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Abstract. The key to the creation of flexible automation is to use 
inherent redundancy in the capabilities of the system being 
controlled. This requires the control system to be continuously self-
configurable under varying conditions. The ability of the control 
system to react to and predict changes will ultimately determine the 
economic viability of that system. In this paper, an Autonomous 
Cooperative System to control material handling systems is 
presented. Important components of the material handling system 
are combined with intelligence and autonomy rules to flexibly 
control the operations of the physical equipment. Control is carried 
out while the overall operation of the system is optimized through 
cooperation among the controlled sections. The operation of the 
material handling system is observed during conditions of 
equipment and product changes. The results from simulation show 
how an Autonomous Cooperative System can be used to reduce the 
impact of changes in material handling applications. 

1 INTRODUCTION 
Programmable controllers provided an alternative to hardwired 
relays in industrial applications. The relay ladder logic provided a 
flexible mechanism to make changes to the operation of machines 
in the factory without rewiring relays. Typically, a single 
programmable controller controlled a machine or a group of related 
machines.  As technology progressed, the execution speed and I/O 
capacity of the programmable controllers increased, but not 
without a cost. As the applications became larger, the cost of 
development and maintenance of programs over their lifecycle rose 
dramatically [1]. 

The advent of computer networks at the factory floor allowed 
control to be divided into cells thus allowing geographic 
distribution and reduction in the size of individual programs. In 
multi cell systems, control engineers confronted a major problem 
of coordinating the operations of many small controllers. The 
coordination of these distributed controllers relied on interlocks of 
data or I/O points in hierarchical structures of master controllers. 
The proper operation of the linked controllers depended on the 
accuracy of the preplanned operations. The expansion, 
maintenance and development of such systems were tightly 
coupled and their associated lifecycle cost remained high. 

Trends predict a future increase in the frequency of change in 
factories. This involves rigorous quality and delivery performance 
measures [2][3][4]. To cope with these changes, the underlying 
control system needs to tackle the numerous changeovers in the 
mainline configuration, tool allocation, material distribution, 

process steps, and product quality. The control system needs to 
configure its nodes into effective networks within a short period. 
 Flexible change in the factory relates to the effective 
partitioning of information [5][6]. The solution to flexible change 
in industrial environments depends on effective information 
partitioning and coordination protocols for automated units. In the 
context of this paper, flexibility is the capability of the system to 
react and/or pro-act in accordance with the system needs, thereby 
organizing the system resources and capabilities in the most 
efficient manner. 

An Autonomous Cooperative System (ACS) architecture to 
augment the intelligence of the controllers is proposed. This 
architecture operates in enterprise and plant levels. This consists of 
autonomous object components that represent machines and 
processes. These components organize the machines to enhance the 
performance of the operations and changes in configuration. 

Material handling systems were selected as the factory layout 
due to their large number of components, parameters, and rigid 
operation times. These systems present discrete complexity and 
stochastic combination of behaviors that interrupt the normal 
functioning of the system. There are no equations or methodology 
that can describe the overall system to simplify control. 

In this paper, we describe a methodology for creating an ACS 
application for automated material handling systems and present 
results from simulation. 

2 BACKGROUND 
Important developments in cooperation techniques simplify the 
distribution of knowledge among dissimilar and specialized 
systems [7][8]. These expert systems drive solutions toward pre-
established goals. Other models facilitate interaction and decision-
making tasks among distributed software [9][10]. These 
contributions provide tools toward the realization of smarter 
control systems. 

Distributed Artificial Intelligence (DAI) research proposes 
Intelligent Agents [11] to facilitate flexible and highly distributed 
information. Intelligent agents are self-contained software entities 
capable of communicating and making individual decisions. They 
work autonomously, handle goals, maintain beliefs, and cooperate 
to create solutions. The beliefs of intelligent agents in factory 
control correspond to the knowledge about the state of the machine 
and the state of the adjacent machines associated with the 
intelligent agents. Intelligent agents control every node in the 
system [12]. The Agile Infrastructure for Manufacturing Systems 
(AIMS) is an example in which an open information infrastructure 
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permits access into agile production services [13]. The Intelligent 
Agent (IA) framework [14] demonstrates the integration of humans 
with computers in large distributed systems. Presently, the Holonic 
Manufacturing Systems (HMS) consortium carries out important 
standardization work for the use of intelligent agents in industry 
[15]. This latter research provides important results to build 
inexpensive, expandable cooperative systems. 

Other research efforts establish analogies between biological 
systems and the distributed behaviors found in factory operations 
[16][17]. Object-oriented technology permits the construction of 
distributed software, which facilitates the software scalability and 
behavior specifications at a lower cost [18]. 

This project envisions the ACS architecture as a solution to 
cope with flexibility requirements. This consists of the creation of 
autonomous software wrappers around the physical equipment. 
The software wrappers are intelligent agents that act during the 
evaluation of plans and the selection of control programs. ACS 
promotes the creation of high-value plans (e.g., increased 
throughput, increased machine utilization, optimized load 
distribution, etc.) by providing the autonomous software with 
application heuristics, agent language, and coordination protocols. 

The ACS domain extends from the control level into the 
information level. This permits the combination of different 
requirements and priorities to process the enterprise information. 
Intelligent agents achieve coordinated decisions in and across 
networked controllers. 

ACS is an emerging technology that will provide an efficient 
solution to flexibility requirements and will bring together the 
different pieces of distributed control systems. 

3 ACS ARCHITECTURE 
ACS is an adaptive architecture, which is founded on the following 
specifications: Autonomy, Cooperation, Communication, 
Reliability, Fault tolerance, Learning, and Forecasting. These 
specifications are defined as: 
 

• Autonomy: Agents make local decisions and are responsible 
for carrying out the decisions toward successful completion; 

• Cooperation: Agents merge their capabilities into 
collaboration groups to adapt and respond to diverse events; 

• Communication: Agents share a common language to encode 
states and plans; 

• Reliability: Agents perform their activity autonomously and 
through cooperative interaction to accomplish global plans; 

• Fault tolerance: Unforeseen failures are circumvent by using 
alternative plans whenever possible; 

• Learning: Agents use past actions to direct future responses 
and to minimize computing overheads; 

• Forecasting: Agents proactively propose plans of action to 
enhance the system performance or to prevent the system 
from entering into a harmful state. 

3.1 Autonomous control architecture 
Each component of ACS has an activity, a connection interface, 
and a visualization system. The autonomous software wrappers for 
the machines and processes are called Autonomous Cooperative 
Units (ACUs). The architecture consists of 5 main components: 
Human Machine Interface, Broker ACU, Service ACU, Supervisor 
ACU, and Equipment, as shown in Figure 1. The activities of the 
industrial environment can be divided among Supervisor and 
Service ACUs. This division of activities is similar to that of client 
and server partitioning. The ACS components have a common 

communication language and interface that permits communication 
from and to any level within the control infrastructure. Each ACU 
uses a job description language to encode the application 
information, parameters, and states. 

 

Figure 1. Autonomous control architecture 
 

The Human Machine Interface (HMI) provides the graphical 
interfaces to access the overall system information, controller 
settings, machine views, and configuration screens.  Each ACU has 
knowledge about its associated HMI interface. Bi-directional event 
communication is allowed between the ACUs and their respective 
interfaces. 

The Broker ACU is a facilitator directory that establishes 
communication links among the ACUs. Each ACU advertises its 
capabilities and physical address with the broker. The Broker ACU 
maintains the system registry and uses the application knowledge 
to discover dynamic relationships among the ACUs. 

The Service ACU represents the physical equipment and 
process steps. It acts as an automation server to respond to client 
requests. Each Service ACU is programmed with application rules 
to facilitate cooperation and form coordination clusters. 

The Supervisor ACU filters information between the users of 
the system and the Service ACUs. Users generate messages in the 
graphical interfaces in the form of plan requests and execution 
orders. The rules of a Supervisor ACU specify the application 
needs and the order in which actions should be committed and 
executed. For example, a Supervisor ACU representing an 
inventory resource knows that it needs to download pallets from a 
truck, move the pallets on conveyors, and place them into storage 
locations. 

3.2 ACU cooperation 
The ACU cooperation emerges from a cyclic exchange of 
information among the ACUs in which the process steps and cost 
are optimized. Messages conveying the process steps trigger an 
internal evaluation within the ACUs (Supervisor or Service). Each 
ACU uses its process model to verify the feasibility of performing 
the operation. The ACU can accept all or part of the operation. 
This decision depends on the equipment capability to handle the 
process steps of the operation. Also, if the operation is large and 
complex, the ACU can recruit services from peer ACUs. This 
evaluation requires a qualitative analysis stage in which only the 
capabilities of the equipment are taken into consideration. 

The ACUs calculate the operation cost and execution overhead 
using a quantitative analysis. After this internal reasoning, the 
ACUs expose their decisions (e.g., process steps, schedules, and 
operation costs) to other ACUs in the form of bids and counter 
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bids. The cycle is completed when the Supervisor ACU chooses 
the best bid, as shown in Figure 2. 

