
Autonomous Environment and Task Adaptation
for Robotic Agents

Michael Beetz and Thorsten Belker 1

Abstract. This paper investigates the problem of improving the
performance of general state-of-the-art robot control systems by au-
tonomously adapting them to specific tasks and environments. We
propose model- and test-based transformational learning (MTTL)
as a computational model for performing this task. MTTL uses ab-
stract models of control systems and environments in order to pro-
pose promising adaptations. To account for model deficiencies re-
sulting from abstraction, hypotheses are statistically tested based on
experimentation in the physical world.

We describe XFRMLEARN, an implementation of MTTL, and ap-
ply it to the problem of indoor navigation. We present experiments in
which XFRMLEARN improves the navigation performance of a state-
of-the-art high-speed navigation system for a given set of navigation
tasks by up to 44 percent.

1 Introduction

The use of general problem-solving mechanisms enables au-
tonomous robots to deal with unexpected and new situations,
which—sooner or later—occur in any complex and changing envi-
ronment. Unfortunately, the application of general problem-solving
mechanisms must often be paid for with a loss of performance com-
pared to highly specialized mechanisms. A promising approach to
achieve both the performance of specialized mechanisms and gener-
ality is to equip the agents with a learning component that enables
the agent to improve its performance by autonomously adapting to
its environments and typical tasks.

Indoor navigation for autonomous robots provides a good case in
point. So far research on indoor robot navigation has mainly focussed
on the development of general, reliable control methods that are opti-
mized for average performance. Safe high-speed navigation systems
have been developed by different research groups and tested over
extended periods of time [?]. Architectures that have been success-
fully employed include those that combine decision-theoretic path
planning techniques with reactive execution systems [?]. These ar-
chitectures also have the advantage using general, concise, and well-
understood control algorithms with proven properties that optimize
average performance.

Still, various system parameters must be adapted for the general
systems to exhibit satisfactory performance in new operating envi-
ronments. Even worse, it is often necessary to adjust the parame-
ters differently for different tasks and areas of the environment. So
far this parameter tuning has been mainly performed by human pro-
grammers. Unfortunately detecting situations which are not handled

1 University of Bonn, Dept. of Computer Science III, Roemerstr. 164, D-
53117 Bonn, Germany, email: fbeetz,belkerg@cs.uni-bonn.de.

appropriately, finding appropriate parameterizations, and testing al-
ternative parameterizations is very tedious and requires an enormous
amount of experimentation with the physical robot.

In this paper we investigate how a robotic agent using such gen-
eral algorithms can autonomously adapt the parameterizations of its
algorithms in order to significantly and substantially improve its per-
formance for a given environment and a specific set of navigation
tasks. We bias the adaptation process to avoid frequent parameter
changes in order to keep the behavior more predictable and stable.

The contributions of this paper are threefold. First, we describe
a computational method for model-based adaption of general robot
navigation methods to a specific environment and task. Second,
we describe a framework that allows for a concise specification of
heuristic rules for detecting improvable behavior and revising behav-
ior specifications to improve performance. Third, we investigate how
a robotic agent can empirically decide whether or not adaptations
improve its performance.

This paper presents XFRMLEARN, which is an implementation
of MTTL for SRCs [?], a specific kind of robot control architecture
and the RHINO navigation system [?]. We present experiments in
which XFRMLEARN improves the performance of the RHINO nav-
igation system, a state-of-the-art navigation system, for given navi-
gation tasks by up to 44 percent within 6 to 7 hours. XFRMLEARN

has autonomously operated an RWI B21 autonomous mobile robot
for more than 100 hours in an unprepared office environment.

2 XFRMLEARN

This Section describes the operation of XFRMLEARN by applying it
to the adaptation of the RHINO navigation system, which has shown
impressive results in several longterm experiments (e.g., [?]). Con-
ceptually, the RHINO navigation system works as follows. A naviga-
tion task is transformed into a Markov decision problem and solved
by a path planner using a value iteration algorithm [?]. The solution
is a policy that maps every possible location into the optimal heading
to reach the target. This policy is then given to a reactive collision
avoidance module that executes the policy taking the actual sensor
readings (and thereby unmodelled obstacles) and the dynamics of
the robot into account [?].

