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Abstract. We propose a new Markov team decision model to the
decentralized control of cooperative multi-agent systems with im-
perfect communication. Informational classes capture system’s com-
munication semantics and uncertainties about transmitted informa-
tion and stochastic transmission models, including delayed and lost
messages, summarize characteristics of communication devices and
protocols. This model provides a quantitative solution to the prob-
lem of balancing coordination and synchronization cost in cooper-
ative domains, but its exact solution is computationally infeasible.
We propose a generic heuristic approach, based on a off-line central-
ized team plan. Decentralized decision-making relies on Bayesian
dynamic system estimators and decision-theoretic policy generators.
These generators use system estimators to express agent’s uncer-
tainty about system state and also to quantify expected effects of
communication on local and external knowledge. Probabilities of ex-
ternal team behavior, a byproduct of policy generators, are used into
system estimators to infer state transition. Experimental results con-
cerning two previously proposed multi-agent tasks are presented, in-
cluding limited communication range and reliability.

1 INTRODUCTION

In this paper we address the problem that arises when an agent
in team must autonomously define its actions to implement a pre-
established coordinated plan (pre-plan). This agent acquires infor-
mation about the state of the environment through sensors that are
noisy and with limited capabilities and is able to act upon it with its
error prone actuators. Incoherence among agents local perceptions
is the main cause of coordination problems in decentralized deci-
sion processes. The classical solution is to resort to interagent com-
munication in order to synchronize distinct perceptual information,
which brings forth key issues of what, when and to whom communi-
cate. Synchronization incurs in a cost overhead and due to range and
load limitations it may be unachievable or delayed. Rational decision
making should establish a tradeoff between conformity to pre-plan
and synchronization cost.

One possible approach is to derive synchronization policies from
a centralized pre-plan by prescribing communication whenever local
knowledge is not sufficient to determine the right action [7, 11]. As
reliable and costless communication is assumed, this can be seen as
a qualitative approach. The quantification of synchronization’s ac-
tual gain is harder since all costs and uncertainties involved should
be considered. In this case, decentralized Markov decision processes
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(MDPs) [3, 2], and more specifically those with communicating
agents [12, 10, 6], are appropriate to quantitatively settle this trade-
off, but they all consider reliable communication. Under total ob-
servability assumption, the communication is used in [3] to arrive in
a good joint action when ties exist. In our approach, this is solved
before execution using lexicographic order. The use of costed com-
munication to synchronize perceptions in partial observable domains
where first investigated in [12]. This model assumes perfect commu-
nication, that every agent has access to all transmitted messages and
that external information is acquired only by communication. Deeper
description of the communication process in this model is provided
in [6]. Authors define a communication language and the types of
messages that agents may transmitted, but reliable communication
assumption still remains. There is also no means to model uncertainty
about transmitted information and the relation between it and agent’s
previous knowledge is not explicit. The COM-MTDP [10] also con-
sider interagent communication, relaxing the assumptions about ob-
servability. Despite its wide expression power, unreliable communi-
cation must be treated by solution’s designer since, in the model, the
only represented information are the messages that an agentsends.
Delayed information was treated in the context of decentralized con-
trol [1], but not from interagent communication viewpoint.

Since in situated systems failures inhere communication process
and information, this article proposes an extension of COM-MTDP
that explicitly considers unreliable communication. It also extends
previous models by defining a communication language that is as-
sociated with system state and allows expressing uncertainty about
transmitted information. The communication process resembles the
control process. Messages’ repositories are the communication state,
including a system repository that storesdelayedmessages. Agents
change communication state by performing communicative actions
(c-actions). These c-actions generate messages whose payload de-
pends upon theirinformational classes, the system’s communication
language. Message transmission features are captured bydelay mod-
elswhich establish the probability of reception cycles. This model is
presented at Section 2.

Previously discussed models [12, 10, 6] have all being solved
by heuristic approaches based on expected communication gain, but
they relies on external description of communication effect and are
not directly applicable with unreliable communication. Generic solu-
tions to decentralized MDPs based on Game Theory equilibrium con-
cepts have been previously proposed [9, 8]. The decision-theoretic
approach to Game Theory provides an alternative approach where
agents may reason about the process to achieve equilibrium. The Re-
cursive Modelling Method (RMM) [4] defines a framework to per-



form punctual decision making by representing uncertainties about
external behavior through alternative models with associated prob-
abilities. It provides a rational acting policy in general MAS and is
also suitable for cooperative systems. Communication policies, con-
sidering losses in messages but not delays, are also defined in the
model [5], based oninformation valuewhich is actually the trade-
off between coordination gain and synchronization costs. Section 3
presents a feasible and generic heuristic solution to decentralized de-
cision making, based on RMMs. It relies on state-based utilities ma-
trices (thepre-plan), defined before execution and shared among the
team. An agent models thejoint decision making process and de-
fines its control action as the one with maximum expected utility2.
Bayesian inference is used to summarize agent’s knowledge and also
teammates’ external knowledge. The effect of a c-action onto the de-
cision processes, with delays and losses, is quantified by predicting
future knowledge throw Bayesian estimators and evaluating the new
utility. The expected gain in coordination is the difference of these
utilities and, if it is greater than communication cost, a synchroniza-
tion takes place.