The ACU interaction is based on the exchange of synchronous 
and asynchronous messages, corresponding to 3 types of 
interactions: 1) interaction of n-number of Supervisor ACUs, 2) 
interaction of a Supervisor ACUs with n-number of Service ACUs, 
and 3) interaction among n-number of Service ACUs. The first 
type of interaction occurs when a Supervisor ACU discovers that 
its solution is insufficient to complete all the requests. In such a 
case, the Supervisor ACU recruits additional capabilities from the 
Supervisor ACUs. Each Supervisor ACU assumes responsibilities 
for a subset of requests and synchronizes it with associated 
supervisors. In the second type of interaction, the solution of the 
Supervisor ACU is sufficient for all requests. The third type of 
interaction corresponds to a cooperation cluster of Service ACUs. 

 

 
Figure 2. ACU interaction during cooperation 

 
Figure 2 also shows the transactions for the second type of 

interaction. In this case, the Supervisor ACU multicasts a request 
to a selected subset of Service ACUs. Service ACUs subcontract 
additional resources using type 3 interaction. The subcontracting 
process increases the parallelism of the message sequencing. When 
the Service ACUs agree upon a global plan, a global consensus and 
near-optimal results is obtained. The Service ACUs inform the 
Supervisor ACU of all good plans and other relevant information at 
the end of a predefined deadline. Subsequently, the Supervisor 
ACU selects the best plan and assigns the plan to the Service 
ACUs. 

4 APPLICATION OF ACS TO MATERIAL 
HANDLING SYSTEMS 
This experiment observed different material-handling facilities. 
Most facilities corresponded to distribution centers or express-
delivery centers. These types of facilities were very similar in their 
composition, but varied the way in which they handled the 
products. Because the distribution centers had storage resources, 
products arrive and stayed in the facility as inventory for a period 
of time until the consumers request for their distribution (e.g., 
warehouse). In the express-delivery centers, products stayed in the 
system only for the time it took to route them to a distribution 
vehicle (e.g., post office). 

4.1 Distribution center 
Distribution centers serve as consolidation and shipping resources 
for manufacturing industry. Various product types manufactured at 
different factories (providers) or procured through other channels 
(distributors) are consolidated into the distribution centers as 
inventory. The product consignments are shipped out according to 

sales centers or customer demand. They typically involve a wide 
variety of products to meet demand. 

Distribution centers are dynamic environments, in which 
various seasonal changes and unplanned perturbations can affect 
the shipment of the products. The goal is to create a highly flexible 
control system to change product shipments, scalability, 
reconfiguration, and fault tolerance on the fly. 

4.2 Express delivery center 
The express delivery and sorting center is a subset of a distribution 
center. In these systems, delivery time and balanced load 
distribution are critical factors for success. 

Products are downloaded in presort conveyors and transported 
to accumulation areas, where human operators move the products 
onto sorting conveyors. Products are measured and scanned to 
obtain their destination. 

The sorting conveyors (conveyors plus diverters) move the 
products to the transport vehicles for final delivery. Products 
arriving in the systems are not known a priori, since they generally 
arrive in bulk amounts. The goal is to coordinate very fast 
measurements and barcode readings to balance the load in the 
accumulation resources. This is intended to prevent unnecessary 
shutdowns of the system by reducing the occurrence of jams. The 
express delivery and sorting facilities operate under very rigid 
schedules; therefore, operation times must be kept to a minimum. 

4.3 Material Handling Negotiation 
In this project, negotiation models represented the operations of the 
material handling systems, including the transactions to move parts 
through the system. We designed three main models: 1) products 
moving from providers to storage areas, 2) products moving from 
storage areas to distributors, and 3) products moving from 
providers to distributors. Models 1 and 2 corresponded to a 
distribution center operations. Model 3 corresponded to an express 
delivery operation. 
 In model 1, the provider alerts the inventory supervisor (i.e., 
Supervisor ACU) of the plant that a transportation resource will 
soon arrive in the facility (1).  The inventory supervisor contacts 
the docking and storage area simultaneously to reserve their 
resources for handling the specified quantities, storage space, and 
storing time (2). The inventory supervisor selects the best bids 
from both resources (docking and storage area) and immediately 
contacts the conveyors to determine the route to reach the storage 
from the docking area (3). The final plan conveys information 
about the docking location, storage and routes.  The inventory 
supervisor informs the provider the plan to complete the request 
(4). The provider allocates the offered resources and proceeds to 
execute the plan according to the schedule given, as shown in 
Figure 3. 

In model 2, the consumers request the inventory supervisor to 
supply a product quantity (1). The inventory supervisor contacts 
the storage area to retrieve the product quantity (2).  Upon success, 
the inventory supervisor contacts the docking area to park the 
transportation resource (container) (3). Subsequently, the inventory 
supervisor contacts the conveyors to determine the best route to 
connect the storage and the docking location (4).  The final plan is 
then given to the consumer (5) telling the docking location and 
schedule, as shown in Figure 4. The consumer allocates the 
resources to execute the loading operation (6). 

