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Abstract. The emergence of complex network structures of rela-
tionships between autonomous agents occurs in a wide range of dis-
tributed systems. Many researchers have proposed models to explain
and reproduce this phenomenon. However, the mechanisms proposed
require implausible assumptions of global knowledge about struc-
tural positions, and do not make explicit individual agents’ goals that
motivate decisions to establish or break ties. We propose a model
grounded in social exchange theory that is based on a population of
agents with dissimilar attractiveness levels, who seek to optimize the
set of their exchange partners in terms of the outcome they receive
in a support game. In our model, agents perform a local optimization
process constrained by realistic and plausible assumptions of local
and imperfect information. We show that our model can generate
several types of complex networks, notably power-law, small-world
and center-periphery networks. This diversity of network structures
is related to a set of parameters that shape the harshness of the ex-
change problem.

1 COMPLEX NETWORK EMERGENCE
A wide variety of distributed systems composed by autonomous
agents strikingly display the same particular topology on their net-
work of interactions, despite the fact that there is no engineered
architecture whatsoever. Some examples are the Web, communica-
tion networks, social networks, ecological graphs, sex contacts net-
works, scientific collaboration, or terrorist networks. These kind of
networks, called complex networks, turn out to be very efficient in
terms of information propagation [12, 8], are highly robust against
random errors [1], and emerge from the interactions of numerous
agents’ who act motivated by their particular individual goals.

Researchers in many fields have proposed models to reproduce the
emergence of complex networks, such as small-world and power-
law (scale-free) structures. Initially, the seminal work by Watts and
Strogatz proposed the mechanism of stochastic rewiring [14]. Subse-
quently, the well-known Barabási mechanism of preferential attach-
ment and uniform growth [3] was introduced, which then has inspired
many of the now existent models in the literature about generation
of power-law networks. For a complete summary see [2]. Models
proposed in this literature rely on public and full access to reliable
knowledge about the whole network. For instance, they assume that
an agent can know the connectivity degree of any other agent of the
system. This assumption is clearly unrealistic for many real world
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networks. However, the assumption is needed to obtain a paramet-
ric and analytical solution that can reproduce real networks observed
in nature with high reliability. Thus, these models reproduce rather
than explain complex networks. Several researchers have addressed
this issue [9, 5]. They proposed a transitive linking mechanism that
is solely based on agents’ local ties. This resulted in a model of pref-
erential attachment behaviour without global knowledge. However,
this class of models, as well as the original stochastic rewiring and
preferential attachment models, do not explicate the goals and cog-
nitions that motivate agents’ decisions to make or break ties. In our
opinion, modelling plausible individual level decision mechanisms
is the key for understanding the emergence of such structures. This
view is recently also advocated by Robins et al [11], who propose a
class of models where local interaction rules specified in a Markov
processes can generate small-world structures. We refer in the fol-
lowing to systems where agents have goals and some sort of cognitive
capabilities, as is the case for multi-agents or human social systems.

A further approach, without preferential attachment as baseline,
is to model the emergence of complex networks as result of an op-
timization process. For example, Carlson and Doyle [4], propose
the approach known as Highly Optimized Tolerance (HOT), where
power-law networks emerge as a response to a certain internal haz-
ard, resembling a natural selection process. Another model based on
optimization is by Ferrer and Solé [6]. Here, agents perform opti-
mization of global structural measures of the network, such as den-
sity and average path length. This model similarly uses implausible
assumptions about individual agents’ knowledge of the whole system
and perfect information.

We propose a model that follows the optimization approach, but
is based on local information and local optimization driven by indi-
vidual agents’ goals. The goals are made explicit in our assumptions.
Notice that this approach is not incompatible at all with the preferen-
tial attachment model. In fact, agents who optimize their individual
networks can also display preferential attachment. However, when
agents make or break ties, this is seen a consequence of their indi-
vidual optimization process. For example, in scientific collaboration,
scientists do not choose their co-authors in terms of who is the most
connected, but in terms of who is the best to conduct research with.
At the same time, it likely that the most connected agent (scientist) is
also the most attractive one [10]. In this example, preferential attach-
ment is not the underlying mechanism, but it is a consequence of the
local optimization process.

