
Search in AI - Escaping from the CSP Straightjacket
Mark Wallace 1

Abstract. We investigate some useful strategies for solving a vari-
ety of hard search problems. In the process we identify weaknesses
in the standard CSP formalisation of such problems.

1 Search in Artificial Intelligence

A basic challenge in Artificial Intelligence is to understand how peo-
ple solve problems. In 1968 Herbert Simon wrote [14]:

Problem solving is often described as a search through a
vast maze of possibilities...Successful problem solving involves
searching that maze selectively and reducing it to manageable
proportions

Simon suggested that people solve problems by following search
strategies. Ultimately, the study of human problem solving reduces
to the study of search strategies and how they are developed and ap-
plied:

Once the strategy is selected, the course of search depends only
on the structure of the problem, not on any characteristics of
the problem solver.

Since 1968 there has been a great deal of investigation into search
strategies. The reason has been that many tough problems in AI -
and other disciplines - can only be solved by search, and without
a good search strategy these problems could not be solved at all (in
any useful time span). What have emerged are a variety of techniques
that can be combined into search strategies tuned to specific problem
classes. One set of techniques, for example, are those associated with
finite domains, including forward checking and fail first.

Simon used as an example the crypt-arithmetic problem
DONALD + GERALD = ROBERT. He described in detail the set of
choices which might be pursued by a thinking person in solving the
problem. It is truly remarkable to discover how closely his descrip-
tion fits the behaviour of a constraint program solving this problem
using the very techniques mentioned above: forward checking and
fail first.

In the following we will explore search strategies for solving hard
problems. The challenge is no longer simply to capture the “intelli-
gent” behaviour people use in problem solving. Now researchers are
developing and applying more and more sophisticated strategies, so
that we can program computers to produce answers to problems that
were previously beyond our reach.

1 ICL and IC-Parc, Imperial College, London SW7 2AZ, UK, email:
mgw@icparc.ic.ac.uk

2 Formalising Search - Some Shaky Foundations

2.1 CSP

Before defining and comparing search strategies we need a standard
definition of a search problem and a search strategy. One definition
for a class of search problems has become standard in the AI com-
munity, under the name CSP (for Constraint Satisfaction Problem).

A CSP < V;D; C > is defined as a set of variables V , a set
of domains D and a set of constraints C. Each domain D in
D is a set of values, and each variable is associated with one
domain. Each constraint C in C is a set of tuples, and is asso-
ciated with an ordered subset of V , which is called its scope.
Each constraint has a fixed width n. All its tuples are n-ary,
and its scope has cardinality n.
An assignment of one value from its domain to each variable in
a CSP is termed a solution if the tuple of values assigned to the
scope of each constraint belongs to its set of tuples.

CSPs have sufficient expressive power to formalise a very wide
class of search problems: arguably all the interesting ones.

A CSP can be solved by searching through all possible assign-
ments until a solution is found. However this strategy (termed “the
British Museum Algorithm” by Hoare [1]), is not guaranteed to ter-
minate unless all the variables’ domains are finite, and even then it is
unlikely to terminate in any reasonable time even for toy problems.

Two very general search strategies are

� constructive search, where values are assigned to variables one-
at-a-time, until a complete assignment has been built

� local search, where search moves from complete assignment to
complete assignment by changing the values of a few variables

These strategies can then be refined by adding further techniques.
For example forward checking is a refinement of constructive search
that, after each assignment of a value to a variable, uses the con-
straints to reduce the domains of the remaining unassigned variables.
Fail first is another enhancement to constructive search. The idea is
to make the next assignment to the remaining variable which has the
smallest domain.

Because of these virtues, I had originally envisaged presenting
some of the recent advances in modelling and solving hard search
problems using the CSP formalism. However the deficiencies of the
CSP formalism proved frustrating enough to dissuade me.

