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Abstract. In this paper, we tackle the satisfiability problem for 2 Multi-Context Systems
multi-context systems. First, we establish a satisfiability algorithm
based on an encoding into propositional logic. Then, we propose )
distributed decision procedure that maximally exploits the potentiafhe so-called
amenity of localizing reasoning and restricting it to relevant contexts.

We show that the latter approach is computationally superior to our
translation-based procedure, and outline how off-the-shelf efficient o

reasoning procedures can be used to implement our algorithm. Mri - ~—Mr.2

A simple illustration of the intuitions underlying MCS is provided by
‘magic box” example [8], depicted below.

1 Introduction Figure 1. The magic box

The establishment of a solid paradigm for contextual knowledge rep-

resentation and contextual reasoning is of paramount importance for

the development of sophisticated theory and applications in Al. Example 1 Mr.1 and Mr.2 look at a box, which is called “magic”
McCarthy [16] pleaded for a formalization of context as a possi-because neither of the observers can make out its depth. Both Mr.1

ble solution to the problem of generality; Giunchiglia [9] emphasizedand Mr.2 maintain a local representation of what they see. These

that reasoning based on a large (common sense) knowledge base ¢apresentations must be coherent —for instance, if Mr.2 thinks there’s

only be effectively pursued if suitably confined to a manageable subg ball in the box, Mr.1 should believe so too.

set (context) of that knowledge base. q h hi lated local ) b
Contexts were first implemented as microtheories in the famed We demonstrate how such interrelated local representations can be

CYC common sense knowledge base [12]. However, while in CYC<:aptured formally. Our point of departure is a set of inditeEach
éndexi € I denotes @ontextwhich is described by a corresponding

local microtheories were a choice, in modern settings like that of th - ) it
semantic web the notion of local, distributed knowledge is a must.formal (in this case standard propositional) languageTo state that
ormulay in L; holds in context: we utilize so-calledabeled

Contemporary architectures impose highly scattered, heterogeneot’?}sf . _— . .

knowledge fragments, which a central reasoner cannot deal witormulasof the formi : ¢ (when no ambiguity arises we simply

This engenders a high demand for contextual reasoning procedure‘_:‘f.Efer t0|at_36|6d formulasasformulag. Two or more fo_rmulas that
Several formalizations of contextual knowledge representation'jlpply to different contexts may be related by so-calieidge rules

have been proposed. Most notable are the propositional logic O}'hese are expressions of the form:

context .developed by McCart_hy, Bu“yaa_nd Mason [17, 18],_a_nd PPl yin i n — i (1)
the multi-context systems devised by Giunchiglia and Serafini [11], ' o
which later became associated with the local model semantics [8}VN€r€i1, ... in,i € I and¢u, ..., ¢, ¢ are formulas. Note that

NP-completeness has been established for PLC [15] and MCS [22]—" does not denote implication (we'll use>” for this purpose).
Recently, MCS has been proven strictly more general than PLC [23}AIS0 hote that our language doesn'tinclude expressionsi{ke ¢)
In this paper, we propose an algorithm that settles satisfiability2nd(i : ¢Aj : 7). We calli : ¢ theconsequencandiy : ¢1,in : ¢n
in MCS in a distributed fashion by a single fixpoint computation. thepremisef bridge rule (1). We writeons(br) andprem(br) for
Each iteration of this computation constitutes several local reasoninff!® consequence and the set of all premises of a bridgérrule

procedures, which can be implemented by (a diversity of) CUStomizeﬁ)efinition 1 (Multi-Context System MCS) A propositional multi-

state-of-the-art ST solvers. We discuss the use of batbb- and _context systent{L:}:c;, BR) over a set of indiceg consists of a
SAT-based techniques for this purpose, and show that our algorlthrget of propositional languaged.; }:c; and a set of bridge ruleBR.

