Symmetry Breaking in Constraint Programming

lan P. Gent! and Barbara M. Smith?

Abstract. We describea methodfor symmetrybreakingduring
search(SBDS)in constraintprogramming.lt hasthe greatadwan-
tage of not interfering with heuristic choices.It guaranteego re-
turn a unique solution from eachset of symmetricallyequialent
oneswhich is the onefoundfirst by the variableandvalueordering
heuristics We describeanimplementatiorof SBDSin ILOG Solwer,
andapplicationgo low autocorrelatiorbinary sequenceandthe n-
queengroblem.We discusshow SBDS canbe appliedwhenthere
aretoo mary symmetriego reasorwith individually, andgive appli-
cationsin graphcolouringandRamsg theory

1 INTRODUCTION

Mary constraintsatishction problems(CSPs)containsymmetries,
sothatfor every solution,thereareequivalentsolutions. Symmetries
divide the setof possibleassignmentito equivalenceclassesEach
classcontainseitheronly solutionsor no solutions Whenfinding all
solutionsto aCSRit is only necessarto find onesolutionfrom each
class:the otherscanbe retrieved usingthe symmetriesjf required.
Whenwe only want one solution, by restrictingthe searchto one
memberof eachclass we hopeto avoid redundansearcheffort. We
will assumehat the symmetriesn the problemhave alreadybeen
recognisedsothattheissueis how to dealwith them.We wantto en-
surethatwheneer a partialassignments shavn to be inconsistent,
no symmetricalassignments ever tried, andthatif we arefinding
all solutionswe only find distinct solutions,i.e. never two from the
sameequialenceclass.

Several ways of dealingwith symmetrieshave beenproposed.
Brown, Finkelsteinand Purdom[?] definean orderingon the set
of assignmentsand find only the smallestsolution in this order
ing in eachequivalenceclass;this is doneby. pruning brancheof
the searchtreeduring searchjf it canbe shavn thata symmetrical
branchhasbeenor will beexplored.Roy & Pachef?] discussapar
ticular form of symmetry(intensionallypermutablevariables) when
retractingthe assignmenbf a valueto a variable,the value canbe
removed from thedomainof ary intensionallypermutablevariable.

Anotherapproachs to addconstraintgdo the CSPto corvertit into
anasymmetricalpr lesssymmetrical one. This is the methodmost
commonlyusedin practice.Puget[?] givesa formal framevork for
theintroductionof orderingconstraintdo breaksymmetriesCraw-
ford, Ginsbeg, Luks & Roy [?] adopta similar approachin satis-
fiability problemsandshav how to constructa symmetry-breaking
predicateautomatically Althoughaddingconstraintgo the problem
is oftensuccessfulin generait hassomeseriousdravbacks.First, it
appeardo requiretheinstantiationorderto beat leastpartly fixedin
adwance.This restrictsthe freedomof the searchalgorithm,so that
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althoughin theorythis approachmalkessymmetry-breakingndepen-
dentof the searchfor a solution,in practiceit is not. Secondaswe
discussn section3.1,it is hardto addconstraintsat the startto deal
with symmetrieswhich may persisteven after several assignments
have beenmade.

We suggesthreeaimsfor asymmetry-&clusionmethod.Thefirst
is to guaranteehat we never allow searchto find two symmetri-
cally equivalentsolutions.The seconds to respectheuristicchoice
asmuchaspossible.This would in generalexclude methodswhich
postconstraintsat the root of the searchtree,asthey may exclude
solutionswhich the heuristicsearchstratgy will find earlyin favour
of solutionsthe heuristicfinds only after much search.Finally we
shouldallow arbitraryformsof symmetry Theapproachediscussed
above do not meettheseaims.

A third approachs to breaksymmetriesduringthe searchby de-
tectingwhich symmetriesemainunbrolen whenthe searchtries a
new branchafterbacktrackingWe addconstraintsatthatpointwhich
will prunepartsof the searchtree symmetricafto thosealreadyex-
plored.Symmetrybreakingthereforeactsalongsidethe searchstrat-
egy, co-operatingwith it.