We have applied our approach to two different multi-agent
tasks [12, 10] and experimental results asses its adequacy to gener-
ically solve the problem. In Section 4, we analyze these results un-
der the assumption of reliable and unreliable communication (limited
range and failures in message transmission). Our concluding remarks
are presented in Section 5.

2 THE EMTDP MODEL

The Explicit communicative Markov Team Decision Problem
(EMTDP) is aW -step Markovian system for a teamR of n agents,
whereW is the cycle-threshold to a message’s loss. At cyclet, sys-
tem is in statest ∈ S. Agents have access only to incomplete infor-
mation about state, basing their acting on local histories. An EMTDP
cycle is split into four synchronous stages:Observation, where ac-
quired local partial observations of system’s state are incorporated
into local history;Communicative Action, when agents send mes-
sages to specific teammates according to their communication poli-
cies and cause a transition into communication state;Communicative
Observation, where received messages are incorporated onto agents’
local histories; andAction, where control actions are defined accord-
ing to acting policies. System transits to a new state defined by the
joint control action and agents receive a instantaneoussharedreward.

An EMTDP 〈R, W,S,A, Tp,O, op, ΣS ,Φ, ep,Σ, mp, r〉 has
similar control and communication components:

Control Communication

State S ΣS ,Σ (repositories)
Action A Φ (c-action)
Transition Tp ep (transmission)
Observation O Σ (messages)
Likelihood op mp (language)

and control components maintain their original definition [10].
Joint action3 at−1, defined inAction stage based on local histories
ht−1

x , causes system to evolve to new statest according with tran-
sition functionTp(s

t−1, at−1, st). At cycle t, each agent Rx ∈ R
receives local sensorial evidenceot

x ∈ Ox about this state. It is incor-
porated to local historyht

x•Σ using the joint observation likelihood

2 Lexicographic order is employed to break ties.
3 Bold symbols are used for the cartesian product of individual agent’s sets,

i.e.,a ∈ A ≡ A1 × . . .×An andax ∈ Ax.

op(s
t, at−1, ot) =

∏
x ox

p (st, at−1
x , ot

x). Communicative stages add
information to local histories in order to improve decision making
at Action stage. Communication data, which comprises performed
c-actions and received messages, are incorporated to the history re-
sulting inht

x, that is used to define control action.
The first communication component of EMTDP is thecommu-

nication state〈σt, σt
S〉, defined by messagerepositories. System

repositoryσt
S ∈ ΣS (abstractly) storesdelayedmessages, that is,

those sent at previous cycles but not received yet.Agent repository
σt

x ∈ Σx stores messages that areaddressedto Agent Rx received at
cyclet. This state is changed by the performance of c-actions, which
generate messages that are store at repositories. Messages’ payloads
are interpreted by agents using their communication language.

2.1 C-actions and Communication Language

Like in [12], there are three types of c-actions:inform(I), where a
local content is transmitted;request(R), where an external content is
requested and an answer message is received; andsynchronize(S),
that is equivalent to perform both previous types, but results in syn-
chronization after one cycle. Messages’ semantic (or communication
language [6]) is modelled byinformational classessetI and mes-
sages’ transmission, including delays or losses of messages, is mod-
elled bycommunication networkssetD that represents the commu-
nication media (physical devices and protocols) employed.

A c-action comprises the choice of a type, a receiver, a informa-
tional class and a communication network. The set of c-actionsEx of
Agent Rx is defined asEx = {I, R, S}×R−x×D×I. Each agent
may perform up tons c-action in a cycle, thenΦx = {Ex

⋃
∅}ns . A

c-actione = (o, Ry, d, i) ∈ Ex performed by Rx at cyclet generates
a messagem with a header composed by emitter, recipient, type, in-
formational class, communication network and atimestampt. When
c-action’s type isR or S, if m actually arrives at the recipient agent,
it will be answered in the next cycle. Message’s payload depends on
its informational class (R messages have no payload).

Communication language is composed by informational classes.
Each informational classi, with a payload domainFi, represents
one type of information that may be exchanged among agents, for
instance agent’s or obstacles’ positions, the accomplishment of a
subgoal. A probability model defines the relationship among trans-
mitted information and system state, analogously to domain obser-
vation likelihood,providing a mechanism to automatically incorpo-
rate external data onto agent’s knowledge. Thepayload likelihood
f i

p (s
t, Rx, c) of c ∈ Fi is the probability that Agent Rx generates

this payload when system state isst. It allows that an agent expresses
its uncertainty about transmitted information that arises, for instance,
when it is acquired using noisy sensors. When informational classes
comprises features of system state,informativeandworld informa-
tