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Abstract . Advantages and disadvantages of minimaxing versus 
product propagation back-up rules for game tree searching have 
been intensively discussed in the literature. So far, examinations 
have almost exclusively been carried out through experiments, 
demonstrating slight superiorities for one or the other back-up 
rule. In contrast to these purely quantitative investigations, we 
aim at elaborating differences in strength of these back-up rules 
by characterizing properties of critical situations in which these 
differences prove relevant. Evidence from the examinations 
carried out shows that minimaxing is better for a uniform error 
distribution under pathologically high and very low error rates, 
while high frequencies of critical cases favoring product propa-
gation lead to a dominance of this back-up rule for realistic error 
distributions in depth 2 searches. The results provide insights 
for assessing degrees of competence of the two back-up rules, 
suggesting combined uses when facing move decisions.1

1 INTRODUCTION

Advantages and disadvantages of minimaxing versus product 
propagation back-up rules for game tree searching have been 
intensively discussed in the literature. So far, theoretical models 
have barely explained the dramatic success in some games, and 
the weak performance in others. Theoretical examinations have 
almost exclusively been carried out through experiments, 
demonstrating slight superiorities for one or the other back-up 
rule, depending on the particular game chosen and on the 
assumptions underlying simulations on abstract game trees. 

In contrast to these purely quantitative investigations, we aim 
at elaborating differences in strength of these back-up rules by 
characterizing properties of critical situations in which these 
differences prove relevant. Evidence from the examinations 
carried out shows that minimaxing is better for a uniform error 
distribution under pathologically high and very low error rates, 
while high frequencies of critical cases favoring product propa-
gation lead to a dominance of this back-up rule for realistic error 
distributions in depth 2 searches. The results provide insights 
for assessing degrees of competence of minimaxing and product 
propagation, suggesting combinations of the two back-up rules 
based on value distributions and board evaluator competences.

This paper is organized as follows. First, we provide some 
background information. Then we summarize previous work on 
comparing minimaxing with product propagation. Next, we 
describe and analyse the basic situation in backing-up values in a 
game tree, followed by evidence from a case study with a concrete 
game tree model. Finally, we discuss impacts on move decisions.
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2 BACKGROUND

In order to act adequately in  interesting games, it is necessary to 
resort to heuristic estimates in terms of an evaluation function  
f(n) that assesses each node  that represents a position with some 
error. We assume that f(n) assigns a value to a node n from the 
viewpoint of the moving side at n. This function  is used when 
searching deeper and backing up the heuristic values towards the 
given nodes' parents. In two-person games with perfect infor-
mation, the most successful 2 approach for backing up is mini-
maxing (see [14] for an analysis), which is defined as follows:

D e f i n i t i o n  1  A minimax value  MM f(n) of a node n can be 
computed recursively as follows (in the negamax formulation):

1.  If n is considered terminal:  MMf(n) ← f(n)

2.  else: MMf(n) ← maxi(-MMf(ni)) for all child nodes ni of n.

However, the dramatic benefits of using minimaxing with deeper 
searches in practice have not been explained theoretically. Even 
to the contrary, Nau [9] showed that for certain classes of game 
trees the decision quality is degraded by searching deeper and 
backing up heuristic values using minimaxing. He called such 
behavior pathological . Essentially the same findings were 
reported independently by Beal [2]. Several subsequent studies 
like [13] provided insights into minimax pathology. Therefore, 
different back-up rules have been proposed, such as product 
propagation [13] (this rule was already used earlier by Slagle and 
Bursky [18]). It requires that an evaluation function f'(n) returns 
values between 0 and 1 that are estimates of the probability that 
the position represented by node n is a forced win. 

Definition 2 A probability estimate PPf'(n) of a node n can be 
computed recursively as follows (in the negamax formulation):

1.  If n is considered terminal:  PPf'(n) ← f'(n)

2.  else:  PPf'(n) ← (1- ΠiPPf'(ni)) for all child nodes ni of n.

Product propagation is theoretically sound for independent  
probabilities, but this is generally not  the case in practice. 
Similarly, minimaxing is not theoretically justified, too [13] – 
while product propagation ignores commitments to be made,  
minimaxing ignores uncertainty. Different interpretations of 
what these back-up rules model in terms of playing against 
omnipotent or fallible opponents can be found in [5, 13].

