
VALENS: A Knowledge Based Tool to Validate and Verify
an Aion Knowledge Base

Silvie Spreeuwenberg, Rik Gerrits, Margherita Boekenoogen*

Abstract . We present VALENS (VALid Engineering Support) for
the validation and verification (V&V) of a knowledge base (KB).
Validation techniques become more and more important when
knowledge based systems (KBS) are widely used to automate
business critical processes. The tool we present may be used during
and after the development of a KBS. It focuses on a logical
verification of the KBS. The techniques used to verify a KB are:
meta-rules, an inference engine to verify hypotheses posed by
meta-rules (proof-by-processing) and meta information (provided
by the user). VALENS is written in the same language as the KBS
it verifies: Aion.

1. PROBLEM DESCRIPTION

In our everyday practice we encounter the following situation:
we have a KBS to determine the type of a concept. The KBS was
tested and correct until a new rule is added to determine a new
type. The results are completely different than expected and it took
some time to find out that a form of circularity in the rules caused
the problem. This is what could be called the butterfly theory in a
KBS. Solutions to avoid this problem are V&V techniques. The
ideas are incorporated into VALENS, a tool that applies validation
and verification techniques to Aion KBS.

1.1 What’s the need?

An iterative development cycle is preferred for developing KBS
[1]. Decreasing the number of cycles between analysis,
implementation and test decreases development time. Early
detection of faults using V&V by detection of inconsistencies and
incompleteness can contribute to this reduction. Furthermore the
issue of assuring the quality of a KBS is becoming an increasingly
important challenge as KB components are more and more often
embedded within safety critical or business critical applications [2].

During maintenance a change in just one knowledge rule may
introduce contradictions, redundancy or incompleteness in a
complex chain of knowledge rules. Especially when people without
a background in system programming or system analysis define
and maintain the knowledge in a KBS, the support of a V&V tool
helps them to cope with the complexity.

In all the main phases of the knowledge engineering life cycle,
V&V is an important aspect when it comes to delivering a high

* The authors are employed by LibRT B.V., PO Box 90359, 1006 BJ

Amsterdam, Netherlands, Email: info@LibRT.com

quality KBS. In this article we will focus on the automatic support
of V&V in the implementation phase of the knowledge engineering
process.

1.2 Definitions of checks

When verifying the logical correctness of a KB, it is checked
whether the rules in a KB are logical consistent, non-circular,
complete, not redundant and not obsolete1. These checks may
cover all rules in the KB or a subset of the rules in a KB. The
control structure present in most knowledge-based systems
facilitates the dynamical posting of rules or rule sets. If this is the
case, these subsets have to be verified in isolation.

2. APPLICATION DESCRIPTION

VALENS can be used by a developer after or during
construction of a KB or can be integrated in a tool that allows users
to write their own business rules. The output of the tool is a
document in which all invalid rules (combinations) detected are
reported. Each fault is classified and explained.

In the next paragraphs, the main algorithm and benefits in our
approach to V&V is briefly discussed. Next, the development
environment and the tool itself are discussed.

2.1 Verification algorithm

The verification algorithm that VALENS uses performs three
main steps:

a) Construction of meta model

In this step all rule constructs, necessary to reason about the rules
in the KB are instantiated. This step is performed on a “when
needed” basis to reduce performance overhead.

b) Select potential anomalies

Potential anomalies are selected with the use of heuristics.
These heuristics where designed as meta rules but are implemented
as procedures due to performance considerations.

c) Proof anomalies

The theses (potentially invalid rules) are proved by running the
rules to be tested in a forward chaining mode, while providing

1 The taxonomy of anomalies from A. Preece [3].is followed except that the

term contradiction is used in stead of ambivalance.

them with the right truth-values (input). We call this process proof-
by-processing.