In model 3, the providers ask the plant supervisor (1) to obtain 
the outbound docking locations and storage (2) to receive the 
products (or packages for a mail delivery system) in the outbound 
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area after sorting.  The plant supervisor contacts the conveyors to 
find accessible paths (3). Upon success, the plant supervisor 
informs the provider (4) the inbound docking where to park the 
transportation resources, as shown in Figure 5.  The provider 
allocates the resources (5). In these situations, the three models 
above use a combination of interaction type 1,2, and 3.  

 
Figure 3. Inbound product negotiation 

 

 
 

Figure 4. Outbound product negotiation 
 

 
Figure 5. Express delivery negotiation 

5 SIMULATION IMPLEMENTATION 
This project built a simulation environment to simulate the material 
handling systems. Various Supervisor and Service ACUs 
represented the physical layer of the material handling systems. 
The simulation testing required several trials to ensure that the 
ACS architecture was capable of handling the case scenarios 
observed in normal operations. 

Figure 6 shows the four salient components of ACS simulation 
environment: graphical interfaces, ACUs, execution interface 
agents, and discrete-event simulator. The graphical user interfaces 
include system view, device view and ACU view accessed in a 
hierarchical manner. The system view shows all controller devices 

in the system and the device view can be accessed for any 
controller device. The device view lists all ACU views for ACU 
present on a controller device; it can be accessed for any ACU of 
interest. The ACU view provides detailed configuration and 
operation information of the ACU. 

 

Figure 6. ACS Simulation environment 
 

The execution agents encapsulate the logic of the physical 
devices. The simulator contained a simulation model of the 
physical entities. The system executed synchronous to real time 
and contained 100 ACUs. The simulation ran in a network of 
industrial computers with Pentium-Pro II CPU under NT 4.0. The 
network was based on TCP/IP through Ethernet cables. 

6 RESULTS 
Two important claims of the ACS architecture are flexibility and 
fault tolerance. These were selected to test the system. A 
qualitative analysis was carried out in a simulated distribution 
center to observe the flexibility behaviors of the system in response 
to changing requirements and capabilities. 

Speed was not a critical issue in the distribution center 
simulation. However, the ability to react to changes is important in 
order to utilize the resource efficiently. On the other hand the speed 
of the material handling operations is a primary factor in fast-
delivery and sorting centers. Therefore, a fast-delivery and sorting 
center was simulated to observe the fault-tolerance capability. 
 Two job orders tested the distribution center: Inbound and 
Outbound. An inbound request corresponded to the job order 
submitted by arriving trucks in the facility. The parts were 
downloaded from the container in the dock area and moved 
through the conveyors toward a storage location. The product 
generated an outbound request to move parts from the storage area 
to the distribution trucks. 

An order for 100 parts was placed for shipment. Figure 7 shows 
the results while processing this order as the time taken for 
shipping every part. The shipping time includes both planning and 
execution. Since the system had previous knowledge about plan 
patterns under normal operation, the first ten parts had constant 
shipping time.  

A conveyor section was added while planning for part number 
11. The system added the new condition into the plans. This 
behavior was reflected in the higher planning time and lower 
execution time: lower shipping time for this part. Since the plans 
were regenerated using learned patterns, the plan creation became 
trivial for parts 12 through 50. When shipment for part number 51 
was planned, the redundant conveyor section was failed. The new 
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condition resulted in higher planning and execution times: a longer 
path had to be taken. After learning, the planning became trivial. 

 
 

Figure 7.  Distribution center behavior during configuration changes 
 
A load of 1000 packages was used to test routing and load 

distribution. Packages in the inbound dock area were moved to 
accumulation areas, from the accumulation areas to primary 
conveyors for zip code and size scanning. The zip code was used to 
direct the routing. Balanced loads and quick responses were 
quantified by observation of the packages’ accumulation in 
different locations, as shown in Figure 8. 
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Figure 8.  Fault Tolerance 

 
The goal was to allow the system approach a high-peak load 

before introducing a capability failure, which consisted of closing 
the access to chute 2 at 36 time units. The excess packages were 
redirected to other chutes. A balanced load was maintained among 
the conveyors, between 36 and 63 times units. At 63 time units, the 
access to chute 2 was reestablished. This action added extra sorting 
capability, which was added to the plans almost instantaneously, as 
shown after 65 time units. 

7 CONCLUSION 
The results from simulation are that the machine operations and 
states can be encapsulated in Autonomous Cooperative Units. This 
is a very relevant result since the agents can be programmed with a 
very diverse set of rules and inference engines to support 
intelligent decision making. This also facilitates the incorporation 
of global consultation among distributed intelligent agents that 

continuously observe and control the state of the system for high 
performance and stability. The next phase of research considers the 
real time aspects of the architecture, which will be evaluated using 
real physical equipment and automation controllers. 
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