2 The best known examples are the special chess machine Deep Blue, 
which defeated the highest-rated human chess player in a match under 
tournament conditions, and the checkers program Chinook, which is 
even the official man-machine world champion [15].



3 PREVIOUS WORK

Several approaches comparing performance differences among 
minimaxing and product propagation were carried out by Nau. He 
investigated product propagation as an alternative back-up rule 
[11] and found no pathology in so-called P-games, where mini-
maxing is pathological. In fact, the values of the real leaf nodes 
of P-games directly correspond to the values of the squares in the 
initial board configuration, which are randomly assigned one of 
two values independently of the values of the other squares. 
Under these conditions as given in P-games, Nau's experiments 
resulted in a higher probability of correct move decisions using 
product propagation compared to minimaxing. In so-called N-
games (with incremental dependencies of true game-theoretic 
values), the results showed about the same probability of correct 
move decision for both back-up rules. In a P-game contest, a 
program based on product propagation scored marginally better 
than an otherwise identical program based on minimaxing. 

In later work, Nau et al.  [12] reported that product propagation 
scored better than minimaxing in a P-game contest for “critical” 
games. For each initial game board, one game was played with 
one player moving first and another with his opponent moving 
first. For some game boards, one player was able to win both 
games of the pair. These are called critical games. Further exper-
iments showed that minimaxing was better than product propa-
gation (for search depths 3 and 4) in an N-game contest.

Nau [10] also used so-called G-games (with dependencies of 
true game-theoretic values in graphs where sibling nodes have 
many children in common) for comparing these propagation 
rules, which indicated some influence of the evaluation function 
used. G-game contests revealed that product propagation 
performed better than minimaxing if some evaluation function 
was used and worse than minimaxing if another function was used 
that is more accurate for these games. Results by Chi and Nau [3] 
confirmed this relationship of the respective advantages of these 
rules to the strength of an evaluation function used: the stronger 
the evaluation function the better for minimaxing.

Additionally, Chi and Nau compared these back-up rules on 
several games, including a small variant of kalah. Most interest-
ingly, in this real game a program based on product propagation 
performed better than its opponent based on minimaxing.

Since both programs searched to the same depth, however, 
these comparisons were unfair for minimaxing, which could have 
utilized well-known pruning procedures for searching much 
deeper with the same number of nodes generated (for a compar-
ison of pruning procedures see [7]). Still, there was some indi-
cation that product propagation may be the better rule for 
backing up heuristic values. Finally, Nau et al.  [12] as well as 
Baum [1] investigated combinations of minimaxing and product 
propagation. Their results suggested that the respective advan-
tages could be utilized by a combination of these back-up rules.

Only recently, results about the effects of deeper searches 
using minimaxing were achieved through an investigation of 
more realistic game tree conditions when using multivalued 
evaluations functions [17]. While these results are more general 
than those from experiments using concrete game-playing 
programs, they have a close relation to, e.g., computer chess and 
checkers practice. In addition, this model has been used for a 
comparison of minimaxing and product propagation, demon-
strating slight advantages in favor of product propagation for 
depth 2, while minimaxing proved better for deeper searches [5].

4 THE BASIC BACK-UP CONSTELLATION

We carried out an analysis of the differences between the back-up 
rules according to systematic combinations of evaluation errors. 
The basic situation is illustrated in Figure 1, for branching factor 
2 and depth 2. Two conditions make such a case a critical case:

 1. The back-up rules must select different moves.
 2. One move leads to a won position and the other to a lost one.

Whether or not the first condition holds can be derived from the 
definitions of the competing back-up rules. We assume that Max 
is on move at the root position R, M the node preferred by mini-
maxing, P the one preferrred by product propagation, and that 
f'(M1) ≥ f'(M2) and f'(P1) ≥ f'(P2) hold. According to minimaxing, 
f'(M1) and f'(M2) must both be greater than f'(P2), the smaller value 
of P's successors. Conversely, product propagation demands that 
f'(P1) must be greater than both f'(M1) and f'(M2), otherwise 
f'(P1)*f'(P2) > f'(M 1)*f'(M2) would not hold. Consequently, there 
exists a partial ordering between the values of these four nodes:

 f'(P2) ≤ f'(M2) ≤ f'(M1) ≤ f'(P1)