RHINO’s navigation behavior can be improved because the path
planner solves an idealized problem that does not take the desired
velocity, the dynamics of the robot, and dynamic obstacles into ac-
count. The reactive collision avoidance component takes these as-
pects into account but makes only local decisions. Neither compo-
nent deals with sensor crosstalk, which causes the robot’s sonar sen-
sors to hallucinate obstacles.

The RHINO navigation system can be parameterized in different

ways. One can constrain the navigation path to be taken for achiev-
ing a given navigation task by specifying a sequence of intermediate
points which are to be visited in the specified order. In addition, a
travelmode parameter determines how cautiously the robot should
drive and how abruptly it is allowed to change direction. Finally, one
can specify the sensors to be used for obstacle detection.

The robot controller with XFRMLEARN in operation works as fol-
lows. While the robot is busy, XFRMLEARN passively estimates and
monitors the pose of the robot, the translational and rotational veloc-
ity and stores the measured values of these quantities together with
a time stamp in a behavior trace. Figure ?? depicts such a behavior
trace as a sequence of circles. The position of the circles represent the
robot’s position, the circle’s size is proportional to the translational
speed, and the circle’s darkness to the rotational speed.

START

DESTINATION

Figure 1. An exemplary behavior trace.

When RHINO is idle, XFRMLEARN is started and executes a loop
with four steps: detect, diagnose, revise, and test. In the detect step
XFRMLEARN selects an “interesting” behavior trace together with
the navigation plan that has produced the trace. XFRMLEARN then
looks for conspicious behavior patterns in this trace, which are often
hints for behavior flaws. The diagnose step tries to generate expla-
nations for the conspicious behavior patterns on the basis of XFRM-
LEARN’s models. The result of the diagnosis step is used to index
promising revisions. The revise step applies the revision that is ex-
pected to produce the highest performance gain. Finally, in the test
step XFRMLEARN runs a series of experiments to test the hypothesis
that the new plan generates behavior that is significantly better than
that generated by the original one.

XFRMLEARN uses structured reactive parameterizations
(SRPAs), concurrent reactive control plans that specify constraints
for the robot’s behavior and parameterize the low-level control
system in a situation- and context-specific way. SRPAs specify how
the navigation behavior is to be adapted when certain triggering
conditions become true and which intermediate locations the robot
should head to as it performs the task [?]. We will use the following
syntax for SRPAs:

with behavior adaptation beh-spec�

GO-PATH (path)

where beh-spec has the form whenever c: p v, where c is a trig-
gering condition, p is a parameter of the subsymbolic navigation sys-
tem, and v is the value p is to be set to. path is a sequence of points.

The SRPA specifies that the robot should take a path through the
intermediate destinations given by path. Concurrently, the controller
runs the guarded behavior adaptations beh-spec. Thus, whenever the
state of the robot, in particular its position and orientation, changes
such that a triggering condition c of an adaptation becomes true, then
the navigation system is parameterized as specified by p v.

2.1 The Learning Step “Detect”

The “detect” step selects the SRPA that with respect to XFRM-
LEARN’s experience promises the highest performance gain for the
next learning iteration. XFRMLEARN then selects a behavior trace
that has been generated by this SRPA. This trace is analyzed to detect
stretches of conspicious behavior that we call conspicious behavior
modes. A conspicious behavior mode is a subtrace of a behavior trace
that substantially deviates from the expected behavior.

2.2 The Learning Step “Diagnose”

In the “diagnose” step the conspicious behavior modes are causally
explained, if possible. Those conspicious behavior modes that can
be causally explained are called behavior flaws. The performance
gain that could be achieved by eliminating each flaw is estimated and
stored in the description of the flaw. The information can be used to
determine the utility of a revision step (see Section ??). The flaws
are diagnosed based on a world model together with a model of the
low-level navigation system.
Models for the Diagnosis Step. Knowledge about the environment
is a powerful resource for tailoring the navigation behavior of the
robot to the particular navigation tasks at hand. In this paper we
enrich the general environment model, which contains knowledge
about obstacles etc., with additional knowledge about office envi-
ronments. Environments such as office buildings are functionally de-
signed. Within offices, the paths to the desks are usually kept free
and so are hallways. Doors separate the working areas, like offices,
from more crowded areas, like hallways.

