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Abstract. In this paper, we tackle the satisfiability problem for
multi-context systems. First, we establish a satisfiability algorithm
based on an encoding into propositional logic. Then, we propose a
distributed decision procedure that maximally exploits the potential
amenity of localizing reasoning and restricting it to relevant contexts.
We show that the latter approach is computationally superior to our
translation-based procedure, and outline how off-the-shelf efficient
reasoning procedures can be used to implement our algorithm.

1 Introduction

The establishment of a solid paradigm for contextual knowledge rep-
resentation and contextual reasoning is of paramount importance for
the development of sophisticated theory and applications in AI.

McCarthy [16] pleaded for a formalization of context as a possi-
ble solution to the problem of generality; Giunchiglia [9] emphasized
that reasoning based on a large (common sense) knowledge base can
only be effectively pursued if suitably confined to a manageable sub-
set (context) of that knowledge base.

Contexts were first implemented as microtheories in the famed
CYC common sense knowledge base [12]. However, while in CYC
local microtheories were a choice, in modern settings like that of the
semantic web the notion of local, distributed knowledge is a must.
Contemporary architectures impose highly scattered, heterogeneous
knowledge fragments, which a central reasoner cannot deal with.
This engenders a high demand for contextual reasoning procedures.

Several formalizations of contextual knowledge representation
have been proposed. Most notable are the propositional logic of
context developed by McCarthy, Buvač and Mason [17, 18], and
the multi-context systems devised by Giunchiglia and Serafini [11],
which later became associated with the local model semantics [8].
NP-completeness has been established for PLC [15] and MCS [22].
Recently, MCS has been proven strictly more general than PLC [23].

In this paper, we propose an algorithm that settles satisfiability
in MCS in a distributed fashion by a single fixpoint computation.
Each iteration of this computation constitutes several local reasoning
procedures, which can be implemented by (a diversity of) customized
state-of-the-art SAT solvers. We discuss the use of bothBDD- and
SAT-based techniques for this purpose, and show that our algorithm
is computationally superior to translation-based procedures.

We proceed as follows. After defining MCS and explicating the
contextual satisfiability problem in section 2, we give its encoding
into propositional logic in section 3. A general specification of our
distributed approach is given in section 4, while section 5 discusses
some implementational issues. Finally, in section 6, we relate our
work to other state-of-the-art techniques for distributed reasoning.
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2 Multi-Context Systems

A simple illustration of the intuitions underlying MCS is provided by
the so-called “magic box” example [8], depicted below.

Mr.1 Mr. 2

Figure 1. The magic box

Example 1 Mr.1 and Mr.2 look at a box, which is called “magic”
because neither of the observers can make out its depth. Both Mr.1
and Mr.2 maintain a local representation of what they see. These
representations must be coherent – for instance, if Mr.2 thinks there’s
a ball in the box, Mr.1 should believe so too.

We demonstrate how such interrelated local representations can be
captured formally. Our point of departure is a set of indicesI. Each
indexi ∈ I denotes acontext, which is described by a corresponding
formal (in this case standard propositional) languageLi. To state that
a formulaϕ in Li holds in contexti we utilize so-calledlabeled
formulasof the form i : ϕ (when no ambiguity arises we simply
refer to labeled formulasas formulas). Two or more formulas that
apply to different contexts may be related by so-calledbridge rules.
These are expressions of the form:

i1 : φ1, . . . , in : φn → i : ϕ (1)

wherei1, . . . , in, i ∈ I andφ1, . . . , φn, ϕ are formulas. Note that
“→” does not denote implication (we’ll use “⊃” for this purpose).
Also note that our language doesn’t include expressions like¬(i : ϕ)
and(i : ϕ∧j : ψ). We calli : ϕ theconsequenceandi1 : φ1, in : φn

thepremisesof bridge rule (1). We writecons(br) andprem(br) for
the consequence and the set of all premises of a bridge rulebr.

Definition 1 (Multi-Context System MCS) A propositional multi-
context system〈{Li}i∈I ,BR〉 over a set of indicesI consists of a
set of propositional languages{Li}i∈I and a set of bridge rulesBR.
In this paper, we assumeI to be countable andBR to be finite.

