

An Autonomous Cooperative System for Material
Handling Applications

Francisco Maturana1 Sivaram Balasubramanian1 Dave Vasko1

Abstract. The key to the creation of flexible automation is to use
inherent redundancy in the capabilities of the system being
controlled. This requires the control system to be continuously self-
configurable under varying conditions. The ability of the control
system to react to and predict changes will ultimately determine the
economic viability of that system. In this paper, an Autonomous
Cooperative System to control material handling systems is
presented. Important components of the material handling system
are combined with intelligence and autonomy rules to flexibly
control the operations of the physical equipment. Control is carried
out while the overall operation of the system is optimized through
cooperation among the controlled sections. The operation of the
material handling system is observed during conditions of
equipment and product changes. The results from simulation show
how an Autonomous Cooperative System can be used to reduce the
impact of changes in material handling applications.

1 INTRODUCTION
Programmable controllers provided an alternative to hardwired
relays in industrial applications. The relay ladder logic provided a
flexible mechanism to make changes to the operation of machines
in the factory without rewiring relays. Typically, a single
programmable controller controlled a machine or a group of related
machines. As technology progressed, the execution speed and I/O
capacity of the programmable controllers increased, but not
without a cost. As the applications became larger, the cost of
development and maintenance of programs over their lifecycle rose
dramatically [1].

The advent of computer networks at the factory floor allowed
control to be divided into cells thus allowing geographic
distribution and reduction in the size of individual programs. In
multi cell systems, control engineers confronted a major problem
of coordinating the operations of many small controllers. The
coordination of these distributed controllers relied on interlocks of
data or I/O points in hierarchical structures of master controllers.
The proper operation of the linked controllers depended on the
accuracy of the preplanned operations. The expansion,
maintenance and development of such systems were tightly
coupled and their associated lifecycle cost remained high.

Trends predict a future increase in the frequency of change in
factories. This involves rigorous quality and delivery performance
measures [2][3][4]. To cope with these changes, the underlying
control system needs to tackle the numerous changeovers in the
mainline configuration, tool allocation, material distribution,

process steps, and product quality. The control system needs to
configure its nodes into effective networks within a short period.
 Flexible change in the factory relates to the effective
partitioning of information [5][6]. The solution to flexible change
in industrial environments depends on effective information
partitioning and coordination protocols for automated units. In the
context of this paper, flexibility is the capability of the system to
react and/or pro-act in accordance with the system needs, thereby
organizing the system resources and capabilities in the most
efficient manner.

An Autonomous Cooperative System (ACS) architecture to
augment the intelligence of the controllers is proposed. This
architecture operates in enterprise and plant levels. This consists of
autonomous object components that represent machines and
processes. These components organize the machines to enhance the
performance of the operations and changes in configuration.

Material handling systems were selected as the factory layout
due to their large number of components, parameters, and rigid
operation times. These systems present discrete complexity and
stochastic combination of behaviors that interrupt the normal
functioning of the system. There are no equations or methodology
that can describe the overall system to simplify control.

In this paper, we describe a methodology for creating an ACS
application for automated material handling systems and present
results from simulation.

2 BACKGROUND
Important developments in cooperation techniques simplify the
distribution of knowledge among dissimilar and specialized
systems [7][8]. These expert systems drive solutions toward pre-
established goals. Other models facilitate interaction and decision-
making tasks among distributed software [9][10]. These
contributions provide tools toward the realization of smarter
control systems.