XFRMLEARN’s knowledge about RHINO’s environment is repre-
sented in a symbolically annotated 3D model [?], which specifies
the position and orientation of obstacles as well as their type and
function. The world model enables XFRMLEARN to draw inferences
like the following ones: what is the closest obstacle to the left of the
robot? How would the collision avoidance module probably perceive
the local surroundings at position hx; yi?

To adapt the navigation behavior effectively, XFRMLEARN is also
equipped with causal and functional knowledge about RHINO navi-
gation system that is encoded into diagnostic rules. We will explain
these rules next.
Diagnostic Rules. XFRMLEARN’s diagnostic rules used in this pa-
per are rules that classify conspicious navigation behavior as be-
ing caused by close obstacles (diagnostic rule D-1), narrow passages
(D-2), low target velocity (D-3) and high target velocity (D-4), and
sonar cross talk (D-5). Exploiting functional knowledge allows us to
formulate more specific rules. For example, a conspicious behavior
could be caused by a doorway, which is a specific narrow passage
that often causes cross talk (D-6). In general, such specializations of
diagnostic rules define taxonomies of behavior flaws. Note, the di-
agnosis rules are hand coded and heuristic. There are, of course, ap-
proaches to learning these classification rules such as learning from
examples classified by experts or performing data mining in richer
behavior traces. Learning the classification rules, however, is beyond
the scope of this paper.

Let us discuss a diagnostic rule for the following conspicious be-
havior. The robot stops in the midst of carrying out a navigation
task while traversing a doorway. A possible explanation that XFRM-
LEARN generates for this kind of behavior is that the sonar sensor
data are corrupted by “cross talk,” which causes the robot to hallu-
cinate obstacles in front of itself. Because in narrow passages the

robot cannot circumnavigate obstacles, the collision avoidance mod-
ule stops the robot.

if BehaviorMode(Stops,?srpa,?subtrace)
^ InNarrowPassage(?subtrace,?percentage)
^ ?percentage> 50%

then infer BehaviorFlaw with
CATEGORY = StoppingCausedByCrossTalk
SRPA = ?srpa
SUBTRACE = ?subtrace
SEVERITY = severity(?subtrace,?srpa,

?percentage,
StoppingCausedByCrossTalk)

Figure 2. Diagnostic rule D-5 for diagnosing behavior flaws as caused by
sonar cross talk.

Figure ?? shows a simple and general rule for diagnosing these
kinds of behavior flaws (rule D-5 above). This rule explains the stop-
ping of the robot during the traversal of a narrow passage (at least
50% of the conspicious subtrace has to lie in the narrow passage)
with the occurrence of sonar cross talk. If the diagnostic conditions
hold then a behavior flaw description is returned. The behavior flaw
description also contains an estimate of the flaw’s severity, which in
the case of cross talk is the time spent standing at one place as op-
posed to traverse the narrow passage with the velocity specified in
the SRPA.

The diagnostic rules are applied to all conspicious subtraces and
the resulting behavior flaw descriptions are collected.

2.3 The Learning Step “Revise”

The “revise” step uses heuristic programming knowledge in the form
of transformation rules to propose promising revisions of the given
SRPA. XFRMLEARN selects revisions with a probability proportional
to their expected utility to generate a new candidate SRPA. This se-
lection mechanism trades off the exploitation of previous experiences
and the exploration of alternative revision strategies.
Transformation Rules The programming knowledge is abstract and
declarative knowledge about how SRPAs are to be revised to avoid
specific kinds of behavior flaws.

transformation rule switch-off-sonars-to-avoid-cross-talk
to eliminate ?behavior-flaw with

CATEGORY = StoppingCausedByCrossTalk
SRPA = ?srpa
SUBTRACE = ?subtrace

if CrossesNarrowPassageRegion (?subtrace,?region)
then with expected utility

= expected-utility (switch-off-sonars-to-avoid-cross-talk,
?behavior-flaw)

insert reactive parameterization
WHENEVER entering-region?(?region) : SONAR OFF

Figure 3. Transformation rule R-2.