This process resembles the “saturation” process used by Nouira
and Fouet [4]. Nouira and Fouet generate the largest possible
number of properties for an object that would certainly appear
during a real execution and then start forward chaining during
which it tries to fire constraints. In VALENS the heuristics defined
in the meta rules search for the smallest number of properties for
an object wherefore the potential anomaly can be proved.
VALENS does not use explicit constraints. The knowledge
contained in the constraints of Nouira and Fouet are integrated in
the meta rules of VALENS. In contrast to the meta rules of
VALENS, the constraints of Nouira and Fouet contain semantic
knowledge. Semantic meta rules are foreseen but not yet
implemented in VALENS (see 3.3 Future Enhancements)

For a more detailed description of the proof-by-processing
algorithm used in VALENS to detect anomalies the user is referred
to Gerrits and Spreeuwenberg [8].

2.1.1 Benefits of Proof-by-processing

The proof-by-processing algorithm has some benefits in
comparison to the algorithms based on formal logic. The most
important benefit is that proof-by-processing allows us to deal with
predicate logic (i.e. functions are allowed to be used in rules). The
functions that are used in the rules may contain procedural
algorithms. An example of the use of functions in rules is given in
the result window in figure 3. The rule “clients must be older than
15” uses the function or method (as it is called in an OO
environment) “Age”. This method returns the number of years
between the current date and the attribute “Birthdate” of the class
“Relation”. This is not a predefined method, the user may design
any method and use it in rules. VALENS will find which attributes
are used in the method (by recursively assessing the method and
the methods that are being called by the method) and execute the
method during the proof-by-processing algorithm. The
consequence of executing the method on the execution of the rules
will therefore be taken into account.

 A second important benefit of the proof-by-processing
algorithm is that we can work in an object-oriented (OO)
environment. As seen in figure 3 the rules work on attributes of the
current instance. These attributes can be inherited.

Figure 1. UML Class diagram

In figure 1 the UML class diagram of the knowledge and
domain concepts seen in figure 3 is shown. The rules are modelled

in methods and can contain a very rich OO language shown in the
notation elements in the right hand side of figure 1.

A third and very important benefit of proof-by-processing is that
there can be no discrepancy between the run time logic and the
logic used in the validation process because the inference engine
used in the verification process is the same as the inference engine
used to evaluate and fire the knowledge rules in the application.

2.2 V&V in AION

The V&V tool VALENS is built in, and made for Aion82 (short:
Aion) applications. Aion is a widely used commercial development
environment for KBS and intelligent components. Some
characteristics are:

– The inference engine supports rule and decision table
processing in a backward, forward chaining or recursive
forward chaining mode.

– The programming language is object-oriented.

– Meta-programming features enable a programmer to obtain
information about the state of the inference engine.

– The Callable Object Building System (COBS) feature allows
one to automate all the functions a developer can use in Aion.

At the moment Aion does not include any rule V&V strategies
but customers who maintain Aion rule bases with more than 100
rules have asked for these facilities. Integration in the Aion
development environment is one of the future directions of
VALENS.

2.3 The tool VALENS

The V&V application consists of three components: a user
interface, the verification engine and a reporting component. The
relationship between these components is given in the context
diagram of figure 2.

Figure 2. Context diagram of V&V tool

The user selects the KB and rule sets within that KB that need to
be verified. When there are potential ‘invalid rules’ detected during
the verification process, the KB is started in a forward chaining
mode to test the thesis. We than capture the results of the inference
engine for analysing whether a thesis is satisfied, and to catch the
chain of logic that has caused a thesis to be satisfied.