Wepresentgeneramethodfor symmetrybreakingduringsearch
(SBDS). The approachwas introducedby Backofen and Will [?],
with anapplicationto geometricconstraintsn proteinstructurepre-
dictionin anearlierpaper[?]. A lessgeneraimethodwhich alsore-
movessymmetriesduring searchis describedby Mesegyuerand Tor-
ras[?].

We shaw in detailhov SBDS canbe implementedvith minimal
overheadin ILOG Solwer, a constraintprogramminglibrary, pro-
vided that the symmetriescan be explicitly stated.This is success-
ful in finding all solutionsto n-queensandin the low autocorrela-
tion binary sequencef_ABS) problem.We alsodiscusshe current
limitations of this approachWheretherearemary symmetriesfull
SBDSis impractical.We describea new shortcutmethodwhich ag-
ainworkswith the searchstrat@y, but maynoteliminateall symme-
tries, and describesuccessfuimplementationgor graphcolouring
andRamsg theory

2 SYMMETRY-BREAKING DURING SEARCH

As an example,considerthe 8-queengroblem,wherethe variable
Q; representshe queenon the ith row, andthe valueassignedep-
resentsthe column whereit is placed.One of the symmetriesof
this problemis rotationalsymmetrythrough180°. Supposehatthe
first two assignmentare Q1 = 2 and @2 = 4. On backtrack-
ing from the secondassignmentand makingthe alternatve choice
Q2 # 4, shouldwe allow its symmetricequialent,i.e. Q7 = 5?
It dependsvhetherrotationalsymmetrystill exists in the problem
or not. If we eventuallyplace@s = 7, the symmetricalversionof
Q1 = 2, thenthe decisionsQ> = 4 and@7 = 5 are symmetri-



cal andwe shouldnot try the secondif the first fails. On the other
hand,if Qs # 7 thenthe decisionsQ2 = 4 and@Q7 = 5 arenot
equialentandwe mustconsiderQr = 5 if Q2 # 4. The compli-
cationis that whenthe nodeof the searchtreeis createdwith the
choicebetween@, = 4 andQ: # 4, we dont knowyet whether
Qs = 7 or not. The solutionis to posta conditionalconstaint, that
N =2&Q2#4&Qs=T7= Q7 #5.

Theantecedentsf this constrainiplay threerbles.Thefirst, Q1 =
2, limits the constrainto descendantsf thenodewherethe branch-
ing choice@» = 4 wasmade Thesecond(), # 4, restrictsto nodes
which backtrackfrom that decision.While theseare unnecessarif
constraintsare only postedlocally, we include themto make our
symmetryconstraintvalid globally. The third antecedentQ)s = 7,
ensureghatthe constraintwill only take effect wherethe rotational
symmetrystill exists.

To generalisethis example, assumethat some branchingdeci-
sionvar = wval, asopposedo var # wal, is beingmadein the
context of somepartial assignment4, andthat we are considering
someparticularsymmetryg. We take a symmetryg to be a func-
tion which mapsfull or partial assignmentdo other assignments,
andwhichis a one-to-ondunctionon full assignmentsiVe alsoas-
sumethata symmetryfunction g canbe appliedto constraints. A
symmetryis solution-preservingthatis, for ary full assignmentd
and ary symmetryg of the problem,g(A) is a solutioniff A is.
We also assumethat a symmetryfunction g acts piecavise. For-
mally, if we extend an assignmentd to A + (var = wal), then
g(A + (var = wval)) = g(A) + g(var = wval). This assumption
is necessaryf we areto reasoraboutsymmetricversionsof assign-
mentsin the middle of the searchtree when assignmentsre only
partial. Writing A for the constraintthatall assignmentin A hold,
andg(A) for the constrainthatthe symmetricversionsof theseas-
signmentsold, our generakonstraints:

A& g(A) & var # val = g(var # val) @)

The SBDS methodis to post(1) at eachbranchingpoint andfor
eachsymmetryg identified by the programmerThe methodcould
be extendedto otherforms of branchingdecision by expressinghe
effect of eachsymmetryon the branchingconstraintFor instancejf
the branchingdecisionwerebetweerwar < val andvar > wal, in
(1) # isreplaceddy >. We describehow SBDScanbeimplemented
with minimal overheadn cpu-timeandminimal effort from the pro-
grammerWerely on [?] for proofsof correctnessf themethod.