Fig. ?? shows a transformation rule indexed by a behavior flaw
“StoppingCausedByCrossTalk”. The rule is applicable if the subtrace
?subtrace traverses a narrow passage ?region. The application inserts
a reactive parameterization into the SRPA that upon entering the nar-
row passage will switch off the sonar sensors. The rule contains a
term for estimating the expected utility of the revision (see below).

For the purpose of this paper, XFRMLEARN provides the follow-
ing revisions:

R-1 If the behavior flaw is attributed to the traversal of a narrow
passage (D-2) then insert additional intermediate points into the
topological component of the SRPA that cause the robot to traverse
a narrow passage orthogonally and with maximal clearance.

R-2 Switch off the sonar sensors in narrow passages to avoid hallu-
cinating obstacles due to sonar cross talk (indexed by D-5).

R-3 Insert an additional intermediate point into the topological com-
ponent of the SRPA in order to pass a closeby obstacle with more
clearance (indexed by D-1).

R-4 Increase the target velocity in sparsely cluttered areas where
the measured velocity almost reaches the current target velocity
(indexed by D-3).

R-5 Insert an additional intermediate point into the topological com-
ponent of the SRPA to avoid changes in the robot’s direction that
are too abrupt (indexed by D-2).

R-6 Apply R-2 and R-1 simultaneously (indexed by D-6).

Estimating the Expected Utility of Revisions. We have seen above
that XFRMLEARN’s transformation rules are fairly general. This has
an important consequence. The expected utility of rules varies from
environment to environment and task to task. Therefore an impor-
tant aspect in behavior adaption is to learn the environment and task
specific expected utility of rules based on experience.

The expected utility of a revision r given a behavior flaw b is
computed by EU(rjdiagnosed(b)) = P(success(r)jcorrect(b)) * s(b),
where b is a diagnosed behavior flaw, s(b) is the severity of the be-
havior flaw (the performance gain, if the flaw would be completely
eliminated), P (success(r)jcorrect(b)) is the probability that the
application of revision r improves the robot’s performance, given
that the diagnosis of b is correct. For computing the probability
P (success(r)jcorrect(b)) XFRMLEARN maintains a simple statis-
tic about successful and unsuccessful rule applications.

In general, the first equation overestimates the expected utility of
a revision but tends to select, with respect to our practical experi-
ence, the same revisions that programmers propose when visually
inspecting the behavior traces. The estimate of the expected utility
of the second most promising revision is used as an estimate of how
interesting the current navigation task or the SRPA for this task re-
spectively is for future examinations by XFRMLEARN.

2.4 The Learning Step “Test”

Because of the heuristic nature of the transformation rules, their suc-
cess has to be empirically tested. To perform this test, XFRMLEARN

repeatedly and alternatingly executes the original SRPA p and the new
candidate SRPA p̂ proposed in the revision step to compare their per-
formance. After k experiments (we usually use k = 7) the test com-
ponent decides whether or not to substitute the original SRPA by the
new candidate SRPA in the library. The new candidate SRPA is ac-
cepted, if the t-test based on the experiments results in a 95% confi-
dence that the new SRPA performs better than the original one. In or-
der to perform the statistical significance test we have also applied a
bootstrapping t-test (see [?], chapter 4) with a rejection level of 5%.
Unlike the t-test, the bootstrap test does not assume that the sam-
pling distributions are roughly normal and have the same variance.
Surprisingly though our experiences show that the t-test produces al-
most identical results compared to the bootstrapping t-test.

3 Experimental Results

We have performed two extended learning sessions for one naviga-
tion task respectively. In both learning sessions XFRMLEARN im-
proved the average navigation behavior for the given task success-
fully by 31% and 44%. There is a 95% probability that the perfor-
mance gain has been at least 21% and 18%, respectively. In the sec-
ond learning session, besides the average performance the standard
deviation has been significantly reduced.