2.2 The Drawbacks of CSP

The drawbacks of the CSP formalisation < V;D; C > lie in its set
of variables V , its set of domains D, its set of constraints C and its
definition of a solution.



2.2.1 A Fixed Set of Variables

Many search problems are most naturally modelled in terms of
a set of variables whose size is, at least initially, unknown. The
most well-known class of such problems are configuration problems,
where the number and range of subsequent choices will depend on
earlier ones. (For example in a computer conguration problem, the
choice of a powerful processor may - still - entail air conditioning,
which gives rise to a number of choices about the size, power, loca-
tion and configuration of the air conditioning system.)

In fact introducing search problems, Herbert Simon uses the
metaphor of a “vast maze”. A maze is a search problem involving a
sequence of choices where, like configuration problems, later choices
depend on earlier ones.

To model a maze in terms of a CSP it is necessary to establish an
upper bound on the number of decisions that might be needed in or-
der to navigate to the centre of the maze. One such upper bound is
the number of places in the maze where the paths branch. If the CSP
includes a variable for each such branching point, then any solution
to the maze will include some assignment to the variables which cor-
respond to branching points that do not lie on the path to the centre.
In this way the maze can be modelled using a fixed set of variables,
but somewhat redundantly.

There is a class of problems, however, where the restriction to
a fixed set of variables appears to conflict with the model sup-
porting the best search strategy.

In many industries the raw materials come in fixed sizes, and cus-
tomer orders must be satisfied from the raw materials with a mini-
mum of wastage. One of the earliest applications of constraint logic
programming was of this kind [2]: the customer orders were for a
certain number of pieces of wood of different sizes, and the raw ma-
terial came in the form of large wooden boards from which the pieces
were to be cut.

For real industrial problems the number of ways of cutting the
original raw material can be very large, so that precomputing all pos-
sible cuttings is impractical.

This problem is most naturally formulated using sets. The solution
is a multi-set of boards, cut in possibly different ways, such that the
sum of all the pieces cut from these boards meets the customer’s
requirements.

Such problems are often solved using a technique which inter-
leaves the “slave problem” of computing different ways of cutting
the raw material with the “master problem” of how many of each of
these to use for satisfying the customers’ orders. In this case solu-
tions to the slave problem become variables in the master problem.
As the algorithm progresses, the number of variables in the master
problem grows and there is no reasonable tight bound on the number
of variables needed.

Consequently, (while it is possible to formulate this problem as a
CSP) it is not possible to formulate it as a CSP in a way that supports
the best search strategy.

2.2.2 A Set of Domains

The second component of the formalisation < V;D; C > of a CSP
is the set of domains.

The set of domains is redundant: they are simply unary con-
straints. In principle, then, they are not needed in the CSP for-
malisation.

The reason they are there is because in the CSP framework do-
mains play a key role in the search strategies. As a result the CSP for-
malism is quite intimately linked with a particular armoury of search

strategies, including the examples - forward checking and fail first -
introduced above.

The drawback is that search strategies which use information other
than domains are not as easy to express in a CSP framework. A stan-
dard technique for solving search problems in Operations Research is
to formalise the problem in terms of two kinds of constraints, linear
constraints and integrality constraints. (Problems formulated in this
way are termed MIP or mixed integer problems). At each node in the
search tree, the linear constraints are solved. If the linear constraints
have no solution, then neither does the original problem.

This approach can be enhanced to handle problem which involve
other kinds of numeric constraints. Each non-linear constraint is ap-
proximated as closely as possible by a set of linear constraints, and
then the same technique is applied, solving the “relaxed” problem,
comprising solely the linear constraints.

This argument might suggest adding the linear constraints as an-
other component in the specification of a CSP. However the same
argument can be applied to several other kinds of information about
any search problem.

Another piece of information about a variable is the number
of constraints within whose scope it lies. This information proves
particularly useful when constraints are automatically simplified or
eliminated when they become redundant during search.

