothatfor everysolution,thereareequivalentsolutions.Symmetries
divide thesetof possibleassignmentsinto equivalenceclasses.Each
classcontainseitheronly solutionsor nosolutions.Whenfinding all
solutionsto aCSP, it is only necessaryto find onesolutionfrom each
class:theotherscanbe retrieved usingthe symmetries,if required.
When we only want one solution,by restrictingthe searchto one
memberof eachclass,we hopeto avoid redundantsearcheffort. We
will assumethat the symmetriesin the problemhave alreadybeen
recognised,sothattheissueis how to dealwith them.Wewantto en-
surethatwhenever a partialassignmentis shown to be inconsistent,
no symmetricalassignmentis ever tried, andthat if we arefinding
all solutionswe only find distinct solutions,i.e. never two from the
sameequivalenceclass.

Several ways of dealing with symmetrieshave beenproposed.
Brown, Finkelsteinand Purdom[?] definean orderingon the set
of assignmentsand find only the smallestsolution in this order-
ing in eachequivalenceclass;this is doneby. pruningbranchesof
thesearchtreeduringsearch,if it canbe shown thata symmetrical
branchhasbeenor will beexplored.Roy & Pachet[?] discussapar-
ticular form of symmetry(intensionallypermutablevariables);when
retractingthe assignmentof a valueto a variable,the valuecanbe
removedfrom thedomainof any intensionallypermutablevariable.

Anotherapproachis to addconstraintsto theCSPto convert it into
anasymmetrical,or lesssymmetrical,one.This is themethodmost
commonlyusedin practice.Puget[?] givesa formal framework for
the introductionof orderingconstraintsto breaksymmetries.Craw-
ford, Ginsberg, Luks & Roy [?] adopta similar approachin satis-
fiability problemsandshow how to constructa symmetry-breaking
predicateautomatically. Althoughaddingconstraintsto theproblem
is oftensuccessful,in generalit hassomeseriousdrawbacks.First, it
appearsto requiretheinstantiationorderto beat leastpartly fixedin
advance.This restrictsthe freedomof the searchalgorithm,so that�
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althoughin theorythisapproachmakessymmetry-breakingindepen-
dentof thesearchfor a solution,in practiceit is not. Second,aswe
discussin section3.1, it is hardto addconstraintsat thestartto deal
with symmetrieswhich may persisteven after several assignments
have beenmade.

Wesuggestthreeaimsfor asymmetry-exclusionmethod.Thefirst
is to guaranteethat we never allow searchto find two symmetri-
cally equivalentsolutions.Thesecondis to respectheuristicchoice
asmuchaspossible.This would in generalexcludemethodswhich
postconstraintsat the root of the searchtree,as they may exclude
solutionswhich theheuristicsearchstrategy will find earlyin favour
of solutionsthe heuristicfinds only after muchsearch.Finally we
shouldallow arbitraryformsof symmetry. Theapproachesdiscussed
above donotmeettheseaims.

A third approachis to breaksymmetriesduringthesearch,by de-
tectingwhich symmetriesremainunbroken whenthe searchtries a
new branchafterbacktracking.Weaddconstraintsatthatpointwhich
will prunepartsof the searchtreesymmetricalto thosealreadyex-
plored.Symmetrybreakingthereforeactsalongsidethesearchstrat-
egy, co-operatingwith it.

Wepresentageneralmethodfor symmetrybreakingduringsearch
(SBDS).The approachwas introducedby Backofen and Will [?],
with anapplicationto geometricconstraintsin proteinstructurepre-
diction in anearlierpaper[?]. A lessgeneralmethodwhich alsore-
movessymmetriesduringsearchis describedby MeseguerandTor-
ras[?].

We show in detailhow SBDScanbe implementedwith minimal
overheadin ILOG Solver, a constraintprogramminglibrary, pro-
vided that the symmetriescanbe explicitly stated.This is success-
ful in finding all solutionsto � -queens,andin the low autocorrela-
tion binarysequences(LABS) problem.We alsodiscussthecurrent
limitationsof this approach.Wheretherearemany symmetries,full
SBDSis impractical.We describea new shortcutmethodwhich ag-
ainworkswith thesearchstrategy, but maynoteliminateall symme-
tries, anddescribesuccessfulimplementationsfor graphcolouring
andRamsey theory.