Example 2 The scenario in example 1 may be formalized by an
MCS consisting of two contexts1 and 2, which are described by
L1 = L({l, r}) andL2 = L({l, c, r}), respectively. The constraint
that Mr.1 should believe the box to be nonempty if Mr.2 believes this
to be the case, is formalized by the following bridge rule:

2 : l ∨ c ∨ r → 1 : l ∨ r (2)



LetMi denote the class of classical valuations ofLi. Eachm ∈ Mi

is called alocal modelof Li. Interpretations of an entire MCS are
calledchains. They are constructed from sets of local models.

Definition 2 (Chain) A chainc over a set of indicesI is a sequence
{ci}i∈I , where eachci ⊆Mi is a set of local models ofLi. A chain
c is i-consistent ifci is nonempty; it isJ-consistent, for someJ ⊆ I,
if it is j-consistent for allj ∈ J .

A chain can be thought of as a set of “epistemic states”, each cor-
responding to a certain context (or agent). The fact thatci contains
more than one model signifies thatLi is interpretable in more than
one way – or alternatively, that agenti has onlypartial knowledge.
The epistemic states that a chain consists of all concernone and the
samesituation. Therefore, arbitrary sets of local models may not al-
ways constitute a “sensible” chain. This conception is captured by
the notion of “bridge rule compliance” specified below.

Definition 3 (Bridge Rule Compliance and Satisfiability) Let c
be a chain,ϕ a formula overLi, andBR the set of bridge rules of a
multi-context systemMS.

1. c satisfiesi : ϕ if m |= ϕ for all local modelsm ∈ ci.
We writec |= i : ϕ.

2. c complies withBR if for all br ∈ BR either c |= cons(br) or
c 2 i : ξ for somei : ξ ∈ prem(br).

3. i : ϕ is satisfiable inMS if there is ani-consistent chainc that
satisfiesi : ϕ and complies withBR.

The contextual satisfiability problem, then, is to determine whether a
set of formulasΦ is satisfiable in a multi-context systemMS.

In the following we refer to the set of bridge rules of MS asBR,
and to the set of contexts involved by formulas inΦ asJ .

3 Encoding Into Propositional SAT

In this section we provide an encoding of contextual satisfiability
into propositional SAT, and discuss the complexity of the resulting
problem in terms of the dimension of the underlying MCS.

We first remark that our encoding cannot simply consist in labeling
local propositions with the index of the context that they describe.
This is illustrated by the following example:

Example 3 Consider an MCS with two contexts1 and2, described
byL1 = L({p}), L2 = L({q}), and the following bridge rules:

1 : p → 2 : q
1 : ¬p → 2 : q

The formula2 : ¬q is satisfied in this system by the chain:{
{{p} , {¬p}} ,
{{¬q}}

}
Notice that a simple “indexing” encoding of this system into propo-
sitional logic would be inconsistent.

To overcome this problem, we express our encoding in terms of
atomic propositionspk

i , whose evaluation corresponds to the truth
value assigned to a propositionp in Li by thekth local model inci.
But how many local models canci contain? The following theorem
implies that this number may in fact be assumed to be bounded by
the number of bridge rules of the MCS under consideration.

Theorem 1 (Bounded Model Property) A set of formulasΦ is sat-
isfiable in a multi-context system MS iff it is satisfied in MS by a chain
that contains at most|Φ|+ |BR| local models.

Proof. Take any chainc that satisfiesΦ in compliance withBR.
Let BR∗ ⊆ BR be the set of bridge rules whose consequences are
not satisfied byc. Every br ∈ BR∗ must have a premise which is
not satisfied in some local modelm(br) contained byc. On the other
hand, every formulai : ϕ ∈ Φ must be satisfied in at least one local
modelm(i : ϕ) in ci. The chainc∗ obtained fromc by eliminating
all local models except:⋃

br∈BR∗
m(br) ∪

⋃
i:ϕ∈Φ

m(i : ϕ)

is J-consistent, satisfiesΦ in compliance withBR and contains at
most|Φ|+ |BR∗| ≤ |Φ|+ |BR| local models. �

Assuming that|BR| ≥ 1, Theorem 1 can be slightly weakened to
the statement thatΦ is satisfiable in MS iff it is satisfied by a chain
c∗ all of whose components are either empty or contain exactly|BR|
local models. We now construct a propositional formulaψ that is
satisfiable, in a classical sense, exactly if such a chainc∗ exists.