More radically, heuristic information is often very important in-
put for a search strategy. For example if a similar problem has been
solved before, then the previous solution is a useful heuristic to guide
the search for a solution to the new problem. The previous solution
should not be kept as a complete assignment, because then it could
not be used during constructive search. Instead, the information can
be held as a tentative assignment to the variables [16].

The kinds of information which can support different search strate-
gies is unlimited. Obviously it is not possible to capture all these
kinds of information in the formalisation of search problems. There
seems no reason to single out variable domains, from all the other
kinds of information, and promote them to a special status.

2.2.3 A Set of Constraints

The third component of the formalisation < V;D; C > of a CSP is
the set of constraints. Mathematically every constraint denotes a set
of tuples, so the formalisation is correct. However, the formalisation
of constraints in CSP admits no structure. It fails to capture the
semantics of the different classes of constraints.

In the previous section we identified one special class of con-
straints: linear numeric constraints. van Hentenryck et.al. [15] intro-
duced a particularly efficient propagation algorithm for some further
classes of constraints. Jeavons et.al. [8] presented a criteria on the
constraints of a CSP that could predict how hard it would be to solve.

Research strategies that apply different techniques to different
classes of constraints within a problem can only be applied after clas-
sifying the constraints appropriately. Unfortunately the formalisation
of a constraint as a set of tuples obliterates its structure. An inequality
constraint X + 3 � Y is possible to classify when presented inten-
tionally as a mathematical formula, but this is hard to classify when
presented as an infinite set of pairs of numbers.

Furthermore the restriction that constraints have a fixed width
makes it impossible to handle “global” constraints. A global con-
straint is a constraint on a list of variables whose propagation be-
haviour is tailored to the constraint. The algorithm supporting this
behaviour is independent of the number of variables in the list. In
other words the behaviour is independent of the cardinality of the



scope of the constraint.
Consider the pigeon-hole problem. This can be formalised, like

all CSPs, as a satisfiability problem whose constraints all have width
three. However this formalisation proves extremely hard to solve (in-
deed it cannot be solved by resolution in anything less than exponen-
tial time [6].) However using the alldistinct global constraint, and its
specific propagation algorithm, failure is detected in a single propa-
gation step.

According to the CSP formalisation, each time the alldistinct con-
straint has a scope of different cardinality, it is a different constraint.
Consequently each different pigeonhole problem requires a different
formalisation, and there is no natural mapping from pigeonhole prob-
lems represented as CSPs to the one alldistinct propagation strategy.

2.2.4 Solutions

A solution to a CSP is an assignment to all its variables which satisfy
the constraints. This definition is mathematically correct. The deci-
sion problem, which asks whether a given CSP has any solutions,
relies on the above definition of a solution. Formally, to solve a CSP
is to answer the decision problem. We should not go further and iden-
tify solving a CSP with searching for such a solution.

The CSP formalisation places too much emphasis on search
techniques that work by assigning values to variables. There are
many problems for which an intensional description of the set of so-
lutions is much more useful than a list of assignments (especially in
case the list is infinite)!

For mixed integer problems, a very useful representation of the
set of solutions is the tightest conjunction of linear constraints which
are satisfied by all the integer solutions. For scheduling problems,
the temporal ordering of tasks is more important than their precise
starting times. In both cases the answer to the decision problem is
easily extracted from intensional representation of the solutions.

2.3 Optimisation

The CSP formalism does not include an optimisation function. How-
ever it can be easily enhanced to include optimisation, yielding
CSOP. Given an optimal value, the “proof of optimality” is simply
another CSP, so prima facie the difference between CSP and CSOP
is not very important.

However the introduction of an optimisation function strongly in-
fluences some aspects of CSP and their solution techniques. CSOPs
are much better addressed by local search algorithms than CSPs
naturally are.