2 SYMMETRY-BREAKING DURING SEARCH

As an example,considerthe 8-queensproblem,wherethe variable���
representsthequeenon the � th row, andthevalueassignedrep-

resentsthe column where it is placed.One of the symmetriesof
this problemis rotationalsymmetrythrough 	�

��� . Supposethat the
first two assignmentsare

� ����� and
� ����� . On backtrack-

ing from the secondassignment,andmakingthe alternative choice� ������ , shouldwe allow its symmetricequivalent, i.e.
��� ��� ?

It dependswhetherrotationalsymmetrystill exists in the problem
or not. If we eventuallyplace

��� � � , the symmetricalversionof� � �!� , then the decisions
� � ��� and

��� �"� aresymmetri-
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cal andwe shouldnot try the secondif the first fails. On the other
hand,if

��� ��$� thenthe decisions
� �%�&� and

� � ��� arenot
equivalentandwe mustconsider

� � �'� if
� � ��(� . The compli-

cation is that when the nodeof the searchtree is createdwith the
choicebetween

� � �&� and
� �)��'� , we don’t knowyet whether��� �*� or not.Thesolutionis to posta conditionalconstraint, that� �+�,�.- � � ��/��- ��� �0�21 � � ��0� .

Theantecedentsof thisconstraintplaythreerôles.Thefirst,
� � �� , limits theconstraintto descendantsof thenodewherethebranch-

ing choice
� �3�/� wasmade.Thesecond,

� � ��/� , restrictsto nodes
which backtrackfrom thatdecision.While theseareunnecessaryif
constraintsare only postedlocally, we include them to make our
symmetryconstraintvalid globally. The third antecedent,

��� �&� ,
ensuresthat theconstraintwill only take effect wheretherotational
symmetrystill exists.

To generalisethis example,assumethat somebranchingdeci-
sion 46587 � 465:9 , asopposedto 46587 �� 465;9 , is beingmadein the
context of somepartial assignment< , andthat we areconsidering
someparticularsymmetry = . We take a symmetry = to be a func-
tion which mapsfull or partial assignmentsto other assignments,
andwhich is a one-to-onefunctionon full assignments.We alsoas-
sumethat a symmetryfunction = canbe appliedto constraints. A
symmetryis solution-preserving:that is, for any full assignment<
and any symmetry = of the problem, =?>@<.A is a solution iff < is.
We also assumethat a symmetryfunction = acts piecewise. For-
mally, if we extend an assignment< to <CBD>E46587 � 465;9FA , then=?>@</B*>E46587 � 465:9EAGA � =?>@<.AHBI=?>E46587 � 465;9FA . This assumption
is necessaryif we areto reasonaboutsymmetricversionsof assign-
mentsin the middle of the searchtreewhenassignmentsareonly
partial.Writing < for theconstraintthatall assignmentsin < hold,
and =?>@<.A for theconstraintthat thesymmetricversionsof theseas-
signmentshold,ourgeneralconstraintis:

< - =?>@<JA - 46587 �� 465:9 1 =?>E465:7 �� 465:9EA (1)

TheSBDSmethodis to post(1) at eachbranchingpoint andfor
eachsymmetry = identifiedby the programmer. The methodcould
beextendedto otherformsof branchingdecision,by expressingthe
effect of eachsymmetryon thebranchingconstraint.For instance,if
thebranchingdecisionwerebetween46587LK/465;9 and 46587NM�465:9 , in
(1) �� is replacedby M . Wedescribehow SBDScanbeimplemented
with minimaloverheadin cpu-timeandminimaleffort from thepro-
grammer. Werely on [?] for proofsof correctnessof themethod.

3 IMPLEMENTATION OF SBDS

To implementSBDSin ILOG Solver, weprovideanew searchfunc-
tion IlcGenerateSymto replaceSolver’s IlcGenerate.IlcGenerate
searchesby first choosinga variablevar accordingto someuser-
specifiedstrategy. Thenit choosesa valueval similarly andformsa
choicepointgiving two branches.Along theleft branch,var = val; if
this leadsto failure,theright branch,var �� val, is exploredinstead.