3 IMPLEMENTATION OF SBDS

ToimplementSBDSin ILOG Solver, we provide anew searchunc-
tion licGenerateSynto replace Solver’s licGenerate.llcGenerate
searchedy first choosinga variable var accordingto someuser
specifiedstratgy. Thenit chooses valueval similarly andformsa
choicepointgiving two branchesAlong theleft branchyvar = val; if
this leadsto failure, theright branchvar # val, is exploredinstead.
Ournew functioneliminatessymmetriesyetcanbe usedwith ary
variable and value ordering stratggy compatiblewith licGenerate.
Themainarguments anarrayof searchvariablesvar s. Weassume
thatall branchingoointsareof theformvars[i] = j for somear
rayindexi andvaluej . TheprogrammeusinglicGenerateSynm-
plementonefunctionfor eachsymmetryin the problem.The func-
tion for the symmetryg takesthreeamgumentsyepresentinyar s,
i andj andreturnsa constraintrepresentingy(vars[i] = j). An
arrayof thesefunctionsis passedo llcGenerateSym.
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To implementlicGenerateSymthe constraintgiven by (1) is
addedto the vars[i] # j branchfor eachsymmetryg. We omit
theconditionthat A holds,becauséheconstrainwill belocalto this
node.Themainsubtletyis in theconstraintg (A). Sincethisinvolves
all searchvariablessetso far, it is potentially large. However, we
notethatif we extend A to theassignmentd* = A + vars[i] = j,
theng(A™) = g(A) + g(vars[i] = j). We constructanew boolean
variablefor eachsymmetryg representingvhetherg(A) is satis-
fied or not. The value of this variablefor g(A™) is the conjunction
of its valuefor g(A) andg(vars[i] = j). Hence,we cancompute
g(A) incrementally Thesebooleanvariableshave a further adwan-
tage Whenoneis provento befalse we know thatg, thecorrespond-
ing symmetry is permanentlybroken on this branch.This malesit
safeto discardg from further consideratioron the branch.Hence,
weonly incurtheoverheadf postingsymmetryconstraintor those
symmetrieghathave not yet beenbroken; theseconstraintarepre-
cisely thosewith the potentialto reducesearchin the future. This
suggestshatthe overheadsncurredwill usuallyberepaidby search
reductionsandthis is soin the applicationsdescribedbelon. The
exceptionis whentherearemary symmetriesn a problem,anissue
we addresdater.

3.1 Application: All Solutions of n-Queens

While then-queengroblemis nolongerseerasachallengeo cons-
traint solvers,finding all solutionsremainshard.Thechessboartias
7 rotationalandmirror symmetriesexcluding the identity. To elim-
inate symmetricsolutions,it is only necessaryo write 7 functions,
eachreturninga constraintrepresentinghe symmetricequivalentof
var s[i] =j . Two of theseareshawvn in Fig.1; var s[ i ] = corre-
spondgo @; = j, andnQueen is aglobalvariable.Given licGen-
erateSymyve needonly declaretherelevantsymmetryfunctionsand
call lcGenerateSymatherthanllcGenerateResultsusingthis code
areshavn in Table1. As n increasesthe numberof backtrackss
greatlyreducedandthe runtimeis cut by up to 75%. The solutions
foundareall symmetricallydistinct.

Il cConstraint r90 (IlclntVarArray vars,
Ilclnt i, llclnt j)
{return vars[i] == nQueen-1-j;}

Il cConstraint dl1 (llclntVarArray vars,

Ilclnt i, Ilclnt j)

{return vars[j] ==1i;}

Figurel. Symmetryfunctionsfor rotationthrough90° andreflectionin
oneof themaindiagonaldor then-queengroblem.