2 Aion is a product and trademark from Computer Associates.

Example Method body "AssignClient"

rule "clients must be older than 15"
ifrule
 current.age > 15
then
 current.assigned = true
end

rule "lanquage courses for young people"
ifrule
 current.age > 20
 and current.deficit = "language"
then
 current.assigned = false
end

Logica l V iew

Relation

+Age(Date : date) : Integer

-Birthdate : date
-Name : String

Client

+Intake() : Post rules
+AssignClient() : Ruleset
+DefineFocus() : Ruleset

-Degree : Str ing
-Assigned : Boolean
-Course : List of string
-Function : String

Teacher

+InferExperience() : Post rules
+DeriveExperience() : RuleSet
+DeriveExpert ise() : RuleSet

-Expertise : String
-Experience : Integer
-NumberOfLessons : Integer

Example method body "Intake"

infer

 AssignClient
 DefineFocus

 backwardchain(- >current.Assigned)

end

Source code o f
Aion ru lebased

appl icat ion

Ver i f icat ion
mechan ism

Valens
User In ter face

Repor t
generator

User o f
Valens

Figure 3. Result window of VALENS

Invalid rules are reported in a HTML document and on a result
window (containing the same information). Each fault is classified
and explained as shown in figure 3, which shows the result-tab for
contradictory rules.

The results window shows a general explanation of the anomaly
and the conflict that is detected. A conflict is defined in [9] as a
minimal set of rules, eventually associated to an input fact set, that
is a sufficient condition to prove an anomaly. The rules, which
have been detected as "contradictory", are shown in the list on the
upper left-hand side of the window. When a rule is selected, the
rule chain (the set of rules that caused the rule, which is
contradictory to the selected rule, to fire) is shown in the list at the
lower left-hand side of the window. The rule that is contradictory
to the selected rule has the fault-icon (thunderbolt-sign) in this list.
When a rule in the rule chain is selected, the rule text, rule premise
and rule action are shown in the text boxes. The list in the middle
shows the truth-values (input fact set) under which the particular
contradiction is proved.

Groups of knowledge rules and the status of faults found during
V&V can be stored in a database to allow regression testing.

3. APPLICATION BUILDING

VALENS is developed by LibRT BV. LibRT is a young, Dutch
company which aims at helping customers integrate knowledge-
based solutions into their own information-based solutions. We
strongly feel that the art of knowledge engineering should be added
to the default skills of any business analyst, application consultant
or software engineer. To achieve this goal, LibRT develops
products containing the knowledge of knowledge engineers, of
which VALENS is an example.

3.1 Development and project team

It required about one man-year to develop VALENS. The
project team consisted of the three authors of this article. They
complement each other’s skills and had their own focus in the
project.

All three project members have a background in KBd system
development and their respective focus in the project was:

– Functional requirements and the main
concepts involved in our approach to
V&V.

– Development and coding in Aion

– Testing and exploitation of VALENS

3.2 Exploitation phase

The exploitation phase of VALENS is
divided in three stages. In the first stage
we have searched for collaboration with
a commercial party that had already
developed knowledge-based systems in
Aion. We investigated the quality of their
applications by using VALENS and
delivered an evaluation report. This stage

gave us the opportunity to create references, test VALENS on real
world applications and investigate the market for V&V tools

In the second stage we will collaborate with a commercial party
where we can integrate VALENS in the knowledge engineering
life cycle. We expect that in this phase, the costumer will have
specific wishes regarding the user interface and validation
capabilities of VALENS. This second stage gives us the
opportunity to communicate with the users of VALENS about the
requirements for a user interface, system integration and domain
specific validation.

In the third stage, we will have developed a generic user
interface for VALENS and VALENS will be sold under a license
agreement3. At this moment, we are in the second stage of the
exploitation phase of VALENS.

3.3 Future enhancements

At present, LibRT is working at a further refinement of the user
interface component and the reporting component. Further
development of VALENS will involve the active support of users
in solving faults detected and in suggesting solutions to the
problem at hand. Automatic repair of faults will be supported but
only by the explicit agreement of the user. We emphasize that the
end-user has to be in charge in this problem solving process.

Also, we would like to extend VALENS with a form of
semantic validation by using domain specific meta-rules. These
domain specific meta-rules are constraints or business rules. These
business rules will be specified and defined by a business analyst
or domain expert. The defined business rules can be stored and
edited from within the V&V tool. These business rules will be
handled in the same way as the meta rules described in section 2.