We consider these performance gains as being very impressive,
for several reasons. First, XFRMLEARN has only used observable
symptoms such as driving slowly or fast. It did not have access to
the execution states of the collision avoidance module which would
have provided more informative and reliable evidence for the diag-
nosis of behavior flaws. Second, the transformation rules are quite
general and applicable to many indoor environments. They are also
not specifically tailored for this particular system. Third, we have ap-
plied XFRMLEARN to a low-level navigation system which is well
tuned and has been developed in the same environment. We expect
the performance gains for insufficiently configured navigation sys-
tems to be much higher.

The Figure ?? summarizes one of the two learning sessions. In this
learning session XFRMLEARN has tried six revisions, four of them
were successful. Fig. ?? shows the original (empty) SRPA and the
final SRPA for the navigation task and two typical behavior traces.
A brief visual inspection shows that the learned SRPA runs smoother
and much faster in the hallway. The destination office is entered in
an obtruser angle. The transformations that were considered in the
learning cycles are visualized in Fig. ??(upper right).

START

DESTINATION

START

DESTINATION

SONAR OFF

SONAR OFF

COLLI-MODE FAST-TRAVEL

Learning Cycle 5

Learning Cycle 6

Learning Cycle 3

Learning Cycle 4

Learning Cycle 1

START

DESTINATION

START

DESTINATION

Figure 4. The original (left) and the learned plan and two behavior traces.

To compare the performance of the original and the learned SRPA

we have performed an experiment in which we performed the navi-
gation task with each SRPA eleven times. Fig. ?? contains the mea-
sured times (left) and the most important values of the descriptive
statistics. All characteristic numbers of the learned SRPA are substan-
tially lower. The average time needed for performing a navigation
task was reduced by 93.57 seconds, which corresponds to a reduc-
tion of about 44 percent. The probability that the duration has been
reduced is 0.9966. The t-test for reducing the navigation time by at
least 39 seconds has a significance of 0.952.

DURATION

ORIGINAL LEARNED
156.8 160.5
265.9 148.5
487.6 195.3
167.4 145.3
215.5 214.3
181.5

114.5 102.6
184.5 97.9
108.6 138.3

95.6 93.6
128.8 86.1
159.0

STATISTICS ORIG. LRND.
Minimum 145.3 86.1
Maximum 487.6 184.5
Range 342.2 98.4
Median 181.5 108.6
Mean 212.6 119.0
Variance 9623.1 948.0
Std dev 98.0 30.7

Figure 5. The durations for carrying out the navigation task with the
original and the learned SRPA (left). The descriptive statistics for the

experiment (right).

In the second session we posed a navigation task to go from one
room into an adjacent one, which means that no big performance
gains could be obtained by simply increasing the speed in the hall-
way. For this task, XFRMLEARN has proposed and tested five plan
revisions, three of them were successful. The average time needed for

performing the navigation task was reduced by 35.3 seconds, which
corresponds to a reduction of about 31 percent. The t-test for the
learned plan being at least 24 seconds (21%) faster returns a signifi-
cance of 0.956. A bootstrap test returns the probabilty of 0.956 that
the variance of the performance has been reduced.

4 Discussion

In this section we discuss XFRMLEARN with respect to generality is-
sues and its techniques to deal with high variances of robot behavior.
Generality. XFRMLEARN provides a framework in which heuristic
rules for detecting improvable behavior and revising behavior speci-
fications to improve performance can be specified concisely. We have
presented a set of fairly general rules including ones for introducing
additional points to constrain the robot’s path, circumnavigating ob-
stacles with greater clearance, and in-/decreasing the target velocity.
Of course, such rules can only be of limited generality. They must
be reformulated if the robot is not equipped with an omni-directional
drive or has a very different sensory apparatus.
Dealing with the Variance in Robot Behavior In our view, one of the
main hindrances in the application of machine learning techniques to
autonomous robot control is the high variance in robot behavior that
is inherent in most systems that control physical robots in complex
environments. This variance makes it very difficult to decide whether
one control strategy is better than another one. Therefore it is a main
idea of MTTL to explicitly take this variance into account.

To find a good parameterization of the control system we per-
form a search in the space of possible parameterizations. As this
search space is continuous we consider a greedy search strategy as
promising. Because accepting worse parameterizations as improve-
ments would cause a hill-climbing learning algorithm to search into
the wrong direction, the risk of making such wrong decisions should
be minimized. Therefore MTTL uses a stringent test: a new candidate
parameterization is accepted only if it increases the performance sig-
nificantly (in a statistical sense).