is computationally superior to translation-based procedures. I this paper, we assumieto be countable anBR to be finite
We proceed as follows. After defining MCS and explicating the ' '

contextual satisfiability problem in section 2, we give its encodingExample 2 The scenario in example 1 may be formalized by an
into propositional logic in section 3. A general specification of our MCS consisting of two contexisand 2, which are described by
distributed approach is given in section 4, while section 5 discusses; = L({l,r}) and L, = L({l, ¢, r}), respectively. The constraint
some implementational issues. Finally, in section 6, we relate outhat Mr.1 should believe the box to be nonempty if Mr.2 believes this
work to other state-of-the-art techniques for distributed reasoning. to be the case, is formalized by the following bridge rule:
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Let M; denote the class of classical valuationd.gf Eachm € M; Proof. Take any chaire that satisfiesp in compliance withBR.

is called alocal modelof L. Interpretations of an entire MCS are Let BR* C BR be the set of bridge rules whose consequences are
calledchains They are constructed from sets of local models. not satisfied by. Everybr € BR* must have a premise which is
not satisfied in some local model(br) contained by:. On the other
hand, every formula : ¢ € ® must be satisfied in at least one local
modelm(i : ¢) in ¢;. The chainc™ obtained frome by eliminating

all local models except:

U m(br) U U m(i: @)

breBR* iipEP

Definition 2 (Chain) A chainc over a set of indice$ is a sequence
{¢i}ier, where each; C M; is a set of local models df;. A chain
cisi-consistent it; is nonempty; it is/-consistent, for somé C 1,
if it is j-consistent for allj € J.

A chain can be thought of as a set of “epistemic states”, each cor-
responding to a certain context (or agent). The fact ¢habntains
more than one model signifies thaf is interpretable in more than is J-consistent, satisfie¢ in compliance withBR and contains at
one way — or alternatively, that agenhas onlypartial knowledge. ~ mMost|®| + [BR"| < [®| + [BR| local models. O
The epistemic states that a chain consists of all conoeenand the

samesituation. Therefore, arbitrary sets of local models may not al- : o ; oy i i
ways constitute a “sensible” chain. This conception is captured b)}rle statement thab is satisfiable in MS iff it is satisfied by a chain

the notion of “bridge rule compliance” specified below. ¢* all of whose components are either empty or contain exBiky}
local models. We now construct a propositional formtilahat is

Definition 3 (Bridge Rule Compliance and Satisfiability) Let ¢ satisfiable, in a classical sense, exactly if such a ctaexists.

be a chaing a formula overL;, andBR the set of bridge rules of a Apart from the atomic propositions® mentioned above, we avail
multi-context system/.S. ourselves of propositions;, for each indexi € I, corresponding

to ¢; being empty. For any formule, i € T andk € K, let

% denote the formula that results from substituting every atomic
propositionp in o with p¥. Let us write K = {1,..., |BR|}, and

o = Apex ©f - Then, the translation of a labeled formula reads:

Assuming thatBR| > 1, Theorem 1 can be slightly weakened to

1. csatisfies : ¢ if m = ¢ for all local modelsm € ¢;.
We writec =i : .
2. c complies withBR if for all br € BR eitherc = cons(br) or
c¥i: ¢ forsomei: € € prem(br).
3. i : ¢ is satisfiable inM S if there is ani-consistent chair that (G:0)" = e VK
satisfies : ¢ and complies witfBR. !
The contextual satisfiability problem, then, is to determine whether all:or bridge rules we have:
set of formulasp is satisfiable in a multi-context systeii.S. (31 : P1yeveyin i pn —1: )" =
In the following we refer to the set of bridge rules of MSER, (1) " Ai A (in t dn)" D (2: )"

and to the set of contexts involved by formulashiras.J. ) . o
And aj-consistency constraint is captured by:

3 Encoding Into Propositional SAT (j-cong”™ = —e;
In this section we provide an encoding of contextual satisfiabilityTheorem 2 There is an assignmerit to the set of propositions
into propositional &T, and discuss the complexity of the resulting {p¥|p € L; andk = 1,...,[BR|} U {e;|i € I} that satisfies:
problem in terms of the dimension of the underlying MCS. L . . .

We first remark that our encoding cannot simply consist in labeling v=/\ @:¢)"n \G-cong” A A (br)
local propositions with the index of the context that they describe. ipe jes breBR
This is illustrated by the following example: iff there’s aJ-consistent chain that satisfi@&sand complies witfBR.

Example 3 Consider an MCS with two contextsand 2, described

by L, = L({p}), L2 = L({q}), and the following bridge rules: Proof (=) FromV construct a chair"’, such that each compo-

nente! is empty ifV(e;) = True and contains exactijBR| local
l:p — 2:¢q models otherwise. In the latter case, let #i& local model ofc}’
l:=p — 2:gq evaluate each atomic propositipre L; to True iff V (p¥) = True.
Clearly,c" is J-consistent and satisfidsin compliance witHBR.
(<) Ifthere is aJ-consistent chain that satisfie® in compliance
{ {{p},{-r}}. } with BR, there must also be &-consistent chair* each of whose
{{—q}} components is either empty or contains exa@BiR| local models,
Notice that a simple “indexing” encoding of this system into propo- and Whlc? st satlgfle@ In compliance W'”BR' )
sitional logic would be inconsistent. From_c We_obta_an as follows. Let_V assign’'rue to an atomic
propositione; iff ¢; is empty. Letfl” assigril'rue to an atomic propo-
To overcome this problem, we express our encoding in terms o$ition p” iff the k*" local model ofc} satisfiegp, and any truth value
atomic propositiong?, whose evaluation corresponds to the truth iff ¢ is empty. It is easy to see thit satisfiesy. O
value assigned to a propositiprin L; by thek!" local model inc;.
But how many local models can contain? The following theorem The deterministic time complexity of the propositional satisfia-
implies that this number may in fact be assumed to be bounded bility problem resulting from our encoding ©(2""!), whereP is
the number of bridge rules of the MCS under consideration. the set of propositional variables involved. LBt denote the set of
propositions that is used to describe conteXthen| P| amounts to:

The formula2 : —q is satisfied in this system by the chain:

Theorem 1 (Bounded Model Property) A set of formula® is sat-
isfiable in a multi-context system MS iff it is satisfied in MS by a chain 1] + |BR| x Z |P;|
that contains at mogtb| + |BR| local models. iel



4 A Distributed Algorithm It yields aJ-consistent extension efthat satisfiesb in compliance
with BR, or False if it fails to construct such an extension.
Contextual satisfiability can be settled rather naturally by a single Extensions are always constructedally. That is, ©NTEXTSAT
distributed fixpoint computation. We show that this computation isfirst determines the sét of contexts involved by formulas i, and
more efficient than the translation-based method presented above. then, for everyi € I*, calls a sub-procedurexEEND that extends
Our approach is the following. Starting with some initial chetin c; SO as to satisfy : . If the resulting chain is/-inconsistent, any
we attempt to construct a sequentec’, ..., ¢*, such that: of its further extensions will bg-inconsistent as well. Thus, if such
is the case ONTEXTSAT recognizes a failure, and returf%/se. If
not, it determines the s&R™* of bridge rulesall of whose premises
are satisfied by. If BR* is empty,c is a solution. Otherwise, making
c comply withBR* yields a new satisfiability problem, namely that
of extendinge so as to satisfy the consequence of everye BR*.
Bridge rule consequences that concern the same context are taken
Always extendinga chain, that is, restricting the sets of local models {0g€ther in order to obtain a sét consisting of at most one formula
that constitute its components, has two important implications. First! © # for every contex < I. A_new*lnstance_ Oof ONTEXTSAT is
our initial chainc® should be most “general”, that is, all its compo- 2ddressed to extendso as to satisfyb ™. Recursively proceeding like
nentsc? must contain the entire set of local modals. Notice that ~ thiS, & chain is constructed that, at any stage, satiéfiesd at some

¢ doesn't satisfy any formula — in particulaf, does not satisfy any ~ POINt éither becomeg-inconsistent, or complies witiR.
bridge rule premise, and therefore complies ViBiR.

The second implication of always extending a chain, is that once4.1 Completeness and Complexity
a formula is satisfied by some intermediate chédih then it is also
satisfied byc", for anyn > m. This means that (1) i is satis-
fied by c*, then it is also satisfied by™, for anym € {1,...,k}.
Moreover, (2) if some intermediate chaift does not comply with a
bridge rulebr € BR - that is,c™ satisfiedr’s premises, but does not
satisfy its consequence - then any extensiod’bthat were to com-
ply with br should satisfybr's consequencét can by no means be
made to not-satisfy one @f’'s premises). So obtaining™* from
¢ consists in extending™ so as to satisfy the consequences of the
bridge rules that™ does not comply with. Finally, (3) once an inter-
mediate chain satisfies the consequence of some bridgérr(ged
therefore complies wittsr), any of its extensions will also satisfy
br's consequence and thus comply wéth

o ¢! satisfiesd.
o forallm e {1,...,k},
c™ extends:™ !, that s, for everyi € T, c¢* C ¢t
o forallm e {2,...,k},
¢™ complies with the bridge rules that'~* doesn’t comply with.

The set of bridge rule consequences that is satisfied ibystrictly
expanded by every recursive call t@STEXTSAT. Since the number
of bridge rules is finite, ONTEXTSAT is bound to terminate.

Soundness is evident; completeness, however, is not yet assured.
In order to do so we should enforcexBEEND(c¢;, ) to remove from
¢; exactlythose local models that do not satisty We say that
EXTEND(c;, ) should yield acomplete extension of; w.r.t. ¢.
Notice that this additional constraint implies that extensiong: of
neverunnecessarilysatisfy a bridge rule premise. In this way the
chance of having to re-establish bridge rule compliance is minimized,
and therefore further reasoning in other contexts is required only if
strictly necessary. This principle tdcality constitutes an important
advantage of our contextual approach w.r.t. centralized procedures.
Several techniques can be used to implemerte®D, such that it
indeed yields complete extensions. We'll get back to this in section 5.

In a worst-case scenarioxEEND(c;, ¢) requires timeO(2!7:1),
whereP; is the set of atomic propositions used to describe coritext
Notice that XTEND will be called at mosiBR| times.

In general the greater part of computation time will be involved
with checking which bridge rule premises are entailed by the current
chain. The worst-case scenario consists of two contexts and an even

Algorithm 1 A distributed algorithm for contextual satisfiability.
CONTEXTSAT(®,BR, I, J, ¢)
begin
I":={iel|i:p;€®}
forall : € I* do
¢; = EXTEND(cs, ¢i);
forall t € I/1* do

c; = ¢

i number of bridge rules going back and forth between them. If during
for a”*J € Jdo each iteration of ©NTEXTSAT only onebridge rule premise is found
if ¢j = 0 then to be satisfied by the chain constructed so far, the total number of
return False; premise-checks is:
BR* := {br e BR | ¢* =i :nforalli:ne prem(br)}
if BR* = () then _ (BR| +2) x [BR|
returnc®: 2x(\BR|+...+1)_f

U~ .= b b BR*}; . . .
fcons(br) | br € BR} Each check requires up to tini®(2' 7). Assuming tha) = |P;| =

O ={i:plo= N\ €£,i€ly; |P2|, we obtain the following overall upper complexity bound for
1:EEW* CONTEXTSAT:
return @NTEXTSAT(®*, BR/BR*, I, J, c*);

end

((|BR| +2) x |BR|

1 + \IB%R|) x 0(29) = O(|BR|* x 29)

This approach is implemented by theo€TEXTSAT procedure In this case the translation-based method, which we outlined in sec-
specified in Algorithm 1. It takes as its input a set of formulgs  tion 3 requires time) (22X B2 Q) |n general, this upper bound is
a set of bridge ruleBR, a set of contexts (indice$) a subset/ C I (to a great extend) inferior to the upper bound f@NIEXTSAT. If
of contexts whose consistency is required, and finally, a chain we take|BR| = 10 and@ = 5, for instance, ©NTEXTSAT takes
At first, CONTEXTSAT is called withc being a chain ovef all of time in the order 08200, while the translation-based approach may
whose components consist of the complete set of local mddels  require a number of timesteps in the order 61°.