Ournew functioneliminatessymmetries,yetcanbeusedwith any
variableand value orderingstrategy compatiblewith IlcGenerate.
Themainargumentis anarrayof searchvariablesvars. Weassume
thatall branchingpointsareof theformvars[i] = j for somear-
ray index i andvaluej. TheprogrammerusingIlcGenerateSymim-
plementsonefunctionfor eachsymmetryin theproblem.Thefunc-
tion for thesymmetry= takesthreearguments,representingvars,
i andj and returnsa constraintrepresenting=?>EO8P
Q:R:S TVU �0W A . An
arrayof thesefunctionsis passedto IlcGenerateSym.

To implement IlcGenerateSym,the constraintgiven by (1) is
addedto the O8P
Q8R:S TVU ��XW branchfor eachsymmetry = . We omit
theconditionthat < holds,becausetheconstraintwill belocal to this
node.Themainsubtletyis in theconstraint=?>@<JA . Sincethis involves
all searchvariablesset so far, it is potentially large. However, we
notethatif weextend < to theassignment<.Y � <ZB[O8P
Q:R8S T�U �0W ,
then =?>@< Y A � =?>@<JA8B%=?>EO6P
Q:R:S TVU �CW A . Weconstructanew boolean
variable for eachsymmetry = representingwhether =?>@<.A is satis-
fied or not. The valueof this variablefor =?>@< Y A is theconjunction
of its valuefor =?>@<JA and =?>EO8P
Q:R:S TVU �,W A . Hence,we cancompute=?>@<JA incrementally. Thesebooleanvariableshave a further advan-
tage.Whenoneis provento befalse,weknow that = , thecorrespond-
ing symmetry, is permanentlybroken on this branch.This makesit
safeto discard = from further considerationon the branch.Hence,
weonly incurtheoverheadof postingsymmetryconstraintsfor those
symmetriesthathave not yet beenbroken; theseconstraintsarepre-
cisely thosewith the potentialto reducesearchin the future. This
suggeststhattheoverheadsincurredwill usuallyberepaidby search
reductions,andthis is so in the applicationsdescribedbelow. The
exceptionis whentherearemany symmetriesin a problem,anissue
we addresslater.

3.1 Application: All Solutions of \ -Queens

While the � -queensproblemis nolongerseenasachallengeto cons-
traintsolvers,findingall solutionsremainshard.Thechessboardhas
7 rotationalandmirror symmetries,excluding the identity. To elim-
inatesymmetricsolutions,it is only necessaryto write 7 functions,
eachreturninga constraintrepresentingthesymmetricequivalentof
vars[i]=j. Two of theseareshown in Fig. 1; vars[i]=j corre-
spondsto

� � ��] , andnQueen is a globalvariable.GivenIlcGen-
erateSym,weneedonly declaretherelevantsymmetryfunctionsand
call IlcGenerateSymratherthanIlcGenerate.Resultsusingthiscode
areshown in Table1. As � increases,the numberof backtracksis
greatlyreducedandthe runtimeis cut by up to 75%.Thesolutions
foundareall symmetricallydistinct.

IlcConstraint r90 (IlcIntVarArray vars,
IlcInt i, IlcInt j)

{return vars[i] == nQueen-1-j;}
IlcConstraint d1 (IlcIntVarArray vars,

IlcInt i, IlcInt j)
{return vars[j] == i;}

Figure 1. Symmetryfunctionsfor rotationthrough ^�_ � andreflectionin
oneof themaindiagonalsfor the ` -queensproblem.

It is instructive to compareour approachwith that of addingex-
plicit symmetry-breakingconstraints,attheoutset,to theformulation
of the � -queensproblem.The fact that somesymmetriesmay still
exist after oneor moreassignmentshave beenmademustagainbe
addressed.Consider	�

� � rotationalsymmetry, andsupposethatthe
variablesareassignedin theorder

� � , � � , ��a , bcbcb . We couldadd
theconstraint

� � K��dBe	;f ��g to prevent,in mostcases,findingtwo
equivalentsolutions.But this couldstill happenif, say,

� � �*� and��g � �hfi	 ; to eliminatethese,wecouldaddanew conditionalcon-
straint:if