The second property that makes a case critical depends on the 
true values associated with the competing nodes, M and P, which 
in turn depend on the true values of their successor positions. 
Based on this association, we introduce the notion of an evalu-
ation error, adopted from [17]: if a heuristic value f(n) is positive 
(f'(n) > 0.5), and the true value of the position is won for the side 
to move, then we say that f is correct for n, and it is not other-
wise. Hence, we have to distinguish which of the positions M1, 
M 2, P1, and P2 are evaluated correctly in the above sense and 
which ones are not, which yields 16 cases to be considered. A 
further distinction concerns the relation of these four values to 
the transition point between loss and win (the “draw value”, 0 in 
terms of f, and 0.5 in terms of f'), which yields 5 cases (see 
Figure 2). Hence there is a total of 80 cases. Among these cases, 
those have to be extracted where the move decision matters, that 
is, where M is won and P lost for the side to move, or vice versa. 
For illustration purposes, let us discuss two representative cases: 

 1. If there is no evaluation error, then only the case where the 
draw value falls in interval I4 matters, when M is won, and P 
lost. If the draw value falls in interval I5, then both M and P 
are won. For the remaining intervals, both M and P are lost.

 2. Similarly, consider the draw value lying in interval I3, and 
exactly one of the heuristic values as erroneous. Then this 
value must be f'(M2) in order to make minimaxing superior, 
and it must be f'(P2) to favor product propagation. In other 
cases, the decision is irrelevant, since both M and P are lost. 
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Figure 1.   The basic decision situation
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Figure 2.   Intervals of the draw value

When pursuing the analysis of all 80 cases along similar lines, 
the differences between minimaxing and product propagation 
appear as listed in Table 1 (we have verified this analysis compu-
tationally for a limited set of value combinations). The left part 
contains the constellations favoring minimaxing, and the right 
one those favoring product propagation. The lines are ordered 
according to the number of evaluation errors associated with the 
four positions, where the erroneous positions and the interval in 
which the draw value falls are indicated for each case.

5 ANALYSIS OF THE BASIC CASE

Table 1 demonstrates that advantages and disadvantages of mini-
maxing and product propagation are balanced – 15 cases appear 
in each column. There is one extra case in favor of minimaxing 
with no evaluation error, and another case with four errors, 
compensated by two additional cases with two evaluation errors 
on the side of product propagation. Moreover, the cases in favor 
of minimaxing with one resp. three errors where the draw value 
falls in one of the intervals I2 or I4 have counterparts for product 
propagation with the other intervals, I4 and I2, respectively. 
Whereas the same number of intervals appear on both sides of 
Table 1, the errors of individual positions are distributed rather 
unevenly: M1 and P2 appear 6 times and M2 and P1 9 times on the 
side of minimaxing, while P1 appears only 3 times, M2 7 and M2 
8 times, and P2 even 12 times on the side of product propagation.

 In order to assess the quality of the competing back-up rules 
based on this analysis, we assume that an error function e is 
associated with f' that indicates for each value of f' how likely it 
is that the value is correct or not. Depending on assumptions 
about e, different results emerge.

For the special case that the probability of error is uniformly 
distributed, the large number of symmetries make the analysis 
simple and lead to an interesting result. Under this constellation,

Table 1.   Evaluation error constellations in favor of either back-up rule
 

advantage of  minimaxing    product propagation

no error I4

one error  I4(P1) I2(P2)
(position) I3(M2) I3(P2)

I5(P1), I5(P2) I5(M1), I5(M2)

two errors I1(M1,M2) I1(P1,P2) 
(positions) I2(M1,M2) I2(M1,P2), I2(M2,P2)
  I3(P1,M2) I3(M1,P2)

I4(P1,P2) I4(M1,P2), I4(M2,P2)
I5(P1,P2) I5(M1,M2)

three errors I2(M1,M2,P1) I4(M1,M2,P2)
(positions) I3(M2,P1,P2) I3(M1,M2,P2)