Distributed Artificial Intelligence (DAI) research proposes
Intelligent Agents [11] to facilitate flexible and highly distributed
information. Intelligent agents are self-contained software entities
capable of communicating and making individual decisions. They
work autonomously, handle goals, maintain beliefs, and cooperate
to create solutions. The beliefs of intelligent agents in factory
control correspond to the knowledge about the state of the machine
and the state of the adjacent machines associated with the
intelligent agents. Intelligent agents control every node in the
system [12]. The Agile Infrastructure for Manufacturing Systems
(AIMS) is an example in which an open information infrastructure

1 Architecture and System Development
Rockwell Automation
1 Allen Bradley Drive
Mayfield Heights, Ohio, 44124, USA

FPMaturana@ra.rockwell.com
SBalasubramanian@ra.rockwell.com
DAVasko@ra.rockwell.com

permits access into agile production services [13]. The Intelligent
Agent (IA) framework [14] demonstrates the integration of humans
with computers in large distributed systems. Presently, the Holonic
Manufacturing Systems (HMS) consortium carries out important
standardization work for the use of intelligent agents in industry
[15]. This latter research provides important results to build
inexpensive, expandable cooperative systems.

Other research efforts establish analogies between biological
systems and the distributed behaviors found in factory operations
[16][17]. Object-oriented technology permits the construction of
distributed software, which facilitates the software scalability and
behavior specifications at a lower cost [18].

This project envisions the ACS architecture as a solution to
cope with flexibility requirements. This consists of the creation of
autonomous software wrappers around the physical equipment.
The software wrappers are intelligent agents that act during the
evaluation of plans and the selection of control programs. ACS
promotes the creation of high-value plans (e.g., increased
throughput, increased machine utilization, optimized load
distribution, etc.) by providing the autonomous software with
application heuristics, agent language, and coordination protocols.

The ACS domain extends from the control level into the
information level. This permits the combination of different
requirements and priorities to process the enterprise information.
Intelligent agents achieve coordinated decisions in and across
networked controllers.

ACS is an emerging technology that will provide an efficient
solution to flexibility requirements and will bring together the
different pieces of distributed control systems.

3 ACS ARCHITECTURE
ACS is an adaptive architecture, which is founded on the following
specifications: Autonomy, Cooperation, Communication,
Reliability, Fault tolerance, Learning, and Forecasting. These
specifications are defined as:

• Autonomy: Agents make local decisions and are responsible
for carrying out the decisions toward successful completion;

• Cooperation: Agents merge their capabilities into
collaboration groups to adapt and respond to diverse events;

• Communication: Agents share a common language to encode
states and plans;

• Reliability: Agents perform their activity autonomously and
through cooperative interaction to accomplish global plans;

• Fault tolerance: Unforeseen failures are circumvent by using
alternative plans whenever possible;

• Learning: Agents use past actions to direct future responses
and to minimize computing overheads;

• Forecasting: Agents proactively propose plans of action to
enhance the system performance or to prevent the system
from entering into a harmful state.

3.1 Autonomous control architecture
Each component of ACS has an activity, a connection interface,
and a visualization system. The autonomous software wrappers for
the machines and processes are called Autonomous Cooperative
Units (ACUs). The architecture consists of 5 main components:
Human Machine Interface, Broker ACU, Service ACU, Supervisor
ACU, and Equipment, as shown in Figure 1. The activities of the
industrial environment can be divided among Supervisor and
Service ACUs. This division of activities is similar to that of client
and server partitioning. The ACS components have a common

communication language and interface that permits communication
from and to any level within the control infrastructure. Each ACU
uses a job description language to encode the application
information, parameters, and states.

Figure 1. Autonomous control architecture

The Human Machine Interface (HMI) provides the graphical
interfaces to access the overall system information, controller
settings, machine views, and configuration screens. Each ACU has
knowledge about its associated HMI interface. Bi-directional event
communication is allowed between the ACUs and their respective
interfaces.

The Broker ACU is a facilitator directory that establishes
communication links among the ACUs. Each ACU advertises its
capabilities and physical address with the broker. The Broker ACU
maintains the system registry and uses the application knowledge
to discover dynamic relationships among the ACUs.

The Service ACU represents the physical equipment and
process steps. It acts as an automation server to respond to client
requests. Each Service ACU is programmed with application rules
to facilitate cooperation and form coordination clusters.