� �+� �+Bj	kf ��g then
� � K��+Bj	;f ��g8l � . Wemightneed

furtherconstraints,if
� �+� �dBe	:f ��g and

� �m� �dBL	;f ��g8l � then� a K��+Bj	kf � g:l � , etc.To besureof eliminatingthissymmetryen-
tirely, wewouldhave to addup to � /2 constraintsto theformulation,
eachwith onemoreconditionthanthelast.Thepredicatesproduced
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� No. solutions Fails Cpusec
SBDS 8 12 61 0.03

10 92 888 0.42
12 1,787 17,940 8.29
14 45,752 487,948 229
16 1,846,955 17,383,754 8,400
17 11,977,939 113,631,630 59,700
18 83,263,591 788,699,220 392,000

No SBDS 8 92 289 0.10
10 724 5,072 1.60
12 14,200 103,956 34.4
14 365,596 2,932,626 1,000
16 14,772,512 105,445,065 35,700
17 95,815,104 696,830,655 239,000
18 - - -

Table 1. Resultsof SBDSappliedto the ` -queensproblem,usingILOG
Solver 4.3onSunUltra 1/140’s.

by Crawford et al. [?] alsosuffer from thisproblem. Explicit condi-
tionalconstraintsarecumbersomeandhavethedisadvantagethatwe
arecommittedto a fixed instantiationorder. In contrast,the SBDS
methodautomatesall considerationof conditionalconstraints,does
notproduceany whenthey becomeunnecessary, andimposesno re-
strictionson instantiationorder.

3.2 Application: LABS

Theproblemof low autocorrelationbinary sequences(LABS) is of
interestin physics,e.g.in interplanetaryradarmeasurements.Involv-
ing only � binary variables,it hasnot beensolved beyond about� �n� � , thecurrentstateof theart beinga branchandboundsolver
by Mertens[?]. Theproblemis to constructa binarysequenceo � of
length � . Eachbit in thesequencetakesthevalue+1 or f2	 . The p th
autocorrelation,qmr , is definedto be s g:l r l ��utwv o �yx o � Y r . Theaim is
to minimize s g r t � q r � . Theproblemis not ideally suitedto constr-
aint programming,aslittle propagationis possible;nevertheless,we
show thatsymmetrycanbecapturedefficiently andeasily, resulting
in significantspeedup.

Thefirst taskis to modelthe problem.Theproduct o �zx o � Y r is
1 if o � � o � Y r and f2	 if they aredifferent.This leadsto a model
with an arrayfor each p : the � th variablein the p th arrayis 0 if o �
and o � Y r are the sameand1 otherwise.The correlation qmr is the
differencebetweenthenumbersof 0’s and1’s in the p th array. If { r
is thenumberof 1’s in thearray, | r is thenumberof 0’s,and 9 r is the
lengthof thearray, then { r is thesumof thearrayand 9 r � | r B}{ r .
Hence,q r � | r f~{ r � 9 r f � { r . Pruningrulesfor this modelare
describedin [?]. We searchby settingthe outermostbits first, and
try thevalue f2	 before+1.

Therearethreebasicsymmetriesin LABS. The correlationsqmr
are unchangedif we either negateeachbit in the sequenceor re-
versethe sequenceor negatethebits in even positions.Composing
thesesymmetriesyields7 in total, excluding the identity symmetry.
Any symmetryinvolving reversalcannotbedealtwith by simplecon-
straints,becauseit mightnotbreakuntil deepin search,andMertens
did not breakall thesymmetriesin theproblem.However, it is easy
to dosousingSBDS. For example,considerthemostcomplex sym-
metry, thecompositionof reversal,flipping all bits,andflipping even
bits. If thebits arenumbered0 to ��f/	 , andwe setbit � to +1, the
symmetricdecisionis to setbit �ef�	3f~� to f2	 if �jf�	3f�� is odd,
andto +1 otherwise.Thiscanbeimplementedstraightforwardly in a
one-statementSolver function.

It is easyto excludenon-reversalsymmetriesby insistingthatthe
first two bits areboth f2	 , andwedid this in thenon-SBDSprogram
to ensurea fair comparison.Table2 shows thatSBDSreducesrun-
time by up to 1/3.Unfortunately, we werenot ableto beatMertens’
solver: usingthesamecpuresources,we would expectto find opti-
malsequencesabout7 bitsshorterthanhedid. LABS remainsahard
challengeproblemfor constraintprogramming.