It is instructive to compareour approachwith that of addingex-
plicit symmetry-breakingonstraintsattheoutsetto theformulation
of the n-queensproblem. The fact that somesymmetriesmay still
exist after one or moreassignmentbave beenmademustagainbe
addressedConsiderl80° rotationalsymmetry andsupposehatthe
variablesareassignedn the order@1, @2, @s, ... . We couldadd
theconstraint); < n+1—Q, to prevent,in mostcasesfindingtwo
equivalentsolutions.But this couldstill happenf, say @1 = 2 and
@, = n—1;toeliminatethesewe couldaddanew conditionalcon-
straintiif Q1 = n+1—-Q, then@Q: < n+1—Q,—1. Wemightneed
furtherconstraintsif @1 = n+1—Q, and@Q2 = n+1—-Q,_1 then
Q3 < n+1-—Qn-_2, etc.Tobesureof eliminatingthissymmetryen-
tirely, we would have to addup to n/2 constraintgo theformulation,
eachwith onemoreconditionthanthelast. The predicateproduced
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n | No. solutions Fails Cpusec
SBDS 8 12 61 0.03
10 92 888 0.42
12 1,787 17,940 8.29
14 45,752 487,948 229
16 1,846,955 17,383,754 8,400
17 11,977,939 113,631,630 59,700
18 83,263,591 788,699,220 392,000
NoSBDS 8 92 289 0.10
10 724 5,072 1.60
12 14,200 103,956 34.4
14 365,596 2,932,626 1,000
16 14,772,512 105,445,065 35,700
17 95,815,104 696,830,655 239,000
18 - - -

Tablel. Resultsof SBDSappliedto then-queengproblem,usingILOG
Solver4.3on SunUltra 1/1405.

by Crawford etal. [?] alsosuffer from this problem. Explicit condi-
tional constraintarecumbersomandhave thedisadwantagehatwe
are committedto a fixed instantiationorder In contrast,the SBDS
methodautomatesll consideratiorof conditionalconstraintsdoes
notproduceary whenthey becomeunnecessargndimposesore-
strictionson instantiationorder

3.2 Application: LABS

The problemof low autocorrelatiorbinary sequencefL ABS) is of
interestin physicse.g.in interplanetaryadarmeasurement#avolv-
ing only n binary variables,it hasnot beensolved beyond about
n = 50, the currentstateof the art beinga branchandboundsolver
by Mertens[?]. The problemis to constructa binary sequence; of
lengthn. Eachbit in the sequenceéakesthevalue+1 or —1. Thekth
autocorrelation(Cy, is definedto be E:”:‘Ok‘l Si * S;4x. Theaimis
to minimize}_7_, C}2. Theproblemis notideally suitedto constr
aintprogrammingaslittle propagatioris possible;neverthelessye
shav thatsymmetrycanbe capturedefficiently andeasily resulting
in significantspeedup.

Thefirst taskis to modelthe problem.The productS; * S;y is
1if S; = S;+r and—1 if they aredifferent. This leadsto a model
with anarrayfor eachk: the ith variablein the kth arrayis 0 if .S;
and S; 1, arethe sameand 1 otherwise.The correlationCy, is the
differencebetweerthe numbersof 0’'sand1’s in the kth array If dj,
isthenumberof 1'sin thearray s is thenumberof 0's,andly, is the
lengthof thearray thendy, is thesumof thearrayandly, = sy + dy.
Hence,Cx = sk — dx = lx — 2dy. Pruningrulesfor this modelare
describedn [?]. We searchby settingthe outermostbits first, and
try thevalue—1 before+1.

Therearethreebasicsymmetriesn LABS. The correlationsCy
are unchangedf we either negate eachbit in the sequenceor re-
versethe sequencer negatethe bits in even positions.Composing
thesesymmetriey/ields 7 in total, excluding the identity symmetry
Any symmetryinvolving reversalcannotedealtwith by simplecon-
straintsbecausdé mightnotbreakuntil deepin searchandMertens
did not breakall the symmetriesn the problem.However, it is easy
to dosousingSBDS. For example,considethe mostcomplex sym-
metry; thecompositiorof reversal flipping all bits, andflipping even
bits. If the bits arenumbered to n — 1, andwe setbit ¢ to +1, the
symmetricdecisionis to sethitn — 1 —ito —1if n — 1 — ¢ isodd,
andto +1 otherwise This canbeimplementedstraightforvardly in a
one-statemerolver function.
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It is easyto excludenon-reversalsymmetriedy insistingthatthe
first two bits areboth—1, andwe did thisin thenon-SBDSprogram
to ensurea fair comparisonTable 2 shavs that SBDSreducesun-
time by up to 1/3. Unfortunately we werenot ableto beatMertens’
solver: usingthe samecpu resourceswe would expectto find opti-
mal sequenceabout? bits shorterthanhedid. LABS remainsahard
challengeproblemfor constraintprogramming.