I1(M1,M2,P2), I1(M1,M2,P1) I1(M2,P1,P2), I1(M1,P1,P2)

four errors I2
 

all those cases facing one another in Table 1 (one favoring mini-
maxing, and the other product propagation) with the same 
number of errors and identical intervals for the draw value occur 
with equal frequency. Consequently, only the two extreme cases 
favoring minimaxing and the two average cases favoring product 
propagation, as well as the difference between the number of 
cases falling in either of the intervals I2 and I4 remain as decisive 
factors. For a board evaluator competence of exactly 50% error 
rate, also these remaining cases are leveled out completely, 
hence the performance of the back-up rules is the same, per 
average. For a constant error rate other than 50%, the fact that  I2 
must be larger than I4 – otherwise f'(P1)*f'(P2) >  f'(M1)*f'(M2)  
would not hold – proves to be a decisive factor. Since the draw 
value falls more frequently in I2 than in I4, “pathological” board 
evaluators with more than 50% error rate always favor mini-
maxing, while better board evaluators favor product propa-
gation, at least for  error rates that are not extremely low. In fact, 
there is some point in decreasing the constant error rate where 
the contribution of the cases with only correct evaluations over-
compensates the contribution of the cases with errors from the 
larger interval I2. For the variants of the game tree model used in 
the case study reported about in the next section, this score lies 
between 88% and 95% correct evaluations. 

For more realistic error functions, where the degree of error 
continuously decreases with increasing probabilities to win, we 
cannot provide clear-cut qualitative results as for uniform error 
distributions. Nevertheless, we can derive some general 
tendencies for which the case study in the next section provides a 
good deal of evidence. When building corresponding pairs or 
double pairs out of the entries in Table 1, half of them favoring 
minimaxing and the other half favoring product propagation, it 
turns out that most of the resulting compensative effects favor 
product propagation, provided the degree of error associated with 
the positions mirrors the actual probabilities to win. For 
example, there are four cases where the draw value falls in I5 with 
exactly one position in error – those where the succesors of P are 
erroneously evaluated favor minimaxing, and the others product 
propagation. Since f'(P1)*f'(P2) > f'(M1)*f'(M2) holds, the differ-
ence between f'(P1) and f'(M1) is larger than that between f'(P2) and 
f'(M2), which means that minimaxing, the side where P1 is in 
error, is worse off. Consider, as another example, the cases in 
favor of minimaxing with  the draw value falling in I4 and  I2, and 
only P1 resp. all positions other than P1 are erroneously evalu-
ated. In the corresponding constellation for product propagation 
I2 and I4 are interchanged, with P 2 instead of P 1 being the 
position evaluated differently from the others. As before, mini-
maxing is the side where P1 is evaluated incorrectly, and this 
effect is even augmented because I2 is larger than I4 since f'(P1) 
must be extremer than f'(P2). Similar dominances hold between 
most pairs built in this way, except to the case with no error.

We conjecture that several effects reduce or even overcompen-
sate this dominance of product propagation. For example, the 
estimated degrees of error may deviate significantly from the 
actual probabilities to win. More importantly, there are several 
effects of deeper searches which tend to favor minimaxing (see 
also [5, 12]): the propagated values tend to become extremer, 
increasing the frequency of cases with the draw value in I4, the 
propagated errors for the case with no error tend to increase as 
well, and the constellations with exactly two position evaluated 
incorrectly place most combinations where sibling nodes are 
both evaluated correctly or not on the side favoring minimaxing. 



6 A CASE STUDY 

In order to get a sense for the differences between minimaxing 
and product-propagation in quantitative terms, we have computed 
the outcome for a small version of the game tree model intro-
duced by Scheucher and Kaindl [16, 17], the most recent and 
probably most realistic model proposed in the literature so far. It 
is a multi-valued model, with a specific sort of dependencies 
among related game tree nodes. For the reader's convenience, the 
detailed assumptions are repeated here in the appendix. 

In making use of this game tree model, we have varied the 
value of the root node and the maximal value increment per 
move, a, in order to examine dependencies of values distri-
butions. Moreover, we have tried several functions expressing 
probabilities to win and combinations with several distributions 
of the probability of error. For probabilities to win (used for 
mapping evaluator scores f onto probabilities to win f') we have 
used variants for wc (see the appendix) with c = 1, 4, and 16. For 
the error function we have used functions of the same shape, with 
coefficient choices overestimating or underestimating the proba-
bility to win (function e2), as well as a proportional error rate 
function (function e1), which starts by 0% at the extreme values 
hmin and hmax, going down to 50% at the draw value.