SBDS Non-SBDS` cost Fails Cpusec Fails Cpusec
5 2 4 _�� _ � 2 0.01

10 13 19 0.07 29 0.08
15 15 264 0.81 423 1.11
20 26 3,356 9.78 4,754 16.50
25 36 46,250 214 74,309 329
30 59 752,880 2,580 1,151,433 6,680
35 73 6,589,437 45,780 11,043,967 76,970

Table 2. Resultsof SBDSappliedto determiningtheoptimalcorrelation
costof theLABS problem.

4 A SHORTCUT SBDS METHOD

Givenour implementation,it is straightforwardto addsymmetryex-
clusionto search,asdescribedin section3, if the numberof sym-
metriesis small..Our implementationcanbeusedeasilyfor there-
strictedmethodproposedby Backofen and Will [?]. For example,
in graphcolouring,they show that it is only necessaryto consider
the � r ��� pairwiseswapsof coloursratherthanall p?� permutations.If
thepairwiseswapswereencodedour implementationcouldbeused
without change.Unfortunately, evena quadraticnumberof symme-
triesmaybe too many. In otherproblems,no simplerestrictionson
thesetof symmetriesmaybeavailable.In eithercase,directuseof
SBDSis thenimpractical.Apart from thelargenumberof symmetry
functionsto implement,many conditionalconstraintsmaybeadded
to theconstraintstore,slowing down searchunacceptably.

We addressthis difficulty by basinga methodologyfor develop-
ing specialpurposemethodsonSBDS.Sincethis is application-and
context-specific,the implementationdescribedearliercanno longer
be used,and we needto write a separatesearchmethodfor each
application,whichwill constructtheappropriatesymmetry-breaking
constraintsto add to the left branchat eachchoicepoint. The ad-
vantageof writing a specialpurposesearchmethodis that symme-
tries neednot be representedexplicitly: insteadsymmetriescanbe
checkedby a specialpurposeprogram,typically quitecheaply. Fur-
thermore,specialpurposeprogramsneednot checkall symmetries:
insteadwecandecidewhichsymmetriesit is worthwhileto consider
at eachnode.We call this methodologytheshortcutSBDSmethod.
Theshortcutis in work doneby theconstraintsolvercomparedto the
full method.

We first notethat if =?>E46587 �� 465:9EA is thesameas 46587 �� 465:9 , the
constraint(1) will bevacuous;we only considersymmetriesgiving
non-vacuousconstraints.Second,we only post unconditionalcon-
straints,i.e. =?>@<JA mustprovably hold, not dependon futureassign-
ments.Finally, wemayrestrictourattentionto symmetriesfor which
it is easyto checkthat =?>@<.A holds:this involvesa trade-off between
theeffort weputinto constructingthesymmetry-breakingconstraints
andthesearcheffort which theseconstraintsmaysave.Thelast two
simplificationsmayexcludesomesymmetries,sowe canno longer
guaranteethat only oneassignmentfrom eachsymmetryclasswill
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befound.� While implementationis notaseasyasusingIlcGenerate-
Sym,theprogrammerneedonly consider:whatsymmetriesleave <
unchanged,andwhich of thesechangethe currentassignmentand
areeasyto check?

4.1 Application: Graph Colouring

Thesymmetriesin graphcolouringarethepermutationsof theavail-
able colours(assumingthat the graph is connectedand that there
areno symmetriesin the graphitself). If the numberof colours, p ,
is small, we can representthe symmetriesexplicitly, as described
above. For large p , this will beimpracticable,andwe follow theap-
proachjust outlined.

Supposea(possiblyempty)setof assignments< hasalreadybeen
made,and that somesubsetof the p colourshasbeenusedin < .
Wefirst decidefor whichsymmetries=?>@<.A � < . Only permutations
whichchangenoneof thecoloursin < will leave < unchanged.Next
weconsiderfor whichof thesepermutations=?>E46587 �� 465;9FA is not the
sameas 46587 �� 465:9 . = doesnot changeany colour thathasalready
beenassigned,so 465:9 mustbeanunusedcolour, and = mustchange
it to anotherunusedcolour, 465:9�� .