In our learning experiments we have to deal with various sources
of variance. For example, the time for traversing a doorway depends
on whether or not sonar cross talk occurs in a particular trial, how
close a particular path passes the door frame, the amount of rotation
upon entering the doorway, etc.

Given such high variances, passing the significance test requires a
large number of time consuming experiments. To reduce the number
of experiments we employed additional techniques: testing perfor-
mance gains of adaptations locally instead of globally (with an en-
velope to account for side effects of the adaptation), test a two plans
alternatingly (to minimize the effect of unmodelled influence factors
like the process load of computers), and use macro revision rules,
such as transformation rule R-6, that perform multiple revisions.

Given that we use such a stringent criterion for the acceptance of
new candidate SRPA the time needed for tests is reasonable. To test
one SRPA revision takes about 60 minutes and a complete learning
session for one navigation task takes about 6-8 hours. These time
requirements, however, can be drastically reduced, probably by a
factor 3-4, if (1) a navigation task and its inverse task are learned
together and (2) using local tests several hypotheses can be tested
simultaneously. For example, two revisions for traversing different
doors could be tested simultaneously without having to consider in-
terferences between the two revisions. These optimizations would
imply that an office delivery robot could autonomously adapt itself
to its working environment within a weekend. Further reductions can
be obtained by adequately generalizing learning results.

5 Related Work

Our adaptation problem differs from those tackled by other re-
searchers [?, ?, ?] in that these researchers only investigate learning
techniques for parameterizing reactive control systems and do not
apply their techniques to control systems that are already tuned for
average performance.

MTTL differs from other approaches to automatically generating
task and environment specific controllers such as genetic algorithms
[?, ?] and reinforcement learning [?, ?]. Floreano [?], for example,
use evolutionary learning for learning the parameterization of a sim-
ple robot control system. Santamaria and Ram [?] describe an ap-
proach for learning a so-called adaptive policy, a mapping from per-
ceived situations to the continuous space of possible configurations
of a purely reactive navigation system. They consider the problem as
a reinforcement learning problem and solve it using a hybrid learning
algorithm that combines techniques from case-based learning and re-
inforcement learning. Both kinds of approaches are very elegant, do
not require (sophisticated) models, and are therefore very general.
They pay, however, for this generality with a larger number of hy-
potheses that must be considered in their search for better controllers.
Unfortunately, in autonomous robotics these hypotheses have to be
tested by physical experiments, which limits the complexity of the
problems that can be tackled with these approaches. It would be very
interesting and instructive to test these general and model-free ap-
proaches on hand-tuned and sophisticated controllers (such as the
RHINO system [?]) where the parameterizations that improve the
performance are very sparse in the space of possible parameteriza-
tions. For the adaptation of sophisticated controllers the use of mod-
els is a valuable resource to find parameterizations that are capable
of improving the behavior. In addition, we only know of applica-
tions of these learning techniques to purely reactive controllers. It re-
mains to be investigated whether pure mappings from perceptions to
parameterizations are capable of producing satisfying global behav-
ior. For example, in the context of service robotics certain parameter
configurations should be associated with environment regions rather
than perceived situations in order to achieve more coherent and pre-
dictable navigation behavior. Furthermore, learned controllers are in
general not transparent for human programmers.

Goel et al. [?] introduce a framework that is, in some aspects, sim-
ilar to ours: A model-based method monitors the behavior generated
by a reactive robot control system, detects failures in the form of
behavioral cycles, analyzes the processing trace, identifies potential
transformations, and modifies the reactive controller. However, the
method is used to reconfigure a reactive control systen when it is
trapped in a cyclic behavior due to the lack of a global perspective
on the task it has to perform. They only perform revisions to resolve
conflicts between different reactive behaviors. In addition, their revi-
sions are specific to particular problem episodes and cannot be reused
for other episodes.

6 Conclusions

In this paper we have investigated the problem of improving the per-
formance of general, parameterizable robot control systems by au-
tonomously adapting them to specific tasks and environments. This
includes control systems that are already tuned for average perfor-
mance. The adaptation problem for those control systems is challeng-
ing because the parameterizations that improve their performance are
very sparse in the space of possible parameterizations.