Of course CSPs have been increasingly addressed by local search
techniques since Minton’s initial work on the n-queens problem [9].
However turning a CSP into a CSOP by adding a penalty for each
violated constraint ([4]), yields a cost function which may have a
very “flat bottom” if the CSP has many solutions.

In fact the shape of the optimisation function is a very important
influence on how hard it is to solve. Let us say a CSOP has a fine
granularity if the number of assignments having any given optimi-
sation function value is small. If many assignments have the same
value, the CSOP has a coarse granularity. It is easy to see that CSOPs
with a coarse granularity are in general easier to solve than ones with
a fine granularity. The special case where very few assignments have
the optimal value makes a CSOP relatively hard to solve.

The concept of a phase transition, which helps predict which
uniform, random CSPs are likely to be hard to solve, is con-

spicuously less useful for CSOPs. In general all fine granularity
CSOPs are hard.

The third factor that makes CSOPs rather different from CSPs is
the speed with which the search converges on better and better so-
lutions. As we shall see below, the choice of which value to assign
first to a variable is not critical in a CSP. If the problem is unsatis-
fiable, the value order makes no difference to the total search space.
By contrast, in CSOPs a good value ordering can dramatically
speed up the convergence of the search process.

3 Search Strategies

3.1 Extending Constructive Search

3.1.1 Constructive Search

In our house we lose things every day. Having no idea where they are
we search everywhere till (on a good day) we find them. For “blind”
search, where there is no information about the problem available,
the only possible strategy is Hoare’s British Museum algorithm.

However the interesting problems are those where the constraints
can be formalised, quite compactly. Indeed for the class of (NP-hard)
problems we are interested in, the number of complete assignments
grows exponentially with the size of the problem statement.

In this case it is possible to enhance constructive search by check-
ing each constraint as soon as all the variables in its scope have been
assigned a value (or “instantiated”).

A further enhancement is to reason on constraints that are not yet
(completely) instantiated. Often this reasoning takes the form of logi-
cal deduction, and it produces new (or “tighter”) constraints on those
variables which have not yet been instantiated. We term this con-
straint propagation. Some examples are forward checking, arc- and
path-consistency [10, 3, 7].

Besides constraint propagation, there are other techniques that can
be used to enhance the performance of constructive search. The al-
gorithm must select, at each search step

� which variable to assign next, and
� which value for that variable to try first.

Heuristics governing the choice of variable and value can have a sig-
nificant effect on search performance.

In principle it is best to assign next the variable whose removal
from the problem renders the remaining subproblem easiest to solve.
If the problem has only binary constraints, and forward checking is
applied at each search step, then each constraint with the chosen vari-
able in its scope can simply be dropped from the subproblem. In this
case the variable choice can be automated using a measure � of prob-
lem constrainedness [5]: always choose the variable whose removal
yields the least constrained subproblem.

3.1.2 Beyond Constructive Search

Industrial applications have forced us to generalise the underlying
constructive search in order to achieve good constraint propagation.
This is best illustrated using scheduling problems as an example.

The scheduling problem is to assign a starting time to each of a
given set of tasks, so as to satisfy (simple temporal) constraints on
their starting and ending times, and to ensure the number of tasks in
progress at any time stays below a given limit.

Constructive search can be applied to this problem by assigning
a value one-at-a-time to each task starting time. This is in general a
poor strategy for such problems since the assigning of a certain time



t to a task may differ insignificantly from the assigning of t + 1 to
the same task.

It is much more significant to assign a relationship - before, after or
overlapping - to a pair of tasks. Once this relationship has been fixed
for each pair of tasks, then assigning start times to the tasks can be
achieved without any need to search through alternative assignments.

For this purpose a scheduling problem can be modelled by intro-
ducing a variable for each pair of tasks, whose value represents their
relationship. Constraints enforce the consistency between the “rela-
tionship” variables and the start time variables. Further constraints
are also needed to maintain the relationship between pairs of rela-
tionship variables. For example if task1 before task2 and task2 before
task3 then task1 before task3.