In short,weshouldonly addsymmetry-breakingconstraintsif the
currentassignmentusesa new colour. In that case,the symmetries
to breakare thosewhich leave all the colourspreviously assigned
unchanged,andchange465;9 into anothercolournotyetassigned.This
canbeexpressedasa common-senserule: if we coloura nodewith
a previously unusedcolour, andthis assignmentfails,we shouldnot
try adifferentnew colourfor this node.

It is straightforward to modify a Solver graphcolouringprogram
to incorporatetheseconstraints.Weuseanextraconstrainedvariable
for eachcolour to keeptrack of whetherthis colour hasbeenused
yet or not.Whena choicepoint is created,asa disjunctionbetween46587 � 465:9 and 465:7 �� 465:9 , we checkwhether 465:9 haspreviously
beenassignedin < . If not, we conjoin to 465:7 �� 465;9 a constraint46587 �� 465:9 � for every unusedcolour 465:9 � .

Problem cols initial ShortcutSBDS No SBDS
name clique Fails cpus. Fails cpus.
myciel4 5 2 125 0.05 240 0.07
myciel5 6 2 47408 28.7 - -
anna 11 7 20 0.12 48 0.12
miles750 31 24 660 0.70 - -
fpsol2.i.2 30 15 2080 11.3 - -
le4505a 5 4 5436 33.6 12078 71.8
queen77 6 5 323 0.36 441 0.44

Table 3. Resultsfor graphcolouringonDIMACSinstances(usinga
cut-off valueof 100,000fails).

A comparison between this program and one with-
out the symmetry-breaking rule is given in Ta-
ble 3 on several DIMACS graph colouring instances
(http://mat.gsia.cmu.edu/COLOR/instances.html). We have to find a
colouring for thesegraphswith the optimal number of colours,
and prove that the graphcannotbe colouredwith fewer. To allow
a fair comparison,the programsuse the samevariable ordering
heuristicand the secondprogramincludessomesimplesymmetry
breaking:aslongastheheuristicchoosesnodesat thestartwhichare
connectedto eachother(i.e. form aclique),thecoloursfirst assigned
to thesenodesarefixed.FromTable3, ourmethoddoesmuchbetter,
unlessthesizeof the initial cliqueis closeto theoptimalnumberof
colours.

Thecommon-senserule implementedhereis onewhich hasbeen
implementedin specializedgraphcolouringprograms.Westressthat
we derivedtherule from applicationof a generalmethodology. The
rulecanbeusedin any CSPin whichthevaluesareindistinguishable
andsopermutable.Wenext turnto adomainin which therule is less
obvious.

4.2 Application: Ramsey Theory

Ramsey theoryis anareaof graphtheory:theproblemwe consider
is to colourtheedgesof thecompletegraphwith � nodes,� g , using� coloursin suchaway thatthereis nomonochromatictriangle.The
threecolourproblemwasusedby Puget[?] asanexampleapplica-
tion. For thisproblem,thereis no solutionif �}�,	 � .

Any permutationof thecoloursandany permutationof thenodes
isavalid symmetry. Pugetdealtwith symmetrybyaddingthefollow-
ing threeconstraintsto astraightforwardformulationof theproblem
(notall of theseappearin [?]). First, thenumberof edgesfrom node
0 with colour0 is not lessthanthenumberof edgesfrom any node� assignedcolour ] , for any �G� ] . Second,thevalues(i.e. colours)as-
signedto theedgesfrom node0 arenon-decreasing.Third, thenum-
bersof edgesfrom node0 assignedto colours �:�c	
��bcbcbw� � fC	 are
non-decreasing.Theseconstraintsimply that theedgesfrom node0
areassignedfirst, but we acceptedthat restrictionandkept thecon-
straints.

