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Abstract.
Since its origins, Artificial Intelligence has been faced with the

challenge to control robot operations through the so called deliber-
ative thinking paradigm. Robot actions are governed by a reasoning
process which needs robots to acquire information from the envi-
ronment to update their internal world model causing the failure to
generate an useful action in a finite amount of time. The framework
of roboticles, appearing in this paper and borrowed from the theory
of complex dynamical system, is a tool to deal with quantities like
energy or effort, to symbolize the amount of sensor information a
robot is fed with, later dissipated by the action of its effectors. The
dynamical law works as a triggering mechanism which controls the
flow of energy between sensors and effectors so that its current value
can be interpreted, in some sense, as the internal world model han-
dled by the agent. Environment changing, detected through sensor
signals, results in moving the representation point of the system on
the energy surface. Moreover, actions issued by robot effectors dis-
sipate energy in a way to maintain the working point of the system
in a stationary state where the energy supplied by sensor signals is
balanced by the effort delivered to the effectors.

1 INTRODUCTION

The symbol system hypothesis has been dominating Artificial Intel-
ligence for so a long time that the problem of knowledge represen-
tation has often been cast in what it’s generally known as delibera-
tive thinking paradigm. Every intelligent activity is implemented as
a reasoning process which operates on a symbolic internal model re-
sulting in the sense-think-act cycle when it is applied to autonomous
robots. Though the behaviour-based approach has been proved suc-
cessful for many tasks involving real autonomous agents working in
complex dynamical environments, the problem of where to store and
how to handle acquired sensor information for future uses, it has re-
mained quite almost unsolved.

Within the behaviour-based paradigm, originated from the pio-
neristic work of Brooks [5], many authors such as Connell[6], Maes
[11], Arkin [2], Donath [1], Pfeifer [16], D’Angelo [7], Kaelbling
[10] have devised several innovative architectures which have bor-
rowed from cybernetics the idea that situated agents must be embod-
ied within their environment. A number of theoretical problems, such
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as the issues on non-monotonic reasoning and the frame problem,
simply disappear as a consequence of the symbol grounding between
internal model and external world.

However, the dilemma of an internal representation of the world
remains quite unsolved even if minimalism doesn’t recognize the
need of any form of representation which, on the other hand, plays
a crucial rôle when a group of autonomous agents are expected to
execute a common goal. But information handling, as Artificial In-
telligence seems to suggest, cannot be discarded in principle even
if agents should be provided with more effective handling of their
world models.

For example, let us suppose a teammate is trying to participate to
a collective action where the displacement of the group inside the
environment is a very important feature. In this case there is no ex-
plicit goal to satisfy but a somewhat persistent pattern to be fed by
individual actions which act as cue-based communication, termed
stigmergic in biological literature. So, the detection of the pattern,
the group is trying to enforce, can be considered as a form of implicit
communication ([13], [12], [14], [15]) with the effect of triggering
agent behaviours (implicit coordination) in a way to make emerging
the observed collective behaviour.

But how can a teammate be aware that a pattern must be enforced
if it’s not a part of a world model, shared with the others teammates,
he’s dealing with? The problem stems from the fact that communi-
cation implies an information exchange process among the involved
agents and, at this point, the choice of a symbol system, carrying all
necessary information, seems to be the best solution. But the agent
world models must agree each others and, moreover, they must be
compliant with the environment features which are relevant for the
group activity.

A possible way to fulfill this condition, avoiding both the frame-
problem and non-monotonic reasoning troubles, is the requirement
that also exchangedinformation must be situated and embodied. This
means that not only information contents should be considered but
also its carrier (medium) which works as symbol grounding for that
information. Within this perspective there is no need to separate in-
formation contents from its form, so that agents can act directly on
sensor signals generated by the interaction of its sensor devices with
the environment.

The rest of the paper is organized as fallow. In sect. 2 we use some
terminology from dynamical system theory applied to wheel driven
vehicles and we generalize the well-known concept of energy. In sect.
3 we introduce the roboticle paradigm whereas in sect. 4 some prop-
erties are derived and discussed. Finally, sect. 5 considers an example
adapted from Breitenberg’s vehicle one.



2 VEHICLE CONTROL AND ENERGY

The idea of a non-symbolic representation is not new in literature.
For example, Steels [18] has exploited analogical representation as
a tool to implement sensorimotor coordination. In the last decade,
however, several authors have been faced with the problem of find-
ing out a different paradigm to acquire and use knowledge from the
environment.

Many of them can be much more appreciated if they are cast in
the language of complex dynamical system theory. In fact, features
ascribed to the behaviour-based approach, like the direct coupling
of perception to action and the dynamic interaction with the environ-
ment are an attempt to deal with dynamical systems using a symbolic
framework.

Thus, if robots are dynamical systems which receive a stream of
input sensor signals from and generates a stream of output actions to
the environment, then it means that we can describe them giving a set
of state variables x and a dynamical law �which tells how the values
of the state variables change over time. In the continuous-time case
the dynamical law takes the form of a set of differential equations
referred to as a vector field on the state space. The interested reader
is referred to Hale and Koçak [8].

The same framework has been used with slight different purposes.
For example, Beer [3] uses complex dynamical systems to model
the behaviour of a neural network with the aim to gain insights on
learning mechanisms. From another point of view, Jäger [9] tries to
understand behaviour arbitration as interaction among behaviours,
introducing what he terms the dual dynamic as an attempt to sepa-
rate the proper dynamics of a behaviour (target dynamics) from that
responsible to trigger the behaviour itself (activation dynamics).

However, the most promising results which are expected within
this framework, should concern a different way to deal with robot
sensor data and actions. Thus, our investigation has been focused
on wheel driven autonomous vehicles moving on plain surfaces. If
we assume the cartesian coordinates x and y as state variables, the
continuous non linear system

_x = u(x; y; �) _y = v(x;y; �) (1)

with control parameter �, defines the governor unit of such a vehicle.
The action of the dynamical law (1) is twofold. It generates the set
of points covered by the vehicle from the initial point < x0; y0 >

and, moreover, it defines how that trajectory is covered, depending
on sensor information about the state of the vehicle with respect to
the environment.

The implicit description of the trajectory can be easily obtained
from (1) as differential form

v(x; y; �)dx � u(x; y; �)dy = 0 (2)

stating that the infinitesimal arc dr =< dx; dy > traced by the vehi-
cle during the time interval dt is parallel to the vector field < u; v >.

Generally, (2) is not an exact differential form even if it always
exists an integrating factor by which it becomes exact. If we search
such a factor with the form 1

E
, equation (2) yields

v

E
dx� u

E
dy = dS (3)

where S(x,y) denotes a scalar function which implicitally defines a
trajectory family, one of which is actually covered by the vehicle in
according to the initial conditions.

Now, it can be easily shown that (3) holds if and only if the fol-
lowing differential equation holds

u
@E

@x
+ v

@E

@y
= 2�E (4)

where � represents the dissipative factor, defined as an half of the
divergence of the vector field. Equation (4) suggests us to interpret
E(x,y) as the energy a vehicle is sharing with its environment while it
is moving along the trajectory. This interpretation stems from making
explicit the contribution of the vector field in (4), so that we can write

dE

dt
= 2�E (5)

expressing the decay law of E referred to the dissipative factor. On
the other hand, equation (3) provides a general way to build the dy-
namical law of a vehicle

_x = �E@S

@y
_y = E

@S

@x
(6)

as soon as both a trajectory family S(x,y) and an energy function
E(x,y) have been given. In the case that E(x,y) takes a constant value,
so that (2) becomes an exact differential form, we say the system to
be hamiltonian or conservative.

3 ROBOTICLES

Complex dynamical system theory provides a general framework to
deal with entities, built on several component parts and specified by
one or more quantities changing over time. No mention is done about
the choice of state variables, dynamical law, and so on because it
strongly depends on the specific problem at the hand.

Thus, the dynamical law (1) which solve the navigation problem
for an autonomous vehicle, make no assumption on the specific con-
trol mechanism, actually implemented to govern its trajectory. In any
case, the cartesian coordinates are not the best choice as state vari-
ables because their values must be acquired from the environment.

On the contrary, a real mobile robot is equipped with proxim-
ity sensors and range finders, and it is driven by two motor wheels
which are supplied with two independent pulse voltage regulators.
Within this robot structure the most appropriate state variables we
can choose are the speed VR and VL, which drive the right and the
left wheel, respectively.

However, if we introduce the distance 2a between the wheels
along the motor axis, the speed V of its middle point (vehicle moving
center) and the steering angle � are completely adequate to the aim.
The choice is a consequence of the following relations

VR = V + a _� VL = V � a _� (7)

whose validity stems from the definition of the bending radius R =
V dt

d�
of the moving center, on which the two motor wheels are sym-

metrically placed.
The corresponding dynamical law can be immediately obtained

from (1) as time derivatives. Since both V and � define a vector tan-
gent to the vehicle trajectory, the cartesian component u and v ap-
pearing in (1) are easily expressible by

u = V cos � v = V sin � (8)

which allow us to rewrite the original dynamical law (1) in terms of
the new state variables V and �

_V = (�+ 
1 cos 2� + 
2 sin 2�)V

_� = !+ 
2 cos 2� � 
1 sin 2�

(9)



By so doing we have split the contribution of the environment dy-
namics from which explicitally caused by the vehicle, in according
to the figure 1. It should be noticed that the coefficients appearing in

Figure 1. Roboticle: a wheel driven vehicle

(9) are possibly functions of the vehicle position and they take the
values
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showing how the vector field components are monitored by the
governor unit which drives vehicle motor wheels. We have termed
roboticles such kind of vehicles.

A similar approach has been used by Schöner [17], who considers
vehicles moving with a fixed speed V, where the single state variable
� represents the amount of steering referred to a given pose. This
variable can be interpreted as a mark of the vehicle apparent horizon
where obstacles and the target are reflected as fixed stars.

The dynamical law (9), however, is a particular case of the most
general one, appearing below

_V = �(V; �; p1; : : : ; pm; �)

_� = �(V; �; p1; : : : ; pm; �)

_x = V cos � � @G

@x

_y = V sin � � @G

@y

(11)

which makes explicit how the state variables V and �, ascribed to the
vehicle, affect the position variables x and y, representing the envi-
ronment. The last two equations express the necessary coupling of
the vehicle with its environment, caused by the vehicle embodiment.
In this case the vehicle is assumed to move on a generic surface,
whose features are defined by the function G, which becomes a per-
fectly rigid plane when G is taken as a constant.

It should also be noticed in (11) the presence of the parameters
p1; : : : ; pm which usually depend on the vehicle position, with the
same rôle played by �;!; 
1 and 
2 in (9). We have called them
virtual sensors and the functions p1(x;y); : : : ; pm(x;y) can be in-
terpreted as their models.

4 NON-SYMBOLIC REPRESENTATION

From equations (6) it follows immediately that a point < xe; ye > is
an equilibrium point if the vehicle energy becomes null. This means

that a negative dissipative factor forces a vehicle to move along its
trajectory with a positive amount of energy when it’s traveling to-
wards an attractor. So, the initial positive amount of energy will be
eventually dissipated by vehicle wheel controller.

4.1 Effort

Let us now define the product Vds as the effort delivered by the vehi-
cle effectors to support its movement, along a trajectory arc ds with
speed V. Using the components u and v of the vector field the pre-
ceding definition yields

V ds = udx+ vdy (12)

whose value along a finite trajectory arc depends on initial and final
positions only if the following condition holds

@u

@y
=

@v

@x
(13)

In such a case there exists a scalar function F(x, y) which generates
the vector field components as partial derivatives

_x = �@F
@x

_y = �@F
@y

(14)

Attractors and repellors are easily identified by simply looking at the
distribution of minima and maxima of the scalar function F which de-
fines the landscape for system basins of attraction. Because its value
can be used to estimate how much residual energy must be dissipated
before reaching an attractor, it motivates the term dissipative for the
function F.

In general, however, condition (13) doesn’t hold so that the vec-
tor field components must be generated using the auxiliary scalar
function U(x,y). It provides the conservative part of the vector field
appearing in (14) as an additive term in according with the schema
(6). Hence, the most general dynamics of a continuous-time system
is given by

_x = �@F
@x
� @U

@y
_y = �@F

@y
+

@U

@x
(15)

where the interaction between the dissipative function and the inter-
nal energy makes emerging the observed trajectory.

Starting from the definition (12) of effort, we can multiply equa-
tions (15) for the cartesian components of the infinitesimal trajectory
arc ds and, then, sum the corresponding members. The new differen-
tial form, so obtained,

V ds = �dF +

�
@U

@x
dy� @U

@y
dx

�
(16)

provides an attractive interpretation. In fact, if you suppose that the
effort Vds spent by the vehicle motor wheels must be compensatedby
the same amount -Vds, with opposite sign, delivered by the vehicle
governor unit, the preceding equation (16) becomes

dF � (�V ds) = dM (17)

where dM is defined by the follow relation

dM =
@U

@x
dy � @U

@y
dx (18)

It should be noticed that the scalar quantity M is not properly a func-
tion because its integral evaluation depends on the integrating path,
so it plays the rôle of a vehicle memory. Since the value of M also
depends on the so called internal energy U(x,y) of the vehicle, there
is a close relation with the flow of sensor data, as it will be discussed
in the next subsection.



4.2 Far from Equilibrium

Because the vehicle is requested to adapt continuously to a rapidly
changing environment, it needs to be provided with a reactive mech-
anism which tries to get the most useful benefit from the interaction
with the environment. In this sense, the governor unit for autonomous
vehicles must be reactive and deliberative at the same time and this
means that information acquired from the environment should affect,
with some respect, the internal model of the world the vehicle is deal-
ing with.

A possible implementation of this model is provided by the inter-
pretation of incoming sensor data as a flow of energy whose effect
is that of increasing the current amount of energy the vehicle holds.
Environment changing, detected as sensor signals, results in moving
the representation point of the system on the energy surface.

The starting point is considering that equation (2) is identically
satisfied only in the ideal case where the environment is perfectly
compliant with the vehicle. In any real situation, however, the trajec-
tory covered by the vehicle cannot satisfy (2).

To the aim of the follow discussion we can assume (2) which allow
us to equate (6) with (15). By so doing we can multiply these two new
equations for the cartesian components of the infinitesimal trajectory
arc ds and, then, sum the corresponding members. The differential
form, so obtained,

EdS = dU +

�
@F

@x
dy� @F

@y
dx

�
(19)

can be used to estimate the variation of value of S(x,y) that in an ideal
case should remain unchanged.

If we introduce the following definitions

dP = E(x; y)dS

dQ = @F

@x
dy � @F

@y
dx

(20)

where dP is the increment of sensor flow, due to a positive fluctua-
tion of S, while dQ is the corresponding increment on the activity of
vehicle effectors, we can rewrite (19) as a couple of relations

dU = dP � dQ dS =
dP

E
(21)

which admit the following interpretation. The former states that the
increment of vehicle internal energy results from an overbalancing
between the variation of sensor data flow and its corresponding dis-
sipation on its effectors. The latter simply establishes how the varia-
tion of sensor data, acquired by the environment, affects the nominal
trajectory S(x,y) = K with the respect of a given energy.

This model defines a typical dynamical system opened with re-
spect to energy where actions issued by vehicle effectors dissipate
energy in a way to maintain the working point of the system in a sta-
tionary state where the energy supplied by sensor signals is balanced
by the effort delivered to the effectors.

5 BREITENBERG’S VEHICLES

Several properties can be obtained from the definition of roboticles
and which can be used to simulate many situations arising with both
single and multi-robot framework. The simplest situation is that de-
scribed by Breitenberg [4] within his vehicle I.

In this case, the scenario is easily depicted. There is a fixed light
source and a vehicle, moving along a straight line. It is equipped

with a sensor which triggers the vehicle speed by increasing its value
while the source is decreasing its intensity. Using the results pre-
sented in the preceding sections it can be easily shown that, for any
given energy function E, equations (1) take the form

_r = �E(r)

r
_' = � ap

r2 + a2

E(r)

r
(22)

using a polar frame of reference, centered on the light source, and
having made the assumption that the vehicle is moving along a
straight line passing nearby the light source with a minimal distance
a.

The dynamical law of the corresponding roboticle is immediately
obtained as a time derivative on _r , which represents the speed V of
the vehicle,

_V = �p(r)V (23)
_� = 0 (24)

where p(r) is the vehicle virtual sensor. It is defined by the differential
relation

p(r) =
1

r

dE

dr
� E

r2 � a2
(25)

involving the total energy of the vehicle. Of course, the actual vehicle
behaviour depends on the specific choice of the sensor. For example,
you can suppose to equip the vehicle with an infrared sensor detect-
ing the intensity of the light in according to an inverse quadratic law

p(r) =
ca

r2
(26)

which gives rise to the energy function appearing below

E(r) = (Va + c arccos
a

r
)
p
r2 � a2 (27)

The figure 2 illustrates the relation between the curve depicting the
sensor response p(r) and the approximate straight line which repre-
sents the vehicle energy E(r). The light perturbation enters the vehi-
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Figure 2. Sensor Response and Energy of Breitenberg’s vehicle I

cle control and it is stored as an increment dU of the current value of
the internal energy. At the same time, a decrement dF of the amount
of dissipative function triggers the increment dM which causes the
actual transferring of energy towards the vehicle effectors.



6 CONCLUSION

At the present the proposed roboticle paradigm appears to be the
most promising framework where to cast autonomous agent results
and perspective. As well as concepts like non-linearity or far from
equilibrium, we have found that a more general definition of energy
can play a fundamental rôle, especially as a tool to interpret and use
sensor information.

This paradigm provides autonomous agents with a simple but
powerful mechanism to build and maintain a world model by mov-
ing the current state of the system on the energy surface which also
works as interpretation mask for sensor data. Moreover, the defini-
tion of roboticles seems very attractive for both the explanation and
the design of autonomous agent control.
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