When this approach is used for non-toy problems, with say 100
tasks, the number of “relationship” variables needed is 10,000. The
number of constraints between the relationship variables is 100 �
100 � 100, which is a million. Unfortunately few computing plat-
forms support such large numbers of constraints, and applying con-
straint propagation techniques to problems of this size is (currently)
impractical.

It is possible to apply a generalisation of constructive search to
scheduling problems which is much more scalable. The principle is
that instead of assigning a value to a variable at each step, the search
routine adds a constraint on a pair of task start or end times. The
added constraint, or pair of constraints, enforces one of the relation-
ships - before, after, or overlaps - between two tasks, but achieves it
without introducing extra variables. When an ordering has been im-
posed on all the task start and end times, the problem can then be
solved without search as above.

The generalisation of constructive search is to allow constraints
to be posted at each search step other than just variable assignments
(which are themselves just constraints of the form Variable = value).

The standard search technique used by Operations Researchers
for solving MIP problems is such a generalisation of constructive
search. In this case the constraints added are typically new bounds
on the variables. These have the form V ariable � integer or
V ariable � integer. However current linear solvers allow any
(set of) linear constraints to be added at a search node. In the hy-
brid search strategy of [12], for dynamic scheduling problems, the
constraints added to the linear solver during search are orderings on
task start and end times.

In this context the notion of constrainedness cannot serve as a
guide for choosing which constraint to add at a search step. We need
to distinguish between constraint classes, and even between individ-
ual constraints.

The best illustration of the choice of which constraints to add dur-
ing search is in an algorithm for solving propositional satisfiability
problems [11].

The search strategy analyses the remaining unsatisfied clauses and
looks for patterns. Depending on the best pattern, it either chooses
a pair of variables X and Y and adds the constraint X = Y or
it chooses a single variable and adds X = true. (The alternative
decisions are respectively X 6= Y and X = false.) This approach
has been enhanced to achieve worst case performance O(1:472n).

3.2 Beyond Local Search

Local search moves from complete assignment to complete assign-
ment by changing the values of a few variables. For many applica-
tions, in fact, a local move simply switches the value of a single vari-
able (eg [9]).

In this section I want to make the point that a good local search al-
gorithm may involve much more complex moves than simply switch-
ing a few variable values. In effect the problem may need radical
reshaping so that local moves converge quickly towards a solution.

Local search, as introduced above, deals only with complete as-
signments. Naturally most such assignments are not solutions, and
violate some of the problem constraints. In industrial applications,
however, the distinction between satisfying a constraint and not sat-
isfying it is not always so sharp. Some constraints should be satisfied
in a solution, but do not have to be. These constraints are called soft
constraints. Solutions which violate soft constraints incur a penalty.

These penalties help steer local search towards good solutions, that
have low penalties. A move from one assignment to another, with
a smaller penalty, is generally assumed to be a move “in the right
direction”. On the other hand a move to another assignment with a
higher penalty may be a move in the wrong direction, and may be
rejected.

In fact problems with soft constraints are optimisation problems.
The penalties associated with soft constraints are components of the
cost function. In a sense they are not constraints at all, but merely
conditions used in computing the cost function.

For the purposes of local search, even hard constraints are often
treated as soft constraints, which can be violated by complete assign-
ments during the search process, though they incur a high penalty.
On completion of the local search process, the system then checks
these constraints explicitly and continues the search in case any of
them are still violated.

For local search to work, there must be some correlation between
the cost associated with assignments that are just a few moves away
from each other. If there were no such correlation, then local search
would be no better than the British Museum algorithm.

A local search strategy that only moved to assignments with
smaller and smaller costs (confusingly termed hill climbing) would
become trapped in local optima. These are non-optimal assignments
whose immediate neighbours (assignments reachable in one move)
all have higher costs.

