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Abstract. This paper presents and validates a method for adaptive 
object recognition in image sequences under dynamic perceptual 
conditions, and consequently, under changing object characteristics. 
The approach builds a close-loop interaction between object 
recognition and model modification systems. Object recognition 
applies a modified RBF classifier in order to recognize objects on a 
current image of a sequence.  The feedback reinforcement 
generation mechanism evaluates the classification results when 
compared to the previous images and activates classifier 
modification, if needed. Classifier modification selects a strategy 
and employs five behaviors in adapting the classifier's structure and 
parameters. These behaviors include Accommodation, Translation, 
Generation, Extinction, and Prediction applied to selected classifier 
components. Accommodation modifies the component's 
boundary/spread. Translation shifts a given component over the 
feature space. Generation creates a new component of the RBF 
classifier. Extinction eliminates components that are no longer in 
use. Prediction further advances the evolution effects of three basic 
behaviors. The evolved RBF model is verified in order to confirm 
applied model modifications. Experimental results are presented for 
indoor and outdoor image sequences.  
 
1. INTRODUCTION 

 
Adapting a visual system to time varying environments, an 
integration of computer vision processes with on-line 
learning/adaptation processes is required. This paper presents an on-
line adaptation mechanism for a RBF classifier. The developed 
approach introduces a feedback mechanism for an adjustment of 
classifier parameters and structure according to perceived 
differences between a model and the reality. Experimental results 
are presented for the texture recognition problem in indoor and 
outdoor environments.  

Most relevant research is focused on the on-line manipulation of 
a model structure and parameters. This includes, self-organization 
applied to supervised learning with Gaussian potentials [8], 
dynamic link architecture for position-invariant object recognition 
[2], self-organization of dynamic links [7]. This work is in line with 
the model evolution research [4,10,11,12] where an on-line model 
manipulation is applied to adapt an object recognition system to 
new unseen appearances of an object.  

2. MODEL EVOLUTION METHODOLOGY 
OVERVIEW  

 
The approach builds an Adaptive RBF Classifier on top of the 
traditional Image Analysis (see Figure 1). An off-line trained 
classifier is used for image data classification. Classification results 
are analyzed and compared with the results from previous image(s). 
If a significant negative discrepancy in the recognition/confidence 
level is detected, the system modifies the classifier. This 
modification is executed through feedback reinforcement by 
gradually evolving classifier parameters and structure. The modified 
classifier is then re-applied to the same image to verify the 
adaptation process. If the classifier performs according to the 
expected gain, the system proceeds to the next incoming image. 
 

 
A modified RBF classifier [1,9], with Gaussian distribution as a 

basis, was chosen for texture data modeling and classification. This 
is a well-known classifier widely used in pattern recognition and 
well-suited for engineering applications. Its well-defined 
mathematical model allows for further modifications and on-line 
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Figure 1:  System architecture



 

manipulation with its parameters and structure. The RBF classifier 
models a complex multi-modal data distribution through its 
decomposition into multiple independent Gaussians. Sample 
classification provides a class membership along with a confidence 
measure of the membership.  

The structure of the classifier is shown in Figure 2. Each group 
of nodes corresponds to a different class. The combination of nodes 
is weighted. Each node is a Gaussian function with a trainable mean 
and spread. Classification decision yields class  Ci  of the highest   
Fi(x)  value for a sample vector  x.  

 
Traditional RBF classifier has been modified to deal with 

situations of low or confusing confidence. The rejection area [3] 
concept is introduced. Rejection area eliminates situations of (1) a 
low confidence and (2) a low separability from another class. The 
first situation implies that the confidence value for class Ci must be 
meaningful. The second situation implies that the sample X is 
classified to a class Ci only if there is enough confidence when 
compared to the runner-up class Cj. Otherwise, the classification is 
delayed and the pattern is regarded as a rejection class C0 
(background).  

A feedback reinforcement mechanism is designed to provide 
feedback information and control for the on-line adaptation of the 
classifier. This feedback exploits classification results on the next 
segmented image of a sequence. Reinforcement is generated over 
the following three steps:  (1) Sample Selection, (2) Sample 
Categorization, and (3) Reinforcement Parameters Generation.  