4. APPLICATION BENEFITS

The quality and maintainability of software is becoming a more
and more important issue for managers of large scale IT projects.
When rule-based techniques are used it is possible to detect
anomalies automatically during the development process which can
reduce development and test time and, even more important,

3 Presumably as an add-on in the Aion development environment.

increase the quality of the rule base. The risks of maintenance are
reduced when the application is of high quality. Furthermore, the
use of VALENS will speed up the learning curve of novice
programmers with respect to the basics of good rule-base
programming.

4.1 Experience with real life applications4

VALENS is tested using a KB that contains a large veriety of
anomalies based on the sample rule bases of A. Preece and
extended with specific tests for the rich Aion rule language
constructs and object orientation concepts.

Postbank Nederland BV became interested in the promise of a
V&V tool for their AionDS5 assessment KB. In a two months pilot
project VALENS was evaluated in a real business situation. The
target KB had been written in AionDS 7 and contained
approximately 250 rules. Because the current version of VALENS
is developed for Aion8 KBS, the target KB had to be converted to
an Aion8 KB. The conversion process was accomplished in one
day. Important in this respect is that VALENS only needs a ‘valid
rule base’ to verify the rules: no GUI or other interfaces need to be
converted.

LibRT got the first version of the customer’s KB to verify when
the developing team of the Postbank had finished the rule base and
the testing phase was at hand. Though VALENS can be applied
earlier in the application development lifecycle, it was perfect
timing: there would be a parallel V&V and testing phase so the
results of both processes could be compared.

 VALENS did not detect any real errors in the KB. Though this
might look disappointing, the testing phase neither did reveal any
error that could have been detected by verification. VALENS did
find many redundant and obsolete constructs in the KB. Some of
these constructs were intentional, others were not, but everyone
was impressed with the fact that VALENS was able to highlight
these ‘points of interest’.

VALENS proved to be of good use in maintaining the integrity
of the functional specifications of the KB and the realized (and
revised!) KB. Of course, VALENS detected problems that were not
problems at all but thanks to this pilot project, Valens has become
more mature and robust. After two months, the pilot project was
not continued because it became clear that the target KB will
probably never be converted to an Aion8 KB.

At present, we have started a collaboration with a party that uses
VALENS for the V&V of legal-models. VALENS is used, in the
first place, by the analysis and development team (approximately 5
people). The results of VALENS are discussed by domain experts,
which have a background in legislation. In the first results
VALENS detected incomplete knowledge. The expert knowledge
that was added to resolve the incompleteness resulted in the
detection of a circular reasoning by VALENS, which was than
again corrected by the domain experts.

4.2 Usability

Performance issues are important during the development of
VALENS. During the use of VALENS performance is less
important because users need not be present while the system runs.

4 Due to confidentiality contracts with our customers we are not able to

show the real results obtained on the real knowledge bases
5 Aion is a new version of AionDS.

We advise the user to start VALENS after work or during lunch.
Our test application contains 30 rules and does the search for
redundancy, the most time consuming check, in less than two
minutes on a Pentium II. However, this time indication doesn’t say
anything about another rule base containing 30 rules. It is not the
number of rules that determine verification time but the structure of
the knowledge that is contained in the rule base. We are not aware
of a measure indicating complexity of a rule base. Such a measure
is needed when a prediction of the validation time for a given rule
base has to be made.

The result window shown in figure 3 is a sufficient explanation
to be used by a knowledge engineer who has an understanding
about KBS and an inference engine. However, the result window is
not sufficient for explanation of the results to experts or
inexperienced programmers. Therefore LibRT would like to
improve the presentation of results with graphics, for example a
visual dependency graph of the logical chain, and more
explanatory text.