5 Towards an Efficient Implementation 6 Related Work

Our algorithm can be implemented using several efficient off-the-

shelf propositional reasoners. We sketch two particular ways to go. Work by Giunchiglia and Sebastiani [10] can be seen as a first step
towards general decision procedures for contextual satisfiability. The

. . objective of this work is to define /8-based decision procedures
5.1 BDD-based implementation for modal logics. Its motivation is highly associated with the possi-
Reduced Ordered Binary Decision Diagrams [4] (or simpbps) bility of defining a particular class of multi-context systems called
constitute a canonical representation of propositiona| formu|ashieral’0hica| meta contexts, whose instances are equivalent to various
Equivalence of tw®DDs can be computed in constant time; booleanmodal logics [11]. Resulting procedures have been proven orders of
transformation (e.g. conjunction, disjunction, negation) and quantifimagnitude faster than previous tableau-based decision procedures.
cation take at most quadratic time in the size of #im®s involved.  In this paper, we've applied a similar approach to the class of multi-
Efficient software libraries for the manipulation®bps, calledsbb context systems, whose structure is not necessarily hierarchical.
packages, are availableDDs are being used in several application ~ Contextual reasoning (with finite sets of bridge rules) can be trans-
domains, ranging from formal verification [19] to planning [5], safety lated into a rather simple form of reasoning in multi-modal logic.
analysis [3], and diagnosis [24]. Rephrasing every bridge rule : ¢1,...,in : ¢n — i : pasa

We usesDDSs to represent sets of local models. The chaire are ~ multi-modal implicatiori;, ¢1 A ... AU, ¢n D Us¢, contextually
constructing is implemented as an array, whid8eslement points to ~ satisfying a labeled formula: ¢ corresponds to modally satisfying

aBDD B;, representing the set of local models comprised;by a conjunction of the formulal; o A —LJ; L and the translation dR.
Initially, each B; is equal to thesbD True. Extendinge; with ~ Notice that the modalepthof this conjunction is equal to one.
a formulay corresponds to replacing; by the conjunction ofB; Fixpoint decision procedures for modal logic have been proposed

and thespD representation af. Checking fori-consistency requires by Pan, Sattler and Vardi [21], and could in principle be applied to

an equality check betweeB; and theBDD False. Determining ~ contextual satisfiability as well. In this approach satisfiability of a

whetherB; entails a bridge rule premise can be done by compar- modal formulay is computed by constructing a Kripke structure,

ing theBDD B; D 1 to theBDD False. A dedicated, more efficient Whose set of possible worlds is constituted by propositionally con-

routine to establish entailment is provided by mesb packages.  sistent sets of (possibly negated) sub-formulagoSuch sets are
Reasoning is always performed locally. Therefore, each contexgalledtypes A type/world a is accessible form a type/worlg if

can be represented by a dedicated, completely indepemtent U¢ € bimpliesé € a.

each local proposition can be associated with a univocal “laza The top-down algorithm proposed in [21] takes as its initial

variable, and each context can impose its own variable ordering.  Set of worldsall possible types. Then, it iteratively discards those
The potential bottleneck of usirgpps is an explosion in space. Worlds/types which contain a formutally) but do not have access

In general practice, however, suitable variable orderings assure vetp any world/type containingi). A type corresponding to a formula

compact representations of high-dimensional boolean functions. ¢ is represented by an array of binary variables each of which con-
veys whether the type contains either a certain sub-formujg of

its negation. This representation seems redundant as far as capturing
thepropositionalstructure of formulas is concerned. It turns out to be
Propositional T solvers make up another very effective way to ma- very effective, however, in treating theodalaspects of a problem.
nipulate propositional formulas. The typical approach consists in dt is especially useful when processing formulas which exhibit deep
depth-first search for a satisfying truth value assignment, “splitting”nestings of modal operators. The encoding of contextual satisfiability
on individual boolean variables [6]. During the last decade enormougroblems into modal logic generates formulas, which do not exhibit
progress has been achieved in this field: state-of-thesartsBlvers  any nesting at all. Therefore, directly applying this approach to our
are able to process problems with tenths of thousands variables ardntextual setting does not seem to be a fruitful endeavor.
a million clauses [20], and are applied in several industrial settings We'd like to remark that, if applied to a contextual satisfiability
ranging from formal verification [2] to planning [13] and ATPG [14]. problem, the algorithm proposed in [21] takes exactly one iteration.
In a SaT-based implementation th&" component of the chain More generally, in order to decide satisfiability of a formula with

5.2 SAT-based implementation

we are constructing is simply represented by a conjunetioof for- nested modal operators, the algorithm performs at matsrations.
mulas that are forced to hold in contéxtnitially, eachy; is empty. Amir and Mcllraith [1] define a propagation algorithm called
Extendingc; with a formulap consists in conjuncting); with . MP, which computes satisfiability of a theofy that is partitioned
Checkingi-consistency now becomes a full-fledged call to thg S into sub-theories (opartitions) T, ..., T,. Partitions are related

solver, withv; as input. Determining whether a bridge rule premise by the overlap between the signatures of their respective languages,
¢ is entailed byc; amounts to checking whetherholds in all the  which are calle&dommunication languagdmtween these partitions.
models oft;. This can be considered as aiSproblem, reasoning Roughly speaking, to check satisfiability of a partitioned theory
by refutation:¢ is entailed bye; iff 1; A —=¢ is unsatisfiable. Ti<n, MP determines a partial order overT;<,, and subsequently
Notice that the sequences of problems (consistency checks,iterating overT;<, according to<, and propagating logical con-
premise entailment) presented to therSolver is incremental. A sequences of one partition to the next through the communication
consistency / entailment check performed duringjtieiteration of  language between those two partitions - identifies models of
CONTEXTSAT is often an extension of a consistency / entailment At a first glance, there is a strict analogy between multi-context
check carried out during some previous iteration of the algorithmsystems and partitioned theories. Each partition could be seen as
In this light, it is recommendable to exploit recent developments ina context, and overlap between two partitions can be simulated via
incrementalSAT technology [7]. Significant computational advances bridge rules of the formi : p — j : pandi : —p — j : —p, where
can be achieved by retaining learned conflict clauses when adding is in the communication language betweéEnand 7). However,
new clauses to an already processed formula. the analogy breaks at the semantical level. The semantics of a parti-



tioned theory can be seen as the projection of a global semantics foi8]
T onto each local languagg. Or, the other way around, a model for
T is the combination of one model for eagh Conversely, a chain 9]
associates to every contexset of local modelsTherefore, it cannot
be considered as a set of chunks of a global model. In other words, [a0]
Amir and Mcllraith’s approach each; represents a partial theory of
the world, while in ours each context represents an epistemic/belief
state about the world. However, the analogy canmaeleto work, [11]
by only considering chains all of whose components contain exactly
one local model. The two approaches should be compared subject to
this hypothesis. [12]
CONTEXTSAT, then, exhibits two main improvements w.r.t. MP. 13]
First, bridge rules express more complex relations between contex&s
(partitions) than communication languages do. For instance, we can
relate three (or more) contexts via a bridge rilep, j : p — k: x,  [14]
whereas MP is limited to considering the overlap between pairs of
partitions. Furthermore, bridge rules aieectionali.e.i: p — j: p [15]
does not imply; : p — 4 : p. Communication languages always
describesymmetriaelations between partitions. At last, whereas MP [16]
requires a partial order between context@NTEXTSAT naturally

deals with any kind of relational structure between them. [17]

[18]
7 Conclusion

In this paper, we have investigated the satisfiability problem fol1°]
propositional multi-context systems with finite sets of bridge rules
First, we provided a decision procedure based on the translation of
contextual satisfiability into propositional logic. Next, we proposed
an algorithm, which settles contextual satisfiability in a distributed[21]
fashion, exploiting the potential benefit of localizing reasoning an
restricting it to relevant contexts only. We showed that this approac
is more efficient than our translation-based procedure, and outlined
how off-the-shelf reasoning platforms, likkoDs and propositional [23]
SAT solvers, can be used to implement our algorithm.

While designing our algorithm we have kept in mind a distributed
peer-to-peer implementation. As a resulgXCreXTSAT is modular,
i.e. global reasoning is made up of local reasoning procedures, and
CONTEXTSAT is backtrack-freei.e. solutions are build - or rather
confined - incrementally, imposing a minimal restriction at each step.
These features support a natural implementation in a peer-to-peer
architecture, in which peers perform local reasoning and propagate
their conclusions to neighbor peers via bridge rules. Modularity sup-
ports local reasoning, while backtrack-freeness avoids infinite loops.

22]

(24]
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