However there are some important problem classes for which hill
climbing does guarantee to find the global optimum. One such class
is the class of problems with linear equations and a linear optimi-
sation function. All the variables are continuous, so they can take
infinitely many different values. Since problems in this class have in-
finite search spaces, local search would not seem to be a very suitable
search strategy.

The traditional technique of solving linear equations, is to take the
equations, one at a time, make one variable the subject of the equa-
tion, and then eliminate it from the remaining equations by substitu-
tion. Eventually either an inconsistency is found (an equation with no
solution), or all the equations have been used and some (or all) of the
variables have been eliminated. If there are n (linearly independent)
equations, and m variables, with m � n, then there will be m � n

variables left.
Under certain assumptions about the equations, the optimal solu-

tion can be found by choosing the right set of variables to eliminate
(termed the basis) and assigning the rest to 0. Moreover, having cho-
sen one basis, if it does not yield the optimal solution, then by switch-
ing one variable into the basis and another one out, an equal or better
basis can be found.

We can define a move as a switch of one variable in the basis
for another, and setting the remaining (non-basic) variables to 0. In
this search space, hill climbing does guarantee to yield the optimal



solution.2

3.3 Combining constructive and local search

Constructive search can exploit the constraints very well to avoid
exploring irrelevant parts of the search space. However constructive
search, and even generalised constructive search, has a weakness in
addressing optimisation problems. The optimisation function typi-
cally involves many variables and, until most of them are instanti-
ated, little can be deduced about the value of this function by con-
straint propagation.

Local search, by contrast, focusses on optimisation but cannot eas-
ily be tuned to handle hard constraints.

By combining the two forms of search in a single algorithm the
advantages of each can be exploited, leading to a new kind of search.
We present two forms of this algorithm

3.3.1 Combined Search for Solving a CSP

For CSPs, there is no optimisation function in the original problem,
so, to guide the local search function, each violated constraint incurs
a penalty. The general search strategy is as follows:

1. Generate a complete assignment and optimise it using local
search.

2. If the complete assignment is a solution, then stop.
3. Record the value assigned to each variable, abandon the assign-

ment itself, then attach each value to its variable again as a tenta-
tive value.

4. Find the constraints violated by the assigned and tentative values
of the instantiated, respectively uninstantiated, variables in their
scope.

5. Choose an unassigned variable in the scope of a violated con-
straint, and assign a value to it. (Note that this is a choice point:
all the values in the variable’s domain must be tried to cover the
whole search space).

6. Apply local search to the remaining (uninstantiated) problem vari-
ables, starting from their previous tentative values. Return to (2)
above.

An instance of this algorithm, incorporating constraint propaga-
tion within the constructive search component, was applied success-
fully to some propositional satisfiability problems [13].

3.3.2 Combined Search for Solving Optimisation Problems

For optimisation problems, we introduce a class of constraints Csimp

which are respected by the local search algorithm. We call them
“simple” constraints. The assignments generated by the local search
algorithm always satisfy the simple constraints.

The following algorithm is a generalisation of MIP branch and
bound. In MIP branch and bound Csimp is the class of linear con-
straints, and the local search algorithm a linear solver.

1. Generate an initial complete assignment and optimise it using lo-
cal search. (This assignment satisfies all the simple problem con-
straints, and is an optimal solution satisfying these constraints.)

2. If the complete assignment is a solution, then stop.

2 Whilst we have outlined the Simplex algorithm here, the interior point
method is also an instance of local search.

3. Record the value assigned to each variable, abandon the assign-
ment itself, then attach each value to its variable again as a tenta-
tive value.

4. For some problem constraint that is violated by the tentative as-
signments, choose a simple constraint which precludes this viola-
tion, and add it to the problem. (Note that this is a choice point:
the set of alternative such simple constraints must all be tried to
cover the whole search space).

5. Restore the tentative assignments, apply local search and optimise
in the light of the newly added simple constraints. Return to (2)
above.

The linear solver satisfies a number of conditions which ensure
that MIP is sound, complete and terminating. These conditions are
as follows:

1. There is a class of simple constraints Csimp which is satisfied by
every assignment produced by local search

2. Each problem constraint can be represented by logical combina-
tions of simple constraints.3

3. The search is finite. 4

4. The local search produces the optimal solution for the subproblem
comprising only the simple constraints.

Another instance of this generic algorithm was presented at ECAI
1999 [12]. In this case the application was scheduling, Csimp was
the class of simple temporal constraints, and the remaining problem
constraints were resource utilisation constraints.

4 Applications

Whilst CSPs have been studied for many years in the AI community,
many of the applications of constraint technology have addressed
problems which cannot be naturally formulated in this way.

Many practical applications involve both continuous variables
(representing, for example, time, quantity and distance) and discrete
variables (representing resources, tasks, customers and, more gener-
ally, logical disjunction).

Constraint technology, and in particular hybrid algorithms of the
kind presented in the last section, have underpinned a breakthrough
in solving large scale industrial optimisation problems of this kind.

This success has attracted the notice of Operations Researchers
and the constraint programming community is growing rapidly as a
result of this success.

The research issues are very hard. We tackle difficult problems
that have never been solved before, we develop solutions that benefit
schools, hospitals, and other organisations, and ultimately we seek to
understand the nature of search.

This exciting area brings AI and OR researchers together to tackle
problems neither could solve alone. We very much hope you will join
us!

5 Appendix

Constraint Logic Programming (CLP) offers a very nice formalism
for expressing hard search problems. The following examples show

3 Assume that, for every violation of a problem constraint by a complete
assignment returned by local search, there is a finite set of (alternative)
simple constraints which it also violates. Each assignment which satisfies
the problem constraint also satisfies at least one constraint in this set.

4 There is no infinite sequence of assignments and simple constraints, such
that the ith assignment satisfies the first i constraints but violates all the
constraints after the ith.



how each of the features hard to express in the CSP formalisation are
expressed using CLP.

5.1 The basic CSP

The following CSP has four variables W;X; Y; Z. X has domain
1:::10, and W , Y and Z have the same domain fa; b; c; dg. The bi-
nary constraint q has three tuples and scope X;Y . The ternary con-
straint p has only two tuples, and scope W;Y; Z

% Constraint tuples
q(1,a). q(2,b). q(3,c).
p(a,b,c). p(a,c,c).

% Problem definition
problem(W,X,Y,Z) :-
% Variables and domains

X:: 1..10, [W,Y,Z]::[a,b,c,d],
% Constraint scopes

q(X,Y),
p(Y,Z,W).

5.2 An Unknown Number of Variables

The maze problem is most naturally modelled using a variable list,
whose length is initially unknown. We solve the following maze:

This maze is searched by the following program:

%Constraint tuples
link(start,b1).
% There are two links from b1 to b2
link(b1,start). link(b1,b2). link(b1,b2).
link(b2,b1). link(b2,b1). link(b2,b3).
link(b3,centre). link(b3,dead_end).
link(centre,b3).
%Program
maze(Path) :-

fromto(start,Here,There,centre),
fromto([],ThisPath,[Here|ThisPath],Path)
do link(Here,There),

not member(There,ThisPath).

5.3 A Constraint of Unknown Width

The pigeonhole example can be modelled very generally.

pigeon(Pigeons,Holes) :-
Pigeons::Holes,
alldistinct(Pigeons),
labeling(Pigeons).

A particular instance of this class can be solved by invoking
?- pigeon([P1,P2,P3,P4],[h1,h2,h3]).

5.4 Search by Posting Constraints

This problem has continuous domains, and could not be solved by
assigning start times.

% Constraint tuples
no_overlap(S1,D1,S2,D2) :- S1 *>= S2+D2.
no_overlap(S1,D1,S2,D2) :- S2 *>= S1+D1.