Altogether, the results prove to be quite robust. Almost all 
parameter combinations yield expectations clearly in favor of 
product propagation, which is consistent with the simulation 
results obtained by Kaindl and Scheucher. There was no influence 
of the value increment, and changes of the value distributions due 
to varying the root node value were marginal. Only for gross 
underestimations of the probabilities to win, minimaxing was 
competitive. Table 2 demonstrates two representative cases, 
each for a total of 1,000,000 positions, with root value 1 and 
maximal value increment 9, including repetitions of constel-
lations due to symmetries in adding or substracting increments. 
The table contains two variants of error functions, the propor-
tional one (e1), and a function of the form wc with c = 4 (probabi-

Table 2.   Contributions of evaluation error constellations in favor of either
 back-up rule (in percentage of critical cases) 

 

  advantage of minimaxing   product propagation

  error function   e1   e2    e1   e2

no error I4: 0.39% 0.24%

one error I4(P1): 0.26% 0.16% I2(P2):    2.62% 2.74%
(position) I3(M2): 1.73% 1.65% I3(P2): 2.06% 1.62%

I5(P1): 1.64% 1.65% I5(M1): 1.97% 1.99%
I5(P2): 2.24% 2.25% I5(M2): 2.17% 2.18%

two errors I1(M1,M2): 0.51% 0.54% I1(P1,P2): 0.58% 0.61% 
(positions) I2(M1,M2): 2.38% 2.49% I2(M1,P2): 2.31% 2.41%

I2(M2,P2): 2.05% 2.15%
 I3(P1,M2): 1.27% 1.22% I3(M1,P2): 1.50% 1.44%

I4(P1,P2):  0.24% 0.15% I4(M1,P2): 0.31% 0.20%
 I4(M2,P2): 0.33% 0.21%

I5(P1,P2): 1.44% 1.45% I5(M1,M2): 1.69% 1.71%

three errors I2(M1,M2,P1): 2.03% 2.12% I4(M1,M2,P2): 0.29% 0.19%
(positions) I3(M2,P1,P2): 1.10% 1.05% I3(M1,M2,P2): 1.32% 1.27%

I1(M1,M2,P2): 0.35% 0.37% I1(M2,P1,P2): 0.40% 0.43%
I1(M1,M2,P1): 0.45% 0.48% I1(M1,P1,P2): 0.45% 0.47%

four errors I2: 1.54% 1.62%
 

Table 3.   Distribution of critical cases and errors over intervals 
 

intervals I1 I2 I3 I4 I5

number of critical cases

  error function e1 47,280 196,956 117,216 23,208 135,024
  error function e2   7,904   32,522   17,738   2,342   21,480

percentage of critical cases favoring product propagation

  error function e1   0.13%   1.02%   0.41%   0.05%   0.51%
  error function e2   0.13%   1.07%   0.59%   0.05%   0.53%

lities to win are distributed according to wc with c = 1, labeled 
e2). Numbers in the table cells express percentages of the critical 
cases. When using the error function e1, there are slightly more 
critical cases than when using e2 (86,614 out of 1,000,000 total 
cases for e1, as opposed to 81,986 for e2). 

The entries in Table 2 provide insights about the frequency of 
individual cases out of all critical constellations, which includes 
the low frequency of the case with no errors. In Table 3, this 
information is aggregated over the five intervals of the draw 
value, in absolute numbers and in percentages of critical cases. 
In particular, this Table shows that the frequency in which the 
draw value falls in interval I2 strongly dominates the cases where 
it falls in I4. In fact, this is the main reason for product propa-
gation scoring better than minimaxing, at least for depth 2 
searches. Hence, the results suggest that the contribution of the 
error rate is clearly overcompensated by the frequency in which 
constellations occur that favor one back-up rule over the other.