The Supervisor ACU filters information between the users of
the system and the Service ACUs. Users generate messages in the
graphical interfaces in the form of plan requests and execution
orders. The rules of a Supervisor ACU specify the application
needs and the order in which actions should be committed and
executed. For example, a Supervisor ACU representing an
inventory resource knows that it needs to download pallets from a
truck, move the pallets on conveyors, and place them into storage
locations.

3.2 ACU cooperation
The ACU cooperation emerges from a cyclic exchange of
information among the ACUs in which the process steps and cost
are optimized. Messages conveying the process steps trigger an
internal evaluation within the ACUs (Supervisor or Service). Each
ACU uses its process model to verify the feasibility of performing
the operation. The ACU can accept all or part of the operation.
This decision depends on the equipment capability to handle the
process steps of the operation. Also, if the operation is large and
complex, the ACU can recruit services from peer ACUs. This
evaluation requires a qualitative analysis stage in which only the
capabilities of the equipment are taken into consideration.

The ACUs calculate the operation cost and execution overhead
using a quantitative analysis. After this internal reasoning, the
ACUs expose their decisions (e.g., process steps, schedules, and
operation costs) to other ACUs in the form of bids and counter

 Human

Machine
Interface

Human
Machine
Interface

Human
Machine
Interface

B
R
O
K
E
R

A
C
U

Service
ACU

Supervisor
ACU

E
Q
U
I
P
M
E
N
T

bids. The cycle is completed when the Supervisor ACU chooses
the best bid, as shown in Figure 2.

The ACU interaction is based on the exchange of synchronous
and asynchronous messages, corresponding to 3 types of
interactions: 1) interaction of n-number of Supervisor ACUs, 2)
interaction of a Supervisor ACUs with n-number of Service ACUs,
and 3) interaction among n-number of Service ACUs. The first
type of interaction occurs when a Supervisor ACU discovers that
its solution is insufficient to complete all the requests. In such a
case, the Supervisor ACU recruits additional capabilities from the
Supervisor ACUs. Each Supervisor ACU assumes responsibilities
for a subset of requests and synchronizes it with associated
supervisors. In the second type of interaction, the solution of the
Supervisor ACU is sufficient for all requests. The third type of
interaction corresponds to a cooperation cluster of Service ACUs.

Figure 2. ACU interaction during cooperation

Figure 2 also shows the transactions for the second type of

interaction. In this case, the Supervisor ACU multicasts a request
to a selected subset of Service ACUs. Service ACUs subcontract
additional resources using type 3 interaction. The subcontracting
process increases the parallelism of the message sequencing. When
the Service ACUs agree upon a global plan, a global consensus and
near-optimal results is obtained. The Service ACUs inform the
Supervisor ACU of all good plans and other relevant information at
the end of a predefined deadline. Subsequently, the Supervisor
ACU selects the best plan and assigns the plan to the Service
ACUs.

4 APPLICATION OF ACS TO MATERIAL
HANDLING SYSTEMS
This experiment observed different material-handling facilities.
Most facilities corresponded to distribution centers or express-
delivery centers. These types of facilities were very similar in their
composition, but varied the way in which they handled the
products. Because the distribution centers had storage resources,
products arrive and stayed in the facility as inventory for a period
of time until the consumers request for their distribution (e.g.,
warehouse). In the express-delivery centers, products stayed in the
system only for the time it took to route them to a distribution
vehicle (e.g., post office).

4.1 Distribution center
Distribution centers serve as consolidation and shipping resources
for manufacturing industry. Various product types manufactured at
different factories (providers) or procured through other channels
(distributors) are consolidated into the distribution centers as
inventory. The product consignments are shipped out according to

sales centers or customer demand. They typically involve a wide
variety of products to meet demand.

Distribution centers are dynamic environments, in which
various seasonal changes and unplanned perturbations can affect
the shipment of the products. The goal is to create a highly flexible
control system to change product shipments, scalability,
reconfiguration, and fault tolerance on the fly.

4.2 Express delivery center
The express delivery and sorting center is a subset of a distribution
center. In these systems, delivery time and balanced load
distribution are critical factors for success.

Products are downloaded in presort conveyors and transported
to accumulation areas, where human operators move the products
onto sorting conveyors. Products are measured and scanned to
obtain their destination.

The sorting conveyors (conveyors plus diverters) move the
products to the transport vehicles for final delivery. Products
arriving in the systems are not known a priori, since they generally
arrive in bulk amounts. The goal is to coordinate very fast
measurements and barcode readings to balance the load in the
accumulation resources. This is intended to prevent unnecessary
shutdowns of the system by reducing the occurrence of jams. The
express delivery and sorting facilities operate under very rigid
schedules; therefore, operation times must be kept to a minimum.

4.3 Material Handling Negotiation
In this project, negotiation models represented the operations of the
material handling systems, including the transactions to move parts
through the system. We designed three main models: 1) products
moving from providers to storage areas, 2) products moving from
storage areas to distributors, and 3) products moving from
providers to distributors. Models 1 and 2 corresponded to a
distribution center operations. Model 3 corresponded to an express
delivery operation.
 In model 1, the provider alerts the inventory supervisor (i.e.,
Supervisor ACU) of the plant that a transportation resource will
soon arrive in the facility (1). The inventory supervisor contacts
the docking and storage area simultaneously to reserve their
resources for handling the specified quantities, storage space, and
storing time (2). The inventory supervisor selects the best bids
from both resources (docking and storage area) and immediately
contacts the conveyors to determine the route to reach the storage
from the docking area (3). The final plan conveys information
about the docking location, storage and routes. The inventory
supervisor informs the provider the plan to complete the request
(4). The provider allocates the offered resources and proceeds to
execute the plan according to the schedule given, as shown in
Figure 3.

In model 2, the consumers request the inventory supervisor to
supply a product quantity (1). The inventory supervisor contacts
the storage area to retrieve the product quantity (2). Upon success,
the inventory supervisor contacts the docking area to park the
transportation resource (container) (3). Subsequently, the inventory
supervisor contacts the conveyors to determine the best route to
connect the storage and the docking location (4). The final plan is
then given to the consumer (5) telling the docking location and
schedule, as shown in Figure 4. The consumer allocates the
resources to execute the loading operation (6).

In model 3, the providers ask the plant supervisor (1) to obtain
the outbound docking locations and storage (2) to receive the
products (or packages for a mail delivery system) in the outbound

Service
ACU

Service
ACU

Service
ACU

Job (Process Steps)

Bids Bids

Plan

Assignment

Acknowledgement

Supervisor
ACU

Request

Acknowledgement

Service
ACU

area after sorting. The plant supervisor contacts the conveyors to
find accessible paths (3). Upon success, the plant supervisor
informs the provider (4) the inbound docking where to park the
transportation resources, as shown in Figure 5. The provider
allocates the resources (5). In these situations, the three models
above use a combination of interaction type 1,2, and 3.

Figure 3. Inbound product negotiation

Figure 4. Outbound product negotiation

Figure 5. Express delivery negotiation

5 SIMULATION IMPLEMENTATION
This project built a simulation environment to simulate the material
handling systems. Various Supervisor and Service ACUs
represented the physical layer of the material handling systems.
The simulation testing required several trials to ensure that the
ACS architecture was capable of handling the case scenarios
observed in normal operations.

Figure 6 shows the four salient components of ACS simulation
environment: graphical interfaces, ACUs, execution interface
agents, and discrete-event simulator. The graphical user interfaces
include system view, device view and ACU view accessed in a
hierarchical manner. The system view shows all controller devices

in the system and the device view can be accessed for any
controller device. The device view lists all ACU views for ACU
present on a controller device; it can be accessed for any ACU of
interest. The ACU view provides detailed configuration and
operation information of the ACU.