Apart from the atomic propositionspk
i mentioned above, we avail

ourselves of propositionsei, for each indexi ∈ I, corresponding
to c∗i being empty. For any formulaϕ, i ∈ I and k ∈ K, let
ϕk

i denote the formula that results from substituting every atomic
propositionp in ϕ with pk

i . Let us writeK = {1, . . . , |BR|}, and
ϕK

i =
∧

k∈K ϕk
i . Then, the translation of a labeled formula reads:

(i : ϕ)∗ = ei ∨ ϕK
i

For bridge rules we have:

(i1 : ϕ1, . . . , in : ϕn → i : φ)∗ =
(i1 : φ1)

∗ ∧ . . . ∧ (in : φn)∗ ⊃ (i : φ)∗

And aj-consistency constraint is captured by:

(j-cons)∗ = ¬ej

Theorem 2 There is an assignmentV to the set of propositions
{pk

i |p ∈ Li andk = 1, . . . , |BR|} ∪ {ei|i ∈ I} that satisfies:

ψ =
∧

i:φ∈Φ

(i : φ)∗ ∧
∧
j∈J

(j-cons)∗ ∧
∧

br∈BR

(br)∗

iff there’s aJ-consistent chain that satisfiesΦ and complies withBR.

Proof (⇒) FromV construct a chaincV , such that each compo-
nentcVi is empty ifV (ei) = True and contains exactly|BR| local
models otherwise. In the latter case, let thekth local model ofcVi
evaluate each atomic propositionp ∈ Li toTrue iff V (pk

i ) = True.
Clearly,cV is J-consistent and satisfiesΦ in compliance withBR.

(⇐) If there is aJ-consistent chainc that satisfiesΦ in compliance
with BR, there must also be aJ-consistent chainc∗ each of whose
components is either empty or contains exactly|BR| local models,
and which still satisfiesΦ in compliance withBR.

Fromc∗ we obtainV as follows. LetV assignTrue to an atomic
propositionei iff c∗i is empty. LetV assignTrue to an atomic propo-
sitionpk

i iff the kth local model ofc∗i satisfiesp, and any truth value
iff c∗i is empty. It is easy to see thatV satisfiesψ. �

The deterministic time complexity of the propositional satisfia-
bility problem resulting from our encoding isO(2|P |), whereP is
the set of propositional variables involved. LetPi denote the set of
propositions that is used to describe contexti. Then|P | amounts to:

|I|+ |BR| ×
∑
i∈I

|Pi|



4 A Distributed Algorithm

Contextual satisfiability can be settled rather naturally by a single
distributed fixpoint computation. We show that this computation is
more efficient than the translation-based method presented above.

Our approach is the following. Starting with some initial chainc0,
we attempt to construct a sequencec0, c1, . . . , ck, such that:

• c1 satisfiesΦ.
• for all m ∈ {1, . . . , k},
cm extendscm−1, that is, for everyi ∈ I, cmi ⊆ cm−1

i .
• for all m ∈ {2, . . . , k},
cm complies with the bridge rules thatcm−1 doesn’t comply with.

Alwaysextendinga chain, that is, restricting the sets of local models
that constitute its components, has two important implications. First,
our initial chainc0 should be most “general”, that is, all its compo-
nentsc0i must contain the entire set of local modelsMi. Notice that
c0 doesn’t satisfy any formula – in particular,c0 does not satisfy any
bridge rule premise, and therefore complies withBR.

The second implication of always extending a chain, is that once
a formula is satisfied by some intermediate chaincm, then it is also
satisfied bycn, for anyn > m. This means that (1) ifΦ is satis-
fied by c1, then it is also satisfied bycm, for anym ∈ {1, . . . , k}.
Moreover, (2) if some intermediate chaincm does not comply with a
bridge rulebr ∈ BR - that is,cm satisfiesbr’s premises, but does not
satisfy its consequence - then any extension ofcm that were to com-
ply with br should satisfybr’s consequence(it can by no means be
made to not-satisfy one ofbr’s premises). So obtainingcm+1 from
cm consists in extendingcm so as to satisfy the consequences of the
bridge rules thatcm does not comply with. Finally, (3) once an inter-
mediate chain satisfies the consequence of some bridge rulebr (and
therefore complies withbr), any of its extensions will also satisfy
br’s consequence and thus comply withbr.

Algorithm 1 A distributed algorithm for contextual satisfiability.

CONTEXTSAT(Φ,BR, I, J, c)
begin
I∗ := {i ∈ I | i : ϕi ∈ Φ};
for all i ∈ I∗ do
c∗i := EXTEND(ci, ϕi);

for all i ∈ I/I∗ do
c∗i := ci;

for all j ∈ J do
if c∗j = ∅ then

returnFalse;
BR∗ := {br ∈ BR | c∗ |= i : η for all i : η ∈ prem(br)}
if BR∗ = ∅ then

returnc∗;
Ψ∗ := {cons(br) | br ∈ BR∗};

Φ∗ :=

{
i : ϕ | ϕ =

∧
i:ξ∈Ψ∗

ξ , i ∈ I

}
;

return CONTEXTSAT(Φ∗,BR/BR∗, I, J, c∗);
end

This approach is implemented by the CONTEXTSAT procedure
specified in Algorithm 1. It takes as its input a set of formulasΦ,
a set of bridge rulesBR, a set of contexts (indices)I, a subsetJ ⊆ I
of contexts whose consistency is required, and finally, a chainc.
At first, CONTEXTSAT is called withc being a chain overI all of
whose components consist of the complete set of local modelsMi.

It yields aJ-consistent extension ofc that satisfiesΦ in compliance
with BR, orFalse if it fails to construct such an extension.

Extensions are always constructedlocally. That is, CONTEXTSAT

first determines the setI∗ of contexts involved by formulas inΦ, and
then, for everyi ∈ I∗, calls a sub-procedure EXTEND that extends
ci so as to satisfyi : ϕ. If the resulting chain isJ-inconsistent, any
of its further extensions will beJ-inconsistent as well. Thus, if such
is the case CONTEXTSAT recognizes a failure, and returnsFalse. If
not, it determines the setBR∗ of bridge rulesall of whose premises
are satisfied byc. If BR∗ is empty,c is a solution. Otherwise, making
c comply withBR∗ yields a new satisfiability problem, namely that
of extendingc so as to satisfy the consequence of everybr ∈ BR∗.
Bridge rule consequences that concern the same context are taken
together in order to obtain a setΦ∗ consisting of at most one formula
i : ϕ for every contexti ∈ I. A new instance of CONTEXTSAT is
addressed to extendc so as to satisfyΦ∗. Recursively proceeding like
this, a chain is constructed that, at any stage, satisfiesΦ, and at some
point either becomesJ-inconsistent, or complies withBR.

4.1 Completeness and Complexity

The set of bridge rule consequences that is satisfied byc is strictly
expanded by every recursive call to CONTEXTSAT. Since the number
of bridge rules is finite, CONTEXTSAT is bound to terminate.

Soundness is evident; completeness, however, is not yet assured.
In order to do so we should enforce EXTEND(ci, ϕ) to remove from
ci exactly those local models that do not satisfyϕ. We say that
EXTEND(ci, ϕ) should yield acomplete extension ofci w.r.t. ϕ.
Notice that this additional constraint implies that extensions ofc
neverunnecessarilysatisfy a bridge rule premise. In this way the
chance of having to re-establish bridge rule compliance is minimized,
and therefore further reasoning in other contexts is required only if
strictly necessary. This principle oflocality constitutes an important
advantage of our contextual approach w.r.t. centralized procedures.
Several techniques can be used to implement EXTEND, such that it
indeed yields complete extensions. We’ll get back to this in section 5.

In a worst-case scenario EXTEND(ci, ϕ) requires timeO(2|Pi|),
wherePi is the set of atomic propositions used to describe contexti.
Notice that EXTEND will be called at most|BR| times.

In general the greater part of computation time will be involved
with checking which bridge rule premises are entailed by the current
chain. The worst-case scenario consists of two contexts and an even
number of bridge rules going back and forth between them. If during
each iteration of CONTEXTSAT onlyonebridge rule premise is found
to be satisfied by the chain constructed so far, the total number of
premise-checks is:

2× (|BR|+ . . .+ 1) =
(|BR|+ 2)× |BR|

4

Each check requires up to timeO(2|Pi|). Assuming thatQ ≡ |P1| =
|P2|, we obtain the following overall upper complexity bound for
CONTEXTSAT:(

(|BR|+ 2)× |BR|
4

+ |BR|
)
×O(2Q) = O(|BR|2 × 2Q)

In this case the translation-based method, which we outlined in sec-
tion 3 requires timeO(22×|BR|×Q). In general, this upper bound is
(to a great extend) inferior to the upper bound for CONTEXTSAT. If
we take|BR| = 10 andQ = 5, for instance, CONTEXTSAT takes
time in the order of3200, while the translation-based approach may
require a number of timesteps in the order of1030.



5 Towards an Efficient Implementation

Our algorithm can be implemented using several efficient off-the-
shelf propositional reasoners. We sketch two particular ways to go.