2 LOCAL OPTIMIZATION

Our model is grounded in social exchange theory and assumptions
of bounded rationality. More specifically, we draw on previous work
by Flache and Hegselmann [7] and assume that agents seek to find



and keep attractive exchange partners in a population where agents
differ in attractiveness. They could, for example, differ in their de-
gree of expertise in knowledge exchange. In that way, outcomes from
knowledge exchange with their partners is maximized.

Agents pursue their goals by maximizing outcomes from support
exchange under imperfect, local information without initial knowl-
edge about others or knowledge about the global network structure.
Moreover, agents in our model are strongly adaptive, i.e. they ac-
quire knowledge only acquired in the course of interaction and sim-
ple search heuristics are applied. However, as we will show, these
assumptions do not prevent the emergence of complex networks.

2.1 Model Description
The system consists of a population of N agents, who are each en-
dowed with an individual attractiveness value, αi, that is a real value
in the [0.05..0.95] range. Initially, every individual agent is igno-
rant of every other agents’ attractiveness, even of its own. This as-
sumption introduces the typical uncertainty of distributed systems
into our model. Attractiveness levels are initialized randomly based
on a uniform distribution. Agents are also endowed with a memory:
M t

i = {(oij , tij)}j∈Jt
i
, where oij is the expected outcome received

by ai after interacting with aj at time tij . Each agent ai can only
manage a part of the whole system: J t

i ⊆ {1..N}. This part is
limited #Jt

i ≤ Mc∀t∀i. Thus agents only have access to a partial
view of the whole community, and their knowledge exclusively de-
pends on their past experience. Therefore, the knowledge of agents
remains local. Within the set of agents that ai can manage, there is
a partition into known agents Kt

i , and unknown agents U t
i , such that

Jt
i = U t

i ∪ Kt
i and U t

i ∩ Kt
i = ∅. Initially, each agent is initialized

with Mo agents chosen randomly that are classified into the unknown
set. That is, ai knows that those agents exist but knows nothing about
them. All other agents are not only unknown for ai, but ai is not even
aware that they exist. Throughout the simulation, ai will learn about
those agents and they will be moved to the set of known agents; Kt

i .
Accordingly, the outcome that ai expects to receive from interaction
with aj is only defined when j ∈ Kt

i . All the sets and memory of ai

depend on time t since the memory and sets evolve after interactions.
Moreover, memory, and consequently the U t

i and Kt
i sets, are always

bounded by the maximum memory capacity Mc.
The system runs for S units of time. In one time unit, all agents

execute their action rules once, activated in random sequence. Once
activated, the agent tries to establish Q interactions with agents con-
tained in its memory such that it maximizes the expected outcomes
from those interactions. Interactions are dyadic and both partici-
pants need to agree before they carry out an interaction. Accordingly,
we introduce a limitation on the number of concurrent interactions,
which we call capacity (C). Capacity is the maximum number of in-
teractions per time unit. Capacity must be equal to or smaller than the
memory capacity, C ≤ Mc. For example, when an interaction im-
plies a certain work load, it is implausible that agents have unlimited
capacity. Yet, this is another assumption taken for granted in most
of the models in the literature. However, when an interaction does
not imply a work load for both parts, such as deploying a link from
one web page to another, capacity is unrestricted. But interactions in
most social processes usually require allocation of certain resources,
which are, indeed, limited.

2.2 Support Game Definition
Outcomes of an interaction are defined in the payoff matrix of the
support exchange game, P .

Table 1. Payoff Matrix of the Support Exchange Game P

P aj collab (C) aj defect (D)

ai collab (C) (Gij − Lij , Gji − Lji) (−Lij , Gji)
ai defect (D) (Gij , −Lji) (0, 0)

Where, Gij = (1 − αi)αjB (1)

Lij = αi(1 − αj)E (2)

The payoffs both players receive after an interaction, pij and pji

depend on the attractiveness of both agents (αi and αj ), the benefit
parameter B, and the effort parameter E. The parameters benefit B,
and effort E, such that E < B, are positive constants that weigh
the benefit of receiving one unit of help against the effort costs of
providing the unit.

The payoff received is not symmetric unless agents have equal
attractiveness. The gain of the interaction, specified in equation 1,
increases when ai interacts with a partner aj who is more attractive,
for example because the partner has more expertise. The loss from
the interaction, specified in equation 2 , increases to the extent that
ai interacts with an aj who is less attractive. Broadly speaking, good
agents want to interact with better agents. The bigger the attractive-
ness gap is, the more interesting it is for the less attractive agent.
Conversely, the less interesting the interaction is for the more attrac-
tive agent. For example, when we seek advice on a given topic, our
profit is maximized if we can ask a highly knowledgeable person, a
guru, but the guru receives little new knowledge from us.

It is important to remark that the constituent support game is a PD
(prisoner’s dilemma) if, and only if, for both players it holds that (1−
αi)αjB > αi(1 − αj)E. In a PD, cooperation is difficult to attain,
because both players may profit from exploiting their partner, while
none of them would prefer mutual defection to mutual cooperation.
However, the support game is not always a PD. In fact, the game can
be purely collaborative with no incentive to defect when E = 0. In
that case, interactions are then always profitable for both parts. Yet,
they are not symmetrical, because an agent might receive a better
payoff than its partner.

Due to the local, imperfect knowledge assumption of our model,
the parameters B and E, as well as the attractiveness levels are not
explicitly known by the agents, who thus pursue their goals facing a
high degree of uncertainty. The only knowledge an agent has is: the
outcome obtained after an interaction, pij , the net benefit (Gij−Lij)
of an interaction (explained in the next subsection), and the initial set
of agents U t

i about whom he knows nothing but their existence.

2.3 Agents Behaviour
When an agent ai is activated, it behaves as follows. Agent ai selects
another agent ak to whom it proposes an interaction at time t.

ak =

{

k ∈ Jt
i chosen at random with prob. et

i

k = argmaxn∈Jt
i
(oin) with prob. (1 − et

i)
(3)

With exploration probability et
i an agent within ai’s memory is

chosen randomly. Otherwise, the agent with the best expected out-
come is chosen. The probability for exploration is defined by the
following equation.

e
t
i =

#U t
i

(#Jt
i )

2
(4)



The exploration probability is 1 at the beginning of the simulation
and tends to 0 as ai as agents get to know other agents. Accordingly,
the probability soon varies between agents. Very successful agents
quickly decrease their exploration probability, because they receive a
lot of interaction proposals, and, therefore, learn about their environ-
ment faster than agents who receive less interaction proposals. Then,
the chosen agent aj must decide whether to accept the proposal of
agent ai. The proposal will be accepted if aj has not reached its ca-
pacity C of concurrent interactions, and aj expects the outcome to
be not negative, given ai is known by aj .

acceptji = (#(an ∈ J
t
j |tjn = t) < C) ∧ (ai ∈ J

t
j ⇒ oji ≥ 0)

(5)
If the interaction proposal is accepted, both agents play the support

game defined by the payoff matrix, P . In this version of our model,
we assume that agents are benevolent. Agents are not aiming to ex-
ploit their partners, but they may still defect. An agent ai collaborates
with aj if, and only if the net benefit is positive, (Gij − Lij) ≥ 0.
Once agents decide to interact, this value is given by the system to the
agents, because they cannot calculate the net benefit by themselves
due to their limited knowledge. The payoff information is explicitly
hidden in the model in order to create a realistic counterpart of a
distributed, open system. The step of giving the net benefit can be
justified in terms of each agent cognitive capabilities, which allow
an agent to assess at an early stage of an interaction whether it will
be profitable or not.

After an interaction is completed, agents update their respective
memories. If the entry for the interaction partner does not exist, agent
must allocate a free slot in their memories. When the memory is full,
a slot from the memory is selected for replacement of the agent ak

that it currently represents, according to equation 6.

ak = argminn∈Jt
i
(| oin | |(tik < t)) (6)

The memory is updated depending on whether a previous interac-
tion between both agents already exists or not, as shown in the next
equation.

(oij , tij) =

{

(
oij+pij

2
, t) if, tij > 0

(pij , t) if, tij = 0
(7)

Where t refers to the current simulation time, pij denotes the pay-
off attained by i after an interaction with j, and tij refers to the time
when the last interaction between i and j took place. When an inter-
action proposal is rejected the payoff pij is set to zero.

Agents exchange some knowledge about their respective memo-
ries as an act of deference after a mutual profitable support inter-
action, when pij > 0 and pji > 0. We distinguish two types of
knowledge exchange, explicit and implicit. In explicit exchanges,
ai informs aj about the third agent in the memory of ai with the
best expected outcome. This can be seen as referral to another
agent. More concretely, the referred agent is chosen according to
ak = argmaxn(| oin | |(k <> j∧ tik > 0)). In implicit exchange,
ai picks a randomly chosen agent with whom aj currently interacts,
from aj’s. With implicit exchange agents learn through observation
of each others’ environment.

The new knowledge acquired by memory exchange (oik, tik) =
(ojk, 0) is handled like in the updating process for knowledge ob-
tained from own experience. Notice that ai provides its subjective
expected outcome about the third agent, oik, to aj . Agents do not
have the capacity to assess which third party is more suitable for
their partner aj . Time tik is set to 0 in the updating, to reflect that

ai’s knowledge about ak stems from referral or observation rather
than experience.

3 RESULTS
Our model has a large number of parameters. We focus here on sim-
ulation experiments for which a number of the model’s parameters
are fixed to values that are plausible within the framework of social
exchange processes. The capacity of agent’s memory, Mc, is set to
200, the number of concurrent interactions, C , is set to 150, and
the set of initial agents, Mo is also set to 150. We conducted sev-
eral series of simulations. We modified the population size, N , the
number of interaction proposals Q, the type of memory exchange,
(henceforth ME) and the type of the support game represented in
terms of the ratio between effort and benefit, E

B
. In order to compare

the results generated by our LO-model (Local Optimization Model)
with those of other models that are known to generate complex net-
works, we used the model of Walsh [13]. This WN -model is based
on preferential attachment and uniform growth, and assumes total
knowledge about the whole system structure, like most of the mod-
els of that family. LO-model networks are based on the interaction
networks that emerged after 100 units of simulation time. Notice that
the exploration probabily as specified in equation 4 assures the con-
vergence to an stable state, since exploration probability diminishes
over time. At convergence, an undirected interaction-edge (i, j) in-
dicates that ai and aj have a stable mutual support relation.

Table 2. General characteristics of simulated networks. LO (Local
Optimization) denotes our local optimization model. WN refers to the

Walsh model. Q, which corresponds to the average degree 〈k〉, is set to 5.
The population size, N , is set to {1000, 5000, 10000}, the cost to benefit
ratio ( E

B
) is set 0, 3

16
, 8
16

, and the memory exchange is set to {E, I} i.e.
explicit and implicit respectively. For each network, the average path length l

and the clustering coefficient C are compared to the average path length
lrand and clustering coefficient Crand of a random graph with the same

size and average degree.

Network Size l lrand C Crand

WM(mo=150) 1000 3.30 3.27 0.016 0.0085
LO(E/B=0,I) 1000 2.47 3.27 0.16 0.0085
LO(E/B=0,E) 1000 2.51 3.27 0.20 0.0085
LO(E/B=3/16,I) 1000 3.66 3.27 0.052 0.0085
LO(E/B=3/16,E) 1000 3.71 3.27 0.034 0.0085
LO(E/B=8/16,I) 1000 3.98 3.27 0.012 0.0085
LO(E/B=8/16,E) 1000 3.91 3.27 0.027 0.0085
WM(mo=150) 5000 3.67 3.97 0.005 0.0016
LO(E/B=0,I) 5000 3.22 3.97 0.05 0.0016
LO(E/B=0,E) 5000 3.16 3.97 0.085 0.0016
LO(E/B=3/16,I) 5000 4.09 3.97 0.038 0.0016
LO(E/B=3/16,E) 5000 4.14 3.97 0.030 0.0016
LO(E/B=8/16,I) 5000 4.45 3.97 0.015 0.0016
LO(E/B=8/16,E) 5000 4.57 3.97 0.040 0.0016
WM(mo=150) 10000 3.87 4.30 0.003 0.001
LO(E/B=0,I) 10000 3.56 4.30 0.034 0.0085
LO(E/B=0,E) 10000 3.42 4.30 0.065 0.0085
LO(E/B=3/16,I) 10000 4.29 4.30 0.032 0.0085
LO(E/B=3/16,E) 10000 4.37 4.30 0.029 0.0085
LO(E/B=8/16,I) 10000 4.68 4.30 0.017 0.0085
LO(E/B=8/16,E) 10000 4.84 4.30 0.038 0.0085

