ECAI 2004 Conference Paper

[PDF] [full paper] [prev] [tofc] [next]

A Backtracking strategy for Order-Independent Incremental Learning

Nicola Di Mauro, Floriana Esposito, Stefano Ferilli, Teresa M.A. Basile

Agents that exist in an environment that changes over time, and are able to take into account the temporal nature of experience, are commonly called incremental learners. It is widely known that incremental learning systems suffer from ordering effects, a phenomenon observed when different ordered sequences of examples lead to different results. The goal of this paper is presenting INTHELEX_back, a modification of the incremental learning system INTHELEX with the aim of making it order-independent. Specifically, a backtracking strategy is incorporated in its refinement operators, which causes a change in its refinement strategy and reflects the human behaviour during the learning process. It consists in remembering the different versions of the learned theory across modifications due to new evidence. In this way the system can backtrack on a previous knowledge level when it discovers to have made a wrong choice. Experiments on an artificial dataset validate the approach in terms of computational cost and predictive accuracy.

Keywords: Inductive Logic Programming, Incremental Learning

Citation: Nicola Di Mauro, Floriana Esposito, Stefano Ferilli, Teresa M.A. Basile: A Backtracking strategy for Order-Independent Incremental Learning. In R.López de Mántaras and L.Saitta (eds.): ECAI2004, Proceedings of the 16th European Conference on Artificial Intelligence, IOS Press, Amsterdam, 2004, pp.460-464.


[prev] [tofc] [next]


ECAI-2004 is organised by the European Coordinating Committee for Artificial Intelligence (ECCAI) and hosted by the Universitat Politècnica de València on behalf of Asociación Española de Inteligencia Artificial (AEPIA) and Associació Catalana d'Intel-ligència Artificial (ACIA).