5.1 BDD-based implementation

Reduced Ordered Binary Decision Diagrams [4] (or simplyBDDs)
constitute a canonical representation of propositional formulas.
Equivalence of twoBDDs can be computed in constant time; boolean
transformation (e.g. conjunction, disjunction, negation) and quantifi-
cation take at most quadratic time in the size of theBDDs involved.
Efficient software libraries for the manipulation ofBDDs, calledBDD

packages, are available.BDDs are being used in several application
domains, ranging from formal verification [19] to planning [5], safety
analysis [3], and diagnosis [24].

We useBDDs to represent sets of local models. The chainc we are
constructing is implemented as an array, whoseith element points to
a BDD Bi, representing the set of local models comprised byci.

Initially, eachBi is equal to theBDD True. Extendingci with
a formulaϕ corresponds to replacingBi by the conjunction ofBi

and theBDD representation ofϕ. Checking fori-consistency requires
an equality check betweenBi and theBDD False. Determining
whetherBi entails a bridge rule premiseψ can be done by compar-
ing theBDD Bi ⊃ ψ to theBDD False. A dedicated, more efficient
routine to establish entailment is provided by mostBDD packages.

Reasoning is always performed locally. Therefore, each context
can be represented by a dedicated, completely independentBDD,
each local proposition can be associated with a univocal “local”BDD

variable, and each context can impose its own variable ordering.
The potential bottleneck of usingBDDs is an explosion in space.

In general practice, however, suitable variable orderings assure very
compact representations of high-dimensional boolean functions.

5.2 SAT -based implementation

Propositional SAT solvers make up another very effective way to ma-
nipulate propositional formulas. The typical approach consists in a
depth-first search for a satisfying truth value assignment, “splitting”
on individual boolean variables [6]. During the last decade enormous
progress has been achieved in this field: state-of-the-art SAT solvers
are able to process problems with tenths of thousands variables and
a million clauses [20], and are applied in several industrial settings
ranging from formal verification [2] to planning [13] and ATPG [14].

In a SAT-based implementation theith component of the chain
we are constructing is simply represented by a conjunctionψi of for-
mulas that are forced to hold in contexti. Initially, eachψi is empty.
Extendingci with a formulaϕ consists in conjunctingψi with ϕ.
Checkingi-consistency now becomes a full-fledged call to the SAT

solver, withψi as input. Determining whether a bridge rule premise
φ is entailed byci amounts to checking whetherφ holds in all the
models ofψi. This can be considered as a SAT problem, reasoning
by refutation:φ is entailed byci iff ψi ∧ ¬φ is unsatisfiable.

Notice that the sequences of problems (consistency checks,
premise entailment) presented to the SAT solver is incremental. A
consistency / entailment check performed during thejth iteration of
CONTEXTSAT is often an extension of a consistency / entailment
check carried out during some previous iteration of the algorithm.
In this light, it is recommendable to exploit recent developments in
incrementalSAT technology [7]. Significant computational advances
can be achieved by retaining learned conflict clauses when adding
new clauses to an already processed formula.

6 Related Work

Work by Giunchiglia and Sebastiani [10] can be seen as a first step
towards general decision procedures for contextual satisfiability. The
objective of this work is to define SAT-based decision procedures
for modal logics. Its motivation is highly associated with the possi-
bility of defining a particular class of multi-context systems called
hierarchical meta contexts, whose instances are equivalent to various
modal logics [11]. Resulting procedures have been proven orders of
magnitude faster than previous tableau-based decision procedures.
In this paper, we’ve applied a similar approach to the class of multi-
context systems, whose structure is not necessarily hierarchical.

Contextual reasoning (with finite sets of bridge rules) can be trans-
lated into a rather simple form of reasoning in multi-modal logic.
Rephrasing every bridge rulei1 : φ1, . . . , in : φn → i : φ as a
multi-modal implication�i1φ1 ∧ . . .∧�inφn ⊃ �iφ, contextually
satisfying a labeled formulai : ϕ corresponds to modally satisfying
a conjunction of the formula�iϕ∧¬�i⊥ and the translation ofBR.
Notice that the modaldepthof this conjunction is equal to one.