Figure 6. ACS Simulation environment

The execution agents encapsulate the logic of the physical
devices. The simulator contained a simulation model of the
physical entities. The system executed synchronous to real time
and contained 100 ACUs. The simulation ran in a network of
industrial computers with Pentium-Pro II CPU under NT 4.0. The
network was based on TCP/IP through Ethernet cables.

6 RESULTS
Two important claims of the ACS architecture are flexibility and
fault tolerance. These were selected to test the system. A
qualitative analysis was carried out in a simulated distribution
center to observe the flexibility behaviors of the system in response
to changing requirements and capabilities.

Speed was not a critical issue in the distribution center
simulation. However, the ability to react to changes is important in
order to utilize the resource efficiently. On the other hand the speed
of the material handling operations is a primary factor in fast-
delivery and sorting centers. Therefore, a fast-delivery and sorting
center was simulated to observe the fault-tolerance capability.
 Two job orders tested the distribution center: Inbound and
Outbound. An inbound request corresponded to the job order
submitted by arriving trucks in the facility. The parts were
downloaded from the container in the dock area and moved
through the conveyors toward a storage location. The product
generated an outbound request to move parts from the storage area
to the distribution trucks.

An order for 100 parts was placed for shipment. Figure 7 shows
the results while processing this order as the time taken for
shipping every part. The shipping time includes both planning and
execution. Since the system had previous knowledge about plan
patterns under normal operation, the first ten parts had constant
shipping time.

A conveyor section was added while planning for part number
11. The system added the new condition into the plans. This
behavior was reflected in the higher planning time and lower
execution time: lower shipping time for this part. Since the plans
were regenerated using learned patterns, the plan creation became
trivial for parts 12 through 50. When shipment for part number 51
was planned, the redundant conveyor section was failed. The new

Provider
ACU

Inventory
ACU

Storage
ACU

Dock
ACU

Conveyor
ACU

1 2

23
4

5

5

5

Consumer
ACU

Inventory
ACU

Dock
ACU

Storage
ACU

Conveyor
ACU

1 2

3 4
5

6

6

6

Provider
ACU

Plant
ACU

Storage
ACU

Conveyor
ACU

Outbound
Dock ACU

1 3

22
4

5

5

5

Product ACU (su) Truck ACU (su)

Dock ACU
(se) Storage ACU

(se)
Conveyor ACU

(se)

Broker ACU Inventory ACU (su)

Discrete Event Simulation and Animation of Distribution Center/Sort Facility

Product
Execution

Agent

Truck
Execution

Agent
Dock

Execution
Agent

Storage
Execution

Agent
Conveyor
Execution

Agent

Graphical User Interfaces: System View, Device View and ACU View

Note: (su) Supervisor ACU (se) Service ACU

condition resulted in higher planning and execution times: a longer
path had to be taken. After learning, the planning became trivial.

Figure 7. Distribution center behavior during configuration changes

A load of 1000 packages was used to test routing and load

distribution. Packages in the inbound dock area were moved to
accumulation areas, from the accumulation areas to primary
conveyors for zip code and size scanning. The zip code was used to
direct the routing. Balanced loads and quick responses were
quantified by observation of the packages’ accumulation in
different locations, as shown in Figure 8.

Fault Tolerance (Failing Diverter #2)

0

20

40

60

80

100

120

140

160

0
2.

84
5.

68
8.

52
11

.4
14

.2 17
19

.9
22

.7
25

.6
28

.4
31

.2
34

.1
36

.9
39

.7
42

.6
45

.4
48

.3
51

.1
53

.9
56

.8
59

.6
62

.5
65

.3
68

.1 71
73

.8
76

.7
79

.5
82

.3
85

.2 88
90

.8
93

.7
96

.5

Time (min)

Lo
ad

 (p
ac

ka
ge

s)

Accumulator 1 Accumulator 2 Accumulator 3 Accumulator 4

Figure 8. Fault Tolerance

The goal was to allow the system approach a high-peak load

before introducing a capability failure, which consisted of closing
the access to chute 2 at 36 time units. The excess packages were
redirected to other chutes. A balanced load was maintained among
the conveyors, between 36 and 63 times units. At 63 time units, the
access to chute 2 was reestablished. This action added extra sorting
capability, which was added to the plans almost instantaneously, as
shown after 65 time units.

7 CONCLUSION
The results from simulation are that the machine operations and
states can be encapsulated in Autonomous Cooperative Units. This
is a very relevant result since the agents can be programmed with a
very diverse set of rules and inference engines to support
intelligent decision making. This also facilitates the incorporation
of global consultation among distributed intelligent agents that

continuously observe and control the state of the system for high
performance and stability. The next phase of research considers the
real time aspects of the architecture, which will be evaluated using
real physical equipment and automation controllers.

8 REFERENCES
[1] F. Brooks, Mythical Man Month, Addison-Wesley Publishing
Company, 1975.
[2] Agile Precision Sheet Metal Stamping Proposal, Advanced
Technology Program, National Institute of Standard and
Technology, April 11th, 1995.
[3] Proceedings of the 4th Technical Advisory Committee Meeting,
NSF Engineering Research Center for Reconfigurable Machine
Systems, May 6-7th, 1998.
[4] Proceedings of Auto Body Consortium, Inc.: Near Zero
Stamping, Inc. Kickoff Meeting, Dec.1995.
[5] Microprocessor Report, http://www.chipanalyst.com/
[6] Gigabit Ethernet, http://www.gigabit-ethernet.org/
[7] A. Bond and L. Gasser, Readings in Distributed Artificial
Intelligence, Morgan Kaufmann Publishers, Inc. 1988
[8] G. O’Hare and N. Jennings, Foundations of Distributed
Artificial Intelligence, John Wiley & Sons, Inc. 1996
 [9] S. Clearwater, Market-based control. A paradigm for
distributed resource allocation, World Scientific, 1996.
[10] J. Rosenschein & G. Zlotkin, Rules of Encounter: Designing
for Automated Negotiation among Computers, MIT Press, 1994.
[11] M. Wooldridge and N., Jennings, Intelligent agents: theory
and practice. Knowledge Engineering Review, 10(2),115-152,
1995.
[12] R. Davis and R. Smith, Negotiation as a metaphor for
distributed problem solving. Artificial Intelligence,20:63-109, 1983
[13] K.H., Park, M., Cutkosky, A.B., Conru, and S.H., Lee, An
agent based approach to concurrent cable harness design, Artificial
Intelligence for Engineering Design, Analysis and Manufacturing
Journal, 8(1), 45-61.
[14] J.M., Tenenbaum, T.R., Gruber, and J.C., Weber, Lessons
from SHADE and PACT. In Petrie, C. (Eds), Enterprise Modeling
and Integration. McGraw-Hill, New York, 1992.
[15] J.H., Christensen, Holonic Manufacturing Systems: Initial
architecture and standards direction, First European Conference on
Holonic Manufacturing Systems, Hanover, Germany, 20pp, 1994.
[16] H. Van Parunak, “Go to the Ant”: Engineering Principles from
Natural Multi-Agent Systems, Annals of Operations Research,
special issue on Artificial Intelligence and Management Science.
[17] L. Steels, “Toward a Theory of Emergent Functionality” From
Animals to Animats: Proceedings of the 1st International
Conference on Simulation of Adaptive Behavior. MIT Press, 1991.
[18] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.
Lorensen, Object-Oriented Modeling and Design, Prentice-Hall,
Englewood Cliffs, NJ, 1991.

Part Number
 1 2 5 10 11 12 30 40 50 51 52 80 90 100

65
75

50

45

Shipping Time

Conveyor
Section Added

Plan Produced &
System has Learned
(Higher Planning and
Lower Execution)

System Uses
Learned
Knowledge

Fail Conveyor

Plan Produced &
System has Learned

System uses
Learned
Knowledge &
Plan