Finally, aggegating the contributions over errors of indivi-
dual positions also yields an interesting result (see Table 4). If 
the “major” argument in favor of either back-up rule ( f'(M1) for 
minimaxing, and f'(P1) for product propagation) proves to be 
wrong, then the contribution to favoring the other back-up rule 
goes up considerably. For their sibling positions, which in 
some sense are “secondary” arguments favoring the other back-
up rule, correspondingly, the inverse result is obtained.

7 IMPACTS ON MOVE DECISIONS

For usage in practical games, minimaxing is widely preferred to 
product propagation because of its ability to search much deeper 
with comparable resources due to the possibility of cut-offs [8]:  
in computer chess, for example, a product propagation search to 
depth n would require resources comparable to a minimaxing 
search to depth n2, per average. Thus, in order for product propa-
gation to be competitive, the depth of search must be of minor 
importance, at least in the specific position under consideration. 
In such a situation, there are several criteria for choosing among 
the competing back-up rules in a motivated manner:

 1. If the minimaxing values of the competing positions are 
identical, then the additional information available to product 
propagation in terms of “second best” moves is decisive. 

Table 4.   Percentage of critical cases with a specific position misevaluated 
(positive scores favor minimaxing, negative ones product propagation)

 

        positions   M1  M2  P1   P2

   error function e1 -2.57% 3.11% 8.54% -6.95%
   error function e2 -2.06% 3.41% 8.40% -6.85%



 2. A further criterion lies in the interval in which the draw value 
falls. If it is I4 (or, eventually, I1), a preference in favor of 
minimaxing may be assumed, since the advantage of product 
propagation in this interval is only marginal, even for accu-
rate estimates of the probability to win, and it disappears for 
less accurate ones, as additional data shows. For the other 
intervals, preference should be given to product propagation. 

 

 3. For board evaluators that express their assessments not only 
by point values, there exists a further option (e. g., the chess 
program Merlin has a facility to recognize some kinds of 
unclear positions [4]). Since Figure 4 shows that the compe-
tence of one back-up rule is worse than that of the other if the 
correctness of major or secondary arguments in its favor (M1 
and P2 for minimaxing) is in doubt, available uncertainty esti-
mates justify the choice in favor of one of the back-up rules.

8 CONCLUSION

In this paper, we have aimed at elaborating differences in 
strength of back-up rules by characterizing properties of critical 
situations in which the differences between these back-up rules 
prove relevant. Evidence from the examinations carried out 
demonstrates that minimaxing is superior to product propa-
gation for a uniform error distribution under pathologically high 
and very low error rates, while high frequencies of critical cases 
favoring product propagation lead to a dominance of this back-
up rule for realistic error distributions and depth 2 searches. 

In the future, we intend to elaborate more precisely the 
conditions under which product propagation is superior to mini-
maxing for depth 2 searches. Moreover, we want to investigate  
effects of deeper searches on value distributions and propagated 
error probabilities, and to analyse typical sorts of situations in a 
game, such as forced moves. Our results provide some insights 
for assessing degrees of competence of minimaxing and product 
propagation. Moreover, motivated combinations of the two 
back-up rules could be built, at least for specific situations, 
according to relevant properties observed in a particular game.
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APPENDIX: Game Tree Model 

The assumptions of the underlying game-tree model are derived 
from Pearl's [13] basic pathological model (as given in [17]):

1 . The tree structure has a uniform branching degree b.
2 . True values of nodes (TV) are either WIN or LOSS.
3 . True values have the game-theoretic relationship of two-

person zero-sum games with perfect information. A nonter-
minal node is won if at least one of its child nodes is won. 

4 . Heuristic values h (assigned to a node n by a static evaluation 
function f(n)) belong to the set {-hmin, … -1, +1, … +hmax}.

Two additional conditions are taken from [17]:

1. Non-uniformity of error distribution

Whenever a heuristic value incorrectly estimates the true value, 
an error occurs. The non-uniform error distribution in this model 
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is based on the “probability to win” (for some c and h = f(n)):
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2. Dependency of heuristic values

The heuristic values of child nodes depend on the heuristic value 
of the parent node, with a maximum change of a between node n 
and its child nodes ni, depending on the side to move as follows:

  MAX: f(n) ≤ f(ni) ≤ f(n) + a MIN: f(n) - a ≤ f(ni) ≤ f(n)