SBDS Non-SBDS
n  cost Fails Cpusec Fails Cpusec
5 2 4 0.02 2 0.01
10 13 19 0.07 29 0.08
15 15 264 0.81 423 1.11
20 26 3,356 9.78 4,754 16.50
25 36 46,250 214 74,309 329
30 59 752,880 2,580 | 1,151,433 6,680
35 73 | 6,589,437 45,780 | 11,043,967 76,970

Table2. Resultsof SBDSappliedto determiningthe optimal correlation
costof theLABS problem.

4 A SHORTCUT SBDSMETHOD

Givenourimplementationit is straightforvardto addsymmetryex-
clusionto searchasdescribedn section3, if the numberof sym-
metriesis small.. Ourimplementatiorcanbe usedeasilyfor there-
strictedmethodproposedby Baclofen and Will [?]. For example,
in graphcolouring,they shaw thatit is only necessaryo consider
the (’;) pairwiseswapsof coloursratherthanall k! permutationsif
the pairwiseswapswereencodedur implementatiorcould be used
without change Unfortunately even a quadraticnumberof symme-
tries may be too mary. In otherproblems no simplerestrictionson
the setof symmetrieanay be available.In eithercase directuseof
SBDSis thenimpractical. Apart from thelargenumberof symmetry
functionsto implement,mary conditionalconstraintsnay be added
to the constrainttore,slowing down searctunacceptably

We addresghis difficulty by basinga methodologyfor develop-
ing specialpurposemethodsn SBDS.Sincethis is application-and
contet-specific,theimplementatiordescribedearliercanno longer
be used,and we needto write a separatesearchmethodfor each
applicationwhichwill constructheappropriatesymmetry-breaking
constraintsto addto the left branchat eachchoicepoint. The ad-
vantageof writing a specialpurposesearchmethodis that symme-
tries neednot be representedxplicitly: insteadsymmetriescan be
checled by a specialpurposeprogram typically quite cheaply Fur-
thermore specialpurposeprogramsneednot checkall symmetries:
insteadwe candecidewhich symmetriest is worthwhileto consider
ateachnode.We call this methodologythe shortcutSBDS method.
Theshortcutis in work doneby the constrainsolver comparedo the
full method.

We first notethatif g(var # val) is thesameasvar # val, the
constraint(1) will bevacuouswe only considersymmetriesgiving
non-\acuousconstraints.Secondwe only postunconditionalcon-
straints,i.e. g(A) mustprovably hold, not dependon future assign-
ments Finally, we mayrestrictour attentionto symmetriegor which
it is easyto checkthatg(A) holds:thisinvolvesatrade-of between
theeffort we putinto constructinghesymmetry-breakingonstraints
andthe searcheffort which theseconstraintanay save. Thelasttwo
simplificationsmay exclude somesymmetriessowe canno longer
guaranteahat only one assignmenfrom eachsymmetryclasswill
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befoundl. While implementatioris notaseasyasusinglicGenerate-
Sym, the programmemneedonly considerwhatsymmetriedeave A
unchangedandwhich of thesechangethe currentassignmenand
areeasyto check?

4.1 Application: Graph Colouring

Thesymmetriesn graphcolouringarethe permutation®f the avail-
able colours (assumingthat the graphis connectedand that there
areno symmetriesn the graphitself). If the numberof colours,k,
is small, we can representhe symmetriesexplicitly, as described
above. For large k, thiswill beimpracticableandwe follow the ap-
proachjustoutlined.

Suppose (possiblyempty)setof assignmentsl hasalreadybeen
made,and that somesubsetof the £ colourshasbeenusedin A.
We first decidefor which symmetriegj(A) = A. Only permutations
which changenoneof thecoloursin A will leave A unchangedNext
we consideifor which of thesepermutationg (var # wval) is notthe
sameasvar # val. g doesnotchangeary colourthathasalready
beenassignedsowval mustbe anunusedcolour, andg mustchange
it to anotherunusectolour, val’.