Table 2 shows that the networks obtained from the LO model have
a similar average path length compared to random graphs of the same
size and average connectivity, lLO ' lrand. Moreover, we see that
lLO scales logarithmically with N , as lrand does. Finally, the cluster-



ing coefficient of LO is much higher than that from random graphs,
CLO � Crand. Taken together, our simulated networks thus exhibit
the small-world properties defined by Watts and Strogatz [14]. We
conclude that the networks generated by LO have indeed the small
world property. The table shows that the networks also comply with
the criterion proposed by Walsh [12]. This criterion is that the net-
work can be classified as small-world, if lrandC

lCrand
� 1. Of course, the

network generated by the Walsh model is also small-world, because
it is a model that generates power-law networks. However, when we
compare the Walsh and the local optimization model, we see an im-
portant difference in the clustering coefficients, CLO � CWN . It
seems our model well resembles the high clustering coefficients that
the literature reports for many real complex networks, especially so-
cial networks [2]. At the same time, many models proposed in the
literature partially fail to reproduce clustering levels this high.

Which type of a small-world network we observe can be seen in
the connectivity distribution. In figure 1 we show the connectivity
distribution of networks produced with the LO model. The figure
shows that different kinds of connectivity distributions arise for dif-
ferent parameter settings. We can identify three clearly distinct types:

1. star-like distribution (figures 1.a1, 1.a2): while this distribution
does not correspond to a perfect star network, the underlying net-
work is similar to a star with its center-periphery structure. In this
structure, a set of nodes with high clustering among the set be-
comes the core of the network, and the majority of nodes connects
solely to the core. Networks of this type have small-world proper-
ties, despite their resemblance to star networks.

2. potential distribution (figures 1.b1, 1.c1, 1.c2): P (k) ∼ kγ , is
the signature of the degree distribution of a power-law network,
also called scale-free network. This is the paradigmatic complex
network structure [2]. Most of the literature focuses on power-law
networks.

3. exponential distribution (figures 1.d2, 1.e1, 1.e2): The degree dis-
tribution exponential networks is given by P (k) ∼ θ−k. Expo-
nential networks are known to have similar properties than small-
world networks. Their main difference to power law networks is
the steeper decline of the degree frequency as degree increases.

The results show that the LO model can not only generate power-
laws, as many of the models in the literature also do, but also center-
periphery networks and small-world networks with exponential con-
nectivity distribution. For this, we only need plausible assumptions
about agent’s cognitive abilities, uncertainty and access to informa-
tion. At the same time, figure 1 demonstrates that a variety of struc-
tures can be generated by the same behavioural model. When the
cost to benefit ratio E

B
is changed explicitly, this has a strong ef-

fect on the macro structures that emerge from the agent level interac-
tions. The ratio E

B
has a direct effect on the system harshness, which

we define informally as the difficulty for agents to attain their goals.
With E

B
= 0, the system is collaborative. Accordingly, it is easy for

an agent to find a profitable set of partners in spite of the existing
uncertainty. However, when E

B
tends to 1, the system progressively

becomes more exigent and competitive, making agents’ task more
difficult.