Fixpoint decision procedures for modal logic have been proposed
by Pan, Sattler and Vardi [21], and could in principle be applied to
contextual satisfiability as well. In this approach satisfiability of a
modal formulaϕ is computed by constructing a Kripke structure,
whose set of possible worlds is constituted by propositionally con-
sistent sets of (possibly negated) sub-formulas ofϕ. Such sets are
called types. A type/world a is accessible form a type/worldb, if
�φ ∈ b impliesφ ∈ a.

The top-down algorithm proposed in [21] takes as its initial
set of worldsall possible types. Then, it iteratively discards those
worlds/types which contain a formula¬�ψ but do not have access
to any world/type containing¬ψ. A type corresponding to a formula
ϕ is represented by an array of binary variables each of which con-
veys whether the type contains either a certain sub-formula ofϕ, or
its negation. This representation seems redundant as far as capturing
thepropositionalstructure of formulas is concerned. It turns out to be
very effective, however, in treating themodalaspects of a problem.
It is especially useful when processing formulas which exhibit deep
nestings of modal operators. The encoding of contextual satisfiability
problems into modal logic generates formulas, which do not exhibit
any nesting at all. Therefore, directly applying this approach to our
contextual setting does not seem to be a fruitful endeavor.

We’d like to remark that, if applied to a contextual satisfiability
problem, the algorithm proposed in [21] takes exactly one iteration.
More generally, in order to decide satisfiability of a formula withn
nested modal operators, the algorithm performs at mostn iterations.

Amir and McIlraith [1] define a propagation algorithm called
MP, which computes satisfiability of a theoryT that is partitioned
into sub-theories (orpartitions) T1, . . . , Tn. Partitions are related
by the overlap between the signatures of their respective languages,
which are calledcommunication languagesbetween these partitions.
Roughly speaking, to check satisfiability of a partitioned theory
Ti≤n, MP determines a partial order≺ overTi≤n, and subsequently
- iterating overTi≤n according to≺, and propagating logical con-
sequences of one partition to the next through the communication
language between those two partitions - identifies models ofT .

At a first glance, there is a strict analogy between multi-context
systems and partitioned theories. Each partition could be seen as
a context, and overlap between two partitions can be simulated via
bridge rules of the formi : p → j : p andi : ¬p → j : ¬p, where
p is in the communication language betweenTi andTj . However,
the analogy breaks at the semantical level. The semantics of a parti-



tioned theory can be seen as the projection of a global semantics for
T onto each local languageTi. Or, the other way around, a model for
T is the combination of one model for eachTi. Conversely, a chain
associates to every context aset of local models. Therefore, it cannot
be considered as a set of chunks of a global model. In other words, in
Amir and McIlraith’s approach eachTi represents a partial theory of
the world, while in ours each context represents an epistemic/belief
state about the world. However, the analogy can bemadeto work,
by only considering chains all of whose components contain exactly
one local model. The two approaches should be compared subject to
this hypothesis.

CONTEXTSAT, then, exhibits two main improvements w.r.t. MP.
First, bridge rules express more complex relations between contexts
(partitions) than communication languages do. For instance, we can
relate three (or more) contexts via a bridge rulei : ϕ, j : ψ → k : χ,
whereas MP is limited to considering the overlap between pairs of
partitions. Furthermore, bridge rules aredirectional, i.e.i : p→ j : p
does not implyj : p → i : p. Communication languages always
describesymmetricrelations between partitions. At last, whereas MP
requires a partial order between contexts, CONTEXTSAT naturally
deals with any kind of relational structure between them.

7 Conclusion

In this paper, we have investigated the satisfiability problem for
propositional multi-context systems with finite sets of bridge rules.
First, we provided a decision procedure based on the translation of
contextual satisfiability into propositional logic. Next, we proposed
an algorithm, which settles contextual satisfiability in a distributed
fashion, exploiting the potential benefit of localizing reasoning and
restricting it to relevant contexts only. We showed that this approach
is more efficient than our translation-based procedure, and outlined
how off-the-shelf reasoning platforms, likeBDDs and propositional
SAT solvers, can be used to implement our algorithm.

While designing our algorithm we have kept in mind a distributed
peer-to-peer implementation. As a result, CONTEXTSAT is modular,
i.e. global reasoning is made up of local reasoning procedures, and
CONTEXTSAT is backtrack-free, i.e. solutions are build - or rather
confined - incrementally, imposing a minimal restriction at each step.
These features support a natural implementation in a peer-to-peer
architecture, in which peers perform local reasoning and propagate
their conclusions to neighbor peers via bridge rules. Modularity sup-
ports local reasoning, while backtrack-freeness avoids infinite loops.
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