Sample Selection is performed in an unsupervised manner. A 
given size window (15 x 15 pixels - meaningful size of a texture 
patch) randomly moves over the segmented image. When all pixels 
in the window have the same class membership, the system 
understands that the window is located within a homogeneous area. 
Whenever such a window is found, a pixel position corresponding 
to the center of the window is picked up for feature data extraction. 
Redundant multiple overlapping windows are eliminated by 
rejecting samples of the highest deviation of classification 
confidence over the window [10]. Sample Categorization allocates 
selected data samples into groups of different similarity levels based 
on their confidences. Samples within each similarity group are 
generalized and described by reinforcement parameters expressing 
the direction and magnitude of a shift from the current RBF model.   
 
3. DYNAMIC MODIFICATION OF THE  
      CLASSIFIER  

 
Reinforcement parameters are analyzed in relation to the structure 

and parameters of the classifier. First, the system selects strategies 
(called behaviors) for the classifier modification. Second, it binds 
reinforcement data to the selected behaviors. Finally, the behaviors 
are executed.  There are four behaviors for the RBF classifier 
modification that can be selected and executed independently: (1) 
Accommodation, (2) Translation, (3) Generation, and (4) 
Extinction. Each behavior is implemented separately using 
mathematical rules transposing reinforcement parameters onto 
actions of RBF modification.  Figure 3 illustrates four concepts of 
RBF modification behaviors.  

Accommodation and Translation behaviors modify the classifier 
parameters only. This modification is performed over selected 
nodes of the net. The basis for Accommodation is to combine 
reinforcement parameters with the existing node parameters. The 
result of Accommodation is adjusted function spread.  The node 
center does not change/shift through the feature space. The goal for 
Translation is to shift the node center in the direction of 
reinforcement without modifying the spread of the function.  
Combining Accommodation and Translation, the system can fully 
modify an existing node of the classifier.  
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Generation and Extinction behaviors modify the classifier 
structure by expanding or pruning the number of nodes. The basic 
idea of Generation is to create a new node. A node is generated 
when there is (1) a significant progressive shift in function location 
and/or (2) an increase in complexity of feature space, for example, 
caused by the increase in the multi-modality of data distribution. 
The goal of Extinction is to eliminate useless nodes from a 
classifier. Extinction is activated by the utilization of classifier 
nodes in the image classification process. Nodes, which constantly 
do not contribute to the classifier, are disposed.  This allows for 
controlling the complexity of the classifier over time.  

Additional Prediction behavior has been developed to progress 
the effects of accommodation and translation. Prediction magnifies 
the adjustments applied to the node boundary and node position in 
the feature space. This behavior is applied when there is a 
directional and persistent change in object characteristics. The 
effects of prediction are illustrated in Figure 4.  

 
 

 
Behavioral modification of the classifier structure and 

parameters is verified over the same and previous images. The 
purpose of classifier verification is (1) to confirm the progress of 
classifier modification and (2) to recover from eventual errors. 
Classifier verification is absolutely required because behavioral 
modification of the classifier is performed in an unsupervised 
manner. If errors occur and are not corrected, they would seriously 
confuse the system when working over the next images of a 
sequence.  There are two possible causes of errors: 1) incorrect 
reinforcement generation, and 2) incorrect selection of modification 
behavior. Classifier verification compares the classification and 
image segmentation results on the same image. If the expected 
improvement is not reached, then the classifier structure and 
parameters are restored. Classifier modification is repeated with a 
different choice of behaviors and/or less progressive reinforcement.   
 
4. EXPERIMENTAL RESULTS 
 
Figure 5 shows the first image of a sequence for (1) an indoor 
texture scene and (2) an outdoor scene used for experimentation. 
Image sequences were acquired by a b&w camera. The distance 
was gradually decreased between the camera and the scene.  The 

first sequence has 22 images of the scene containing four fabrics 
(class A, B, C and D). The second sequence has 8 images of the 
scene containing three objects (bush, grass, and wooden fence).   
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Figure 6: Experimental results for
                 indoor image sequence
                 (Class: A- black, B - dark
                 gray,  C - light gray,
                  D - white)
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Each incoming image is processed to extract texture features 
through the following three steps:  (1) Gabor spectral filtering [5], 
(2) local 7x7 averaging of filter responses to estimate local energy 
response of the filter, and (3) local non-linear spatial filtering. Non-
linear filtering is used to eliminate a smoothing effect between 
distinctive homogenous areas. The filter computes standard 

Figure 4: Composing Prediction
                 with other behaviors
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deviation over five windows spread around a central pixel. The 
mean for the lowest deviation window is returned as the output. 
Values of each texture feature are subject to a normalization process 
[13] to eliminate negative imbalances in feature distribution.  

Figure 6 shows experimental results with the indoor image 
sequence. There are two types of error rates registered: 1) error rate 
without rejection, and 2) error rate with rejection. Error rates with 
rejection provide a better analysis of experimental results. 
Classification errors are registered for each new incoming image  
I(i+1)  before the RBF classifier is modified (see diagrams a-b) and 
after it is modified over the I(i+1)  image (see diagrams c-d). 
Because the system goes through every image of a sequence, the 
modified classifier over the I(i+1) image is then applied to the next 
image. The results show a dramatic improvement in both error rates. 
Both error rates achieve almost zero level after the classifier is 
evolved over images of a sequence.  
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Figure 7: Experimental results for
                 outdoor image sequence
                 (Class: "Bush" - black,
                  "Wall fence" - light gray,
                  "Grass" - white)
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Figure 6e shows the change in classifier complexity over the 

evolution process. The number of nodes for class A rapidly 
increases beginning from image #8 and reaches a maximum of 27 

nodes when going through image #17. After that, it rapidly 
decreases to 9 nodes at the end of the image sequence. Other classes 
have relatively simpler structure than class A. The change in 
classifier complexity is confirmed by the frequency of the behaviors 
applied (see diagrams f-i).  Generation is frequently applied over 
the mid-range images causing the complexity of the RBF net to 
grow substantially. Also, Generation is most frequently applied to 
the model of class A. With a small delay, Extinction eliminates 
unused nodes keeping the classifier complexity under control.  
Accommodation is applied occasionally. Translation dominates at 
the beginning and the end of image sequence. This indicates that 
texture characteristics change more rapidly for the mid-range 
images that was confirmed by feature distribution study.  

Similar results were obtained for the experiment using outdoor 
image sequence. These results are shown in Figure 7.  
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Figure 8: Experimental results for
                 indoor image sequence and
                 integrated all five behaviors
                 (Class: A- black, B - dark
                 gray,  C - light gray,
                  D - white)
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The decrease in classification errors is moderate due to the 

increased noisiness of the texture of natural objects. Classifier 
complexity is low over the entire sequence of images. Translation is 
the most frequently applied behavior while Generation is 
infrequent. It is seen that the characteristics of class "Grass" change 
significantly that is reflected in frequently used Translation and 
Generation behaviors for this class. The other two classes are 



 

slightly adjusted at almost every image of the sequence - see the 
application of Accommodation. Extinction is applied only two 
times due to a low complexity of the classifier over the entire 
evolution process.  

Further experiments with model evolution applied to the 
experimental domain shown in Figure 4 demonstrated problems 
with model evolution for lower frequency of images used. For 
example, the system was not able to adapt to the sequence of indoor 
images when every second image was used in the input to the 
system. It occurred that the difference in texture features 
distribution was not overlapping for consecutive images and caused 
system failure to adapt to the sequence at image #8.  

Experiments have been repeated for fully integrated four 
behaviors and added Prediction behavior as explained in Section 3.  
The results were improved significantly when compared with 
Figure 6 and 7. Most importantly, the system was able to adapt to 
the indoor image sequence of lower number of images. These most 
interesting results are presented in Figure 8. Error rates after 
evolution were very well maintained at low levels. The utilization 
of Translation was visible for the entire sequence. The number of 
Generations was much higher than expected when compared with 
Figure 6. Finally, model complexity was handled much better - 
fewer model components were created. In summary, the experiment 
proved that Prediction is a very important model evolution behavior 
and should be include in an adaptive system working with image 
sequences.  
 
5.  CONCLUSIONS 
 
The methodology developed has been tested on a variety of texture 
recognition problems in image sequences. The results demonstrated 
that on-line adaptation of the RBF classifier resulted in effective 
object classification over image sequences where object appearance 
was adversely affected by changing perceptual conditions such as 
resolution and lighting. Future work is focused on (1) the 
implementation of additional model evolution behaviors, (2) and the 
application of hybrid methods for image segmentation, and (3) the 
extension of the on-line model modification over other application 
domains.  
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