Our experiments show that the cost to benefit ratio is not the only
factor that affects the system harshness. Any parameter or constraint
that affects the system harshness also affects the type of macro-
structure that emerges. For example, our results indicate that the type
of memory exchange has an effect on the macro structures, as shown
in figure 2. This figure summarizes the results we obtained from dif-
ferent parameter settings, in order to demonstrate how the memory
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Figure 1. Connectivity distribution obtained from the Local Optimization
model. Q, or 〈k〉 are set to5, N is set to 10000, in the left column the

memory exchange is explicit, in the right column it is implicit. The cost to
benefit ratio, E

B
is set to {0, 3
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exchange affects the final structure.
Figure 2 can not show connectivity distributions. Accordingly, we

rely on the determination coefficient of the potential regression r2.
This coefficient has unfortunately some drawbacks. For example,
the effect of the population size N on r2 is misleading, due to the
scarcity of regression points when N = 1000. Another problem is
the high value for r2 in the exponential distribution (ED) space with
explicit memory exchange. An exponential regression determination
coefficient fits much better with those distributions. Figure 1.e2 illus-
trates this issue. The connectivity distribution in this figure is clearly
exponential. While its potential r2 is high, its exponential r2 is even
higher with 0.98. In cases like this one, we classify the distribution
as exponential rather than potential. Notice that the regression is car-
ried out over all points except those where k ≤ Q, as it is usual in
complex-networks analysis since the connectivity baseline is Q. For
the sake of clarity we do not display both potential and exponential
determination coefficients.
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Figure 2 shows how the type of memory exchange modifies the
boundaries of the star-like, potential and exponential distribution
spaces. We do not observe a phase transition between those spaces,
the transition is progressive and the boundaries are fuzzy.
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, the memory exchange is implicit. Parameters

of the Walsh model are: m set to {5, 10}, and mo set to 150, corresponding
to the parameters Q and Mo of the LO model, respectively. Symbols

represent the Walsh model, solid lines pertain to the LO model.

We focus on two concrete examples to illustrate this effect.
With E

B
= 3

16
and implicit memory exchange, the system is not

harsh. Accordingly, the emergent structure is a center-periphery net-
work. However, with explicit memory exchange the system becomes
harsher, because the most attractive agents are known for a large por-
tion of the population. Hence, these most attractive agents enter in
what we call an on-denial stage, which is produced when an agent re-
ceives more interaction proposals than it can handle due to the capac-
ity limit C. Then, it must decline some interaction proposals. Con-
sequently, the agents that get rejected reduce their expected outcome
on that agent, diminishing its subjective attractiveness in turn. The
on-denial stage introduces noise into the system and thus increase
the complexity of agents’ problem solving task. This, in turn, affects
the global structure such that it shifts into the power-law space. At
the same time, when E

B
= 8

16
and the memory exchange is explicit,

the system is is moderately harsh. In this case, it is in the power-law
space. However, with implicit memory exchange, learning is exclu-
sively based on the observation of raw knowledge. Learning becomes
more unlikely to be valuable as the uncertainty of the system grows.
Consequently, the system gets harsher and shifts into the exponential
space.

We also studied how the system scales, when the population size
N and the number of interaction proposals Q change. The effect
of the population size has already been shown in figures 1 and 2.
We now compare the obtained connectivity distribution from the lo-
cal optimization model with the one obtained from the Walsh model
[13]. Figure 3 demonstrates that the LO network scales similarly to
the Walsh network in response to modification of N and of Q. More-
over, both networks are almost identical, which supports our claim
that the networks generated by the LO model correspond well to
power law structures.

4 CONCLUSION
We showed that complex networks can emerge from an agent level
model that assumes local optimization over individual outcomes that
agents receive from bilateral support exchanges. Our model assumes
a high degree of uncertainty for the agents due to local and imper-
fect knowledge assumptions. Furthermore, we have shown that the
type of complex network obtained depends on properties of the sys-
tem itself, such as the system’s harshness. Changes in the qualitative
macro patterns can thus be obtained without changes in the under-
lying agent level behavioural model. System harshness is modified
through parameters of the support game or the memory exchange.
These modifications allow to generate different types of complex net-
works, including the celebrated power-law networks. We conclude
that our local interaction model provides a plausible explanation of
how complex networks may emerge, at least for the context of social
exchange processes.
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