In short,we shouldonly addsymmetry-breakingonstraintsf the
currentassignmentsesa new colour In that case the symmetries
to breakare thosewhich leave all the colourspreviously assigned
unchangedandchangeval into anothercolournotyetassignedThis
canbe expressechsa common-senseule: if we colouranodewith
apreviously unusedcolour, andthis assignmentails, we shouldnot
try adifferentnew colourfor this node.

It is straightforvard to modify a Solver graphcolouringprogram
to incorporateheseconstraintsWe useanextraconstrainedariable
for eachcolourto keeptrack of whetherthis colour hasbeenused
yetor not. Whena choicepointis createdasa disjunctionbetween
var = wval andvar # wval, we checkwhetherval haspreviously
beenassignedn A. If not, we conjointo var # wal a constraint
var # val’ for every unusectolourval’.

Problem | cols initial | ShortcutSBDS No SBDS
name cligue | Fails cpus. Fails cpus.
myciel4 5 2 125 0.05 240 0.07
myciel5 6 2 | 47408 28.7 - -
anna 11 7 20 0.12 48 0.12
miles750 | 31 24 660 0.70 - -
fpsol2.i.2 | 30 15| 2080 11.3 - -
le4505a 5 4| 5436 33.6 | 12078 71.8
queen?? 6 5 323 0.36 441 0.44

Table3. Resultsfor graphcolouringon DIMA CSinstancegusinga
cut-of valueof 100,000fails).

A comparison between this program and one with-
out the symmetry-breaking rule is given in Ta-
ble 3 on seeral DIMACS graph colouring instances
(http://mat.gsia.cmu.edu/COLOR/instas.htm). We have to find a
colouring for thesegraphswith the optimal numberof colours,
and prove that the graph cannotbe colouredwith fewer. To allow
a fair comparison,the programsuse the samevariable ordering
heuristicand the secondprogramincludessomesimple symmetry
breaking:aslongastheheuristicchoosesodesatthestartwhichare
connectedo eachother(i.e.form aclique),thecoloursfirst assigned
to thesenodesarefixed.FromTable3, our methoddoesmuchbetter
unlessthe sizeof theinitial cliqueis closeto the optimalnumberof
colours.
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Thecommon-sensaile implementechereis onewhich hasbeen
implementedn specializedyraphcolouringprograms\We stresghat
we derived the rule from applicationof a generalmethodologyThe
rulecanbeusedin ary CSPin whichthevaluesareindistinguishable
andsopermutableWe next turnto adomainin whichtheruleis less
obvious.

4.2 Application: Ramsey Theory

Ramsg theoryis anareaof graphtheory:the problemwe consider
is to colourthe edgesf thecompletegraphwith n nodes K, using
c coloursin suchaway thatthereis no monochromatidriangle.The
threecolour problemwasusedby Puget[?] asanexampleapplica-
tion. For this problem,thereis no solutionif n > 17.

Any permutatiorof the coloursandary permutatiorof the nodes
isavalid symmetry Pugetdealtwith symmetryby addingthefollow-
ing threeconstraintgo a straightforvard formulationof the problem
(notall of theseappeaiin [?]). First,thenumberof edgesrom node
0 with colour0 is not lessthanthe numberof edgesfrom ary node
1 assignectolour j, for ary i, j. Secondthevalues(i.e. colours)as-
signedto theedgesrom node0 arenon-decreasinglhird, the num-
bersof edgesfrom node0 assignedo colours0,1,... ,¢c — 1 are
non-decreasinglheseconstraintdmply thatthe edgesrom nodeO
areassignedirst, but we acceptedhatrestrictionandkeptthe con-
straints.

We modifiedPugets programto applytheshortcutSBDSmethod.
The symmetrybetweenthe colourscan be dealtwith asin graph
colouring, but the node symmetryis more significant.We needto
find permutationsf the nodeswhich will bothleave A unchanged
andaffectthe assignmenthatwe areaboutto make. However, there
aretoo mary possiblepermutationgo considerthemall. We there-
fore look only for permutationghatcanbe checled easily A trans-
position of two nodes! and m, which we write g;,,,, will leave A
unchangedf for all nodesh (h # 1,m), e;, ande,,; areeither
both so far uncolouredor both assignedhe samecolour Suppose
we areaboutto colouredgee;;, theedgejoining nodesi andj, with
colourw. If we canfind anodes’ suchthattransposing’ ands will
leave A unchanged,e. g;»;(A) = A, thenwe conjointheconstraint
gui(ei; # v),i.e.ey; # v, t0e;; # v. Similarly, if we canfind a
nodej’ suchthatg;;(A) = A, weadde;;; # v. If bothtransposi-
tionsleave A unchangedi.e. g;/;(A) = g;7;(A) = A, thenwe can
alsoaddgi:i(gj:j(eij 7é U)), i.e.ei:j: 75 .

To testthe shortcutSBDS method,we adaptedPugets program.
We usedhis first andthird constraintsand his searchstratgy. The
effectof his seconcconstraints replacedy our method Resultsare
shavn in Table4. Our symmetry-breakingonstraintsareableto re-
placeonesetof Pugets explicit constraintsandindeedimprove on
them.Table4(a) shavs that SBDSeliminatesmoresymmetricsolu-
tionsthanPugets constraintsin Table4(b), the samecolouringfor
K6 is found in fewer fails by SBDS,thoughin similar runtimes,
andproving that K17 cannotbe colouredwithout a monochromatic
triangletakesfar fewer fails. Table4(b) alsogivesresultsfor a nave
programin which Pugets secondconstraintis removed but not re-
placedtheseresultsshav thenecessityf goodsymmetryreasoning.
Thereis still a greatdealof symmetryin the problemwhich hasnot
beeneliminated.K 4 for instancehasonly 9 distinct solutions.The
remainingsymmetrieccombinea permutationof the colourswith a
permutatiorof the nodes.Thereareclearly very mary of these and
they arehardto eliminateby the methodsliscussedofar. Likethe
LABS problem,Ramsg theory remainsa challengefor constraint
programmingjn which symmetryconsiderationsnustplay a vital
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part.

n SBDS Puget
Solutions Fails Cpu | Solutions Fails Cpu
3 2 3 0.01 3 2 0.01
4 12 6 0.03 22 3 0.06 (1)
5 138 16 0.08 343 6 0.13
6 1284 39 052 7697 27 252
7 29027 182 11.2 252325 135 81.7

Findingall solutions

n SBDS Puget Naive

Fails Cpu| Fails Cpu Fails Cpu

16 | 2,030 1.61 | 2,437 1.40] 385,608 163

17 161 0.26 636 0.27 | 678,976 295
(b) Findingfirst solution

Table4. The(shortcut)SBDSmethodappliedto the 3-colourRamsg K,
problem,comparedvith Pugets methodanda programwith nave
symmetryconstraints.

5 CONCLUSIONS & FURTHER WORK

We have describeda methodfor breakingsymmetriegluringsearch.
Using our implementatiorin ILOG Solwver, programmersieedonly
specifythe effect of eachsymmetry If the problemhasmary sym-
metrieswe have givenashortcutmethodologywhich consideronly
symmetrieghatit will beusefulto break.Althoughwe cannolonger
guaranteea single solution in eachclass,this may sometimesbe
achie/ed. Both methodsareindependenbf the searchstratgy and
have beenshavn to beworthwhilein applications.

Mary avenuesof further work are open.For example,computa-
tional grouptheorymightallow usto simplify themodellingof sym-
metriesandmalke reasoningvith themmoreefficient. This mayalso
helpin casedike Ramsg theorywheretherearevery mary composi-
tions of basicsymmetriesvhich arecurrentlyhardto dealwith. Not
only backtrackingsearchcantake adwantageof symmetry:for ex-
ample,in backjumpingandlearningalgorithmswhich find nogoods,
thesamemechanisntouldrule outsymmetricequivalents We could
alsodevelop searclstratgiesbasedn symmetry which might seek
to breakthe problems symmetriesassoonaspossible assuggested
in [?], or perhapdo do preciselythe opposite Finally, asin Ramsg
theory it canbebeneficialto breaksymmetriesisingboththe short-
cut SBDS methodand ordering constraintsywe shouldinvestigate
how bestto integratethetwo approaches.
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