WemodifiedPuget’sprogramto applytheshortcutSBDSmethod.
The symmetrybetweenthe colourscan be dealt with as in graph
colouring,but the nodesymmetryis more significant.We needto
find permutationsof the nodeswhich will both leave < unchanged
andaffect theassignmentthatwe areaboutto make.However, there
aretoo many possiblepermutationsto considerthemall. We there-
fore look only for permutationsthatcanbechecked easily. A trans-
positionof two nodes 9 and � , which we write =���� , will leave <
unchangedif for all nodes �Z>@� �� 9�����A , �V��� and �V�m� are either
both so far uncoloured,or both assignedthe samecolour. Suppose
weareaboutto colouredge� � � , theedgejoining nodes� and] , with
colour 4 . If we canfind a node � � suchthat transposing� � and � will
leave < unchanged,i.e. = ���u� >@<.A � < , thenwe conjointheconstraint= ���u� >@� � � �� 4:A , i.e. � ��� � �� 4 , to � � � �� 4 . Similarly, if we canfind a
node] � suchthat = ��� � >@<JA � < , we add � � ��� �� 4 . If bothtransposi-
tions leave < unchanged,i.e. = � � � >@<JA � = � � � >@<.A � < , thenwe can
alsoadd = ����� >F= ��� � >@� � � �� 4:AGA , i.e. � �u� ��� �� 4 .

To testthe shortcutSBDSmethod,we adaptedPuget’s program.
We usedhis first andthird constraints,andhis searchstrategy. The
effectof hissecondconstraintis replacedby ourmethod.Resultsare
shown in Table4. Our symmetry-breakingconstraintsareableto re-
placeonesetof Puget’s explicit constraintsandindeedimprove on
them.Table4(a)shows thatSBDSeliminatesmoresymmetricsolu-
tions thanPuget’s constraints.In Table4(b), thesamecolouringfor� ��� is found in fewer fails by SBDS, thoughin similar runtimes,
andproving that � � � cannotbecolouredwithout a monochromatic
triangletakesfar fewer fails.Table4(b)alsogivesresultsfor a naive
programin which Puget’s secondconstraintis removed but not re-
placed:theseresultsshow thenecessityof goodsymmetryreasoning.
Thereis still a greatdealof symmetryin theproblemwhich hasnot
beeneliminated.�N� for instancehasonly 9 distinct solutions.The
remainingsymmetriescombinea permutationof thecolourswith a
permutationof thenodes.Thereareclearlyvery many of these,and
they arehardto eliminateby themethodsdiscussedsofar. Like the
LABS problem,Ramsey theory remainsa challengefor constraint
programming,in which symmetryconsiderationsmustplay a vital
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part.

� SBDS Puget
Solutions Fails Cpu Solutions Fails Cpu

3 2 3 0.01 3 2 0.01
4 12 6 0.03 22 3 0.06
5 138 16 0.08 343 6 0.13
6 1284 39 0.52 7697 27 2.52
7 29027 182 11.2 252325 135 81.7

(a)

Findingall solutions

� SBDS Puget Naive
Fails Cpu Fails Cpu Fails Cpu

16 2,030 	�b �:	 2,437 1.40 385,608 163
17 161 �:b � � 636 0.27 678,976 295

(b) Findingfirst solution

Table 4. The(shortcut)SBDSmethodappliedto the3-colourRamsey   g
problem,comparedwith Puget’s methodanda programwith naive

symmetryconstraints.

5 CONCLUSIONS & FURTHER WORK

Wehave describeda methodfor breakingsymmetriesduringsearch.
Usingour implementationin ILOG Solver, programmersneedonly
specifytheeffect of eachsymmetry. If theproblemhasmany sym-
metries,wehavegivenashortcutmethodologywhichconsidersonly
symmetriesthatit will beusefulto break.Althoughwecannolonger
guaranteea single solution in eachclass,this may sometimesbe
achieved.Both methodsareindependentof the searchstrategy and
have beenshown to beworthwhilein applications.

Many avenuesof further work areopen.For example,computa-
tionalgrouptheorymightallow usto simplify themodellingof sym-
metriesandmake reasoningwith themmoreefficient.Thismayalso
helpin caseslikeRamsey theorywherethereareverymany composi-
tionsof basicsymmetrieswhich arecurrentlyhardto dealwith. Not
only backtrackingsearchcan take advantageof symmetry:for ex-
ample,in backjumpingandlearningalgorithmswhichfind nogoods,
thesamemechanismcouldruleoutsymmetricequivalents.Wecould
alsodevelopsearchstrategiesbasedonsymmetry, whichmight seek
to breaktheproblem’s symmetriesassoonaspossible,assuggested
in [?], or perhapsto do preciselytheopposite.Finally, asin Ramsey
theory, it canbebeneficialto breaksymmetriesusingboththeshort-
cut SBDS methodand orderingconstraints;we should investigate
how bestto integratethetwo approaches.
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