At this moment VALENS is a stand alone application installed
on a local PC which has a valid license of Aion. The user selects
the Aion source code that he wants to verify. VALENS will show
the user a view on the selected rule base in which the user can
select rules to be verified and the different analyses to be
performed on these rules. LibRT is intending to integrate VALENS
in the Aion development environment for use during the
development and maintenance of an application. This will relieve
the programmer from opening Aion source code in the VALENS
application. VALENS can also be integrated in a domain specific
knowledge editor tool and used early in the analysis stage. One can
also think of integrating VALENS in a test-tool, however, we
recommend to start with V&V techniques early in the development
life cycle.

4.3 Comparison to similar systems

In the beginning of the ’90s, the universities devoted much
attention to V&V of KBS. There were some tools developed to
verify rule bases of which Preece [10] has given an overview and
comparison. An even more extensive overview comes from Plant
[11] who lists 35 V&V tools build in the period 1985–1995. Most
of the systems where developed at a university and it is hard to find
out what the current status of those systems is. What happened
with those systems? Some of them will still have a research status
and are used to explore new research domains. For example, the
COVER tool of Preece is evolved in the COVERAGE tool for
verifying rule bases in a multi agent architecture. [12]. And the
PROLOGA tool [13] is extended with intertabular verification
[14]. But perhaps the ‘boost’ for V&V tools failed to occur because
the promise of KBS failed in commercial environments. Another
factor might be that not only business environments but also
university research is driven by ‘hypes’ like ‘knowledge mining’,
‘knowledge management’ and ‘intelligent agents’ which follow
each other in such tempo that there is no time to pick the fruit of
planted trees. However, the current need for more quality, less
unpredictable software development projects and better
maintainable systems might change the prospects of V&V tools.

The verification tools can be compared on a number of criteria.
One criterion is formed by the anomalies that are detected by the
tool. Some tools do not detect anomalies in a chain of logic, for
example the Rule Checker Program (RCP) [15] and CHECK [16].

Others like RCP, CHECK and EVA [17] do not detect missing
rules and unused literals. VALENS is complete with respect to the
anomalies defined by Preece [10].

Another criterion is the language that is supported by the tool.
Most V&V systems, which verify a KB, cope with a restricted
language, for example first order predicate logic [6][7] or formal
specification language [5] as opposed to the rich language of a
programming environment like Aion. There are also tools which
have their own internal language defined and which, manually or
automatically, translate diverse languages to the internal language.
EVA is an example of a system with its own internal language and
provides a set of translation programs that translate the rule
languages of some expert system tools (for example, ART, OPS5
and LES) to an internal canonical form, based on predicate
calculus. PROLOGA works the other way around, it allows a user
to create and verify decision trees and then generate code in diverse
programming languages (for example, Aion, Delphi and C++).
COVER and VALENS work in the programming language they
where developed with, which is respectively Prolog and Aion. It
will be straightforward to automatically convert KBS written using
other rule-based expert system shells into the rule language used by
the V&V tool. However, if one wants to propose revisions of the
rule base based on the verification results, the translation process
will pursue extra complexity to this process.

If tools are bounded to a (programming) language, they are
likely to be integrated in an expert system shell or, as we call it
today, development environment. VALENS will be integrated in
Aion in the future. This makes the tool less generic; however, the
core algorithms of VALENS are independent of the programming
language6. The algorithms do pose assumptions on the ‘trace-
ability’ of the inference engine. For the algorithms of VALENS to
work correctly the inference engine needs to give information
about the rule-firing network after a chaining process is finished.
LibRT has plans to verify Java code, in combination with a Java
rule engine, in the future.

The last criterion for comparison of V&V tools is their
respective behavior in the analysis and development phase of a
system. The work of Nouira and Fouet [7] concentrates on the
analysis phase of a system but results in a valid and executable KB.
The work of van Harmelen [5] also concentrates on the analysis
phase and verifies formal specification language. The idea is that
the formal specification has to be translated to a programming
language to get an executable program. VALENS is a V&V
component. With the integration of the tool in Aion, we focus on
the development and maintenance stage of an application but its
use is not restricted to this stage because the tool is developed as a
component and can be integrated in an analysis support
environment.

5. DISCUSSION AND CONCLUSION

We have discussed a tool developed in and for Aion
applications that supports the verification and validation of rules.
The tool can be used during development and maintenance of the
KBS. Another application is the integration of our technique with a
domain specific editor to support the definition of knowledge rules
by a domain expert or business analyst.

6 A Component Based Development (CBD) approach has been used during

the project.

The tool uses meta-rules, meta information and the inference
engine of Aion to accomplish this task. By using the same
inference engine in the verification process as in the execution
process of the rules, there can be no discrepancy between the run
time logic and the logic used in the validation process.

We think this tool will reduce the ‘time to market’ for
knowledge-based systems, improve their quality and has added
value during maintenance of applications by developers, especially
for those who are not familiar with the functionality of the
application. A domain expert can not be expected to have an
extensive background in logic, as a developer should have.
Therefore, the tool is a “must have” when domain experts define
their own knowledge rules.

REFERENCES

 [1] Boehm, B.W., 1986, A Spiral Model of Software Development and
Enhancement. Computer, 21, 61-72

[2] Ed P. Andert Jr., 1992, Automated Knowledge Base Validation, AAAI
Workshop on Verification and Validation of Expert Systems (July
1992)

[3] Preece, Shingal, 1994, Foundation and Application of Knowledge Base
Verification, International Journal of Intelligent Systems, 9, 683 – 701

[4] Rym Nouira, Jean-Marc Fouet, 1996, A Knowledge Based Tool for the
Incremental Construction, Validation and Refinement of Large
Knowledge Bases, Workshop Proceedings ECAI96

[5] F.V.Harmelen, 1995, Structure Preserving Specification Languages for
Knowledge Based Systems, International Journal of Human Computer
Studies, Vol. 44, 187-212

[6] Alon Y. Levy And Marie-Christine Rousset, 1996, Verification of
Knowledge Bases on Containment Checking, Workshop Proceedings
ECAI96

[7] Z. Bendou And M. Ayel, 1996, Validation of Rule Bases Containing
Constraints, Workshop Proceedings ECAI96

[8] R. Gerrits, S. Spreeuwenberg 1999, A Knowledge Based Tool to
Validate and Verify an Aion Knowledge Base, Validation and
Verification of Knowledge Based Systems, Theory, Tools and Practice,
67 – 78

[9] F. Bouali, S. Loiseau, M.C. Rousset, 1997, Revision of Rule Bases,
Proceedings Eurovav 97, 193 – 203

[10] A. Preece, 1991, Methods for Verifying Expert System Knowledge
Bases.

[11] Robert T. Plant, 1995, Tools for Validation & Verification of
Knowledge-Based Systems 1985 – 1995 References, Internet Source

[12] N. Lamb And A. Preece, Downloaded: 01-05-2000, Verification of
Multi-Agent Knowledge-Based Systems, Internet Source

[13] J. Vanthienen, 1991, Knowledge Acquisition and Validation Using a
Decision Table Engineering Workbench”, World Congress of Expert
Systems, 1861 – 1868

[14] J. Vanthienen, C. Mues, G. Wets, 1997, Inter-Tabular Verification in
an Interactive Environment, Proceedings Eurovav 97, 155 – 165

[15] M. Suwa, A.C. Scott, E.H. Shortliffe, 1982, An Approach to Verifying
Completeness and Consistency in a Rule-Based Expert System, AI
Magazine, Vol. 3, Nr. 4

[16] W.A. Perkins, T.J. Laffey, D. Pecora, T.Nguyen, 1989, Knowledge
Base Verification, Topics in Expert System Design, 353 – 376

[17] C.L. Chang, J.B. Combs, R.A. Stacowits, 1990, A Report on the
Expert Systems Validation Associate (EVA), Expert Systems with
Applications, Vol. 1, Nr. 3, 217 – 230