% Problem definition
schedule(S1,S2,S3) :-

S1::0.0..10.0, S2::3.0..8.0, S3::0.0..7.0,
no_overlap(S1,5,S2,5),
no_overlap(S2,5,S3,5),
no_overlap(S1,5,S3,5),
sequence([S1,S2,S3]).

sequence(List) :-
foreach(S1,List),
foreach(S2,List)
do (S1==S2 -> true ; seq(S1,S2)).

seq(S1,S2) :- S1*>=S2.
seq(S1,S2) :- S2*>=S1.

ACKNOWLEDGEMENTS

The existence of this paper is thanks to all my colleagues at IC-Parc,
and especially Joachim, Kish and Warwick and their brilliant work
on the ECLiPSe constraint logic programming platform.

REFERENCES

[1] C.A.R.Hoare, ‘An overview of some formal methods for program de-
sign’, in Essays in Computing Science, ed., C. B. Jones, 371 – 388,
Prentice Hall, (1989).

[2] M. Dincbas, H. Simonis, and P. Van Hentenryck, ‘Solving a Cutting-
Stock Problem in Constraint Logic Programming ’, in Fifth Interna-
tional Conference on Logic Programming, Seattle, WA, (August 1988).

[3] E.C. Freuder, ‘Synthesizing constraint expressions’, Communications
of the ACM, 21(11), 958–966, (November 1978).

[4] Eugene C. Freuder and Richard J. Wallace, ‘Partial constraint satisfac-
tion’, Artificial Intelligence, 58, 21–70, (1992).

[5] Ian P. Gent, Ewan MacIntyre, Patrick Prosser, and Toby Walsh, ‘The
constrainedness of search’, in Proceedings of the Thirteenth National
Conference on Artificial Intelligence and the Eighth Innovative Appli-
cations of Artificial Intelligence Conference, pp. 246–252, Menlo Park,
(August 4–8 1996). AAAI Press / MIT Press.

[6] A. Haken, ‘The intractability of resolution’, Theoretical Computer Sci-
ence, 39(2-3), 297–308, (August 1985).

[7] R.M. Haralick and G.L. Elliot, ‘Increasing tree search efficiency for
constraint satisfaction problems’, Artificial Intelligence, 14, 263–314,
(October 1980).

[8] Peter Jeavons, ‘Constructing constraints’, in Principles and Practice of
Constraint Programming - CP98, Pisa, Italy, (October 1998).

[9] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird, ‘Minimiz-
ing conflicts: a heuristic repair method for constraint satisfaction and
scheduling problems’, Artificial Intelligence, 58, (1992).

[10] U. Montanari, ‘Networks of constraints : fundamental properties and
applications to picture processing’, Information Science, 7(2), 95–132,
(1974).

[11] R. Rodosek, ‘A new approach on solving 3-Satisfiability’, Lecture
Notes in Computer Science, 1138, 197–??, (1996).

[12] H. El Sakkout, T. Richards, and M. Wallace, ‘Minimal perturbance in
dynamic scheduling’, in Proceedings of the 13th European Conference
on Artificial Intelligence (ECAI-98), ed., Henri Prade, pp. 504–508,
Chichester, (August 23–28 1998). John Wiley & Sons.



[13] J. Schimpf and M. Wallace, ‘Finding the right algorithm - a combi-
natorial meta-problem’, Electronic Notes in Discrete Mathematics, 4,
80–92, (1999).

[14] Herbert Simon, The Sciences of the Artificial, MIT Press, 1969.
[15] P. Van Hentenryck, Y. Deville, and C.-M. Teng, ‘A generic arc-

consistency algorithm and its specialisations’, Artificial Intelligence,
57, (1992).

[16] M. Wallace, S. Novello, and J. Schimpf, ‘Eclipse - a platform for con-
straint programming’, ICL Systems Journal, 12(1), 159–200, (1997).