We have proposed model- and test-based transformational learn-
ing (MTTL) as a computational model for performing this task.

The scope of robot control systems that MTTL is applicable to in-
cludes those that employ strategic decision as well as reactive exe-
cution components. MTTL can adapt sophisticated control systems
successfully because it uses abstract models of environments and
robot control systems to propose promising adaptations, performs
a greedy search by transforming structured reactive parameteriza-
tions (SRPAs), and tests a transformed SRPA to accept it only if the
SRPA improves the robot’s behavior with statistical significance. Per-
forming statistical significance tests based on experimentation in the
physical world enables MTTL to account for model deficiencies re-
sulting from abstraction and explicitly deals with the high variance
of robot behavior in complex environments.

We have described XFRMLEARN, an implementation of MTTL,
and applied it to the problem of indoor navigation. XFRMLEARN

has been integrated into structured reactive controllers (SRCs) and
has successfully learned better navigation plans for the robot RHINO.
These navigation plans are also used by the planning system XFRM.
XFRMLEARN has autonomously operated an RWI B21 autonomous
mobile robot for more than 100 hours in an office environment. Our
experiments have shown that XFRMLEARN is capable of improving
the performance of the RHINO navigation system, a state-of-the-art
navigation system, both significantly and substantially: in two ex-
tended learning sessions XFRMLEARN has improved RHINO’s navi-
gation behavior within 6 to 7 hours by 31% and 44% respectively.
Acknowledgements. This work is partly supported by the Deutsche
Forschungsgemeinschaft (DFG) (Contract No. BE 2200/3-1).

REFERENCES
[1] M. Beetz. Structured reactive controllers — a computational model of

everyday activity. In Proceedings of the Third International Conference
on Autonomous Agents, 1999.

[2] M. Beetz, W. Burgard, D. Fox, and A. Cremers. Integrating active lo-
calization into high-level control systems. Robotics and Autonomous
Systems, 23:205–220, 1998.

[3] M. Beetz, M. Giesenschlag, R. Englert, E. Gülch, and A. B. Cremers.
Semi-automatic acquisition of symbolically-annotated 3d models of of-
fice environments. In International Conference on Robotics and Au-
tomation (ICRA-99), 1999.

[4] P. Cohen. Empirical Methods for Artificial Intelligence. MIT Press,
1995.

[5] D. Floreano. Robotics in artificial life and behavior engineering. In
T. Gomi, editor, Evolutionary Robotics. AAI Books, Ontario, 1998.

[6] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to
collision avoidance. IEEE Robotics and Automation Magazine, 1997.

[7] A. Goel, E. Stroulia, Z. Chen, and P. Rowland. Model-based reconfig-
uration of schema-based reactive control architectures. In Proceedings
of the AAAI Fall Symposium on Model-Based Autonomy, 1997.

[8] A. Howe and L. Pyeatt. Integrating pomdp and reinforcement learning
for a two layer simulated robot architecture. In Proceedings of the Third
International Conference on Autonomous Agents, Seattle, WA, 1999.

[9] J. Koza. Genetic Programming. MIT Press, Cambridge, MA, 1992.
[10] J. Santamaria and A. Ram. Learning of parameter-adaptive reac-

tive controllers for robotic navigation. In Proceedings of the World
Multiconference on Systemics, Cybernetics, and Informatics, Caracas,
Venezuela, 1997.

[11] R. Sutton and A. Barto. Reinforcement Learning: an Introduction. MIT
Press, 1998.

[12] S. Thrun, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dellaert, D. Fox,
D. Haehnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz. Min-
erva: A second generation mobile tour-guide robot. In Proceedings
of the IEEE International Conference on Robotics and Automation
(ICRA’99), 1999.

[13] S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus, D. Hennig,
T. Hofmann, M. Krell, and T. Schmidt. Map learning and high-speed
navigation in RHINO. In D. Kortenkamp, R.P. Bonasso, and R. Mur-
phy, editors, AI-based Mobile Robots: Case studies of successful robot
systems. MIT Press, Cambridge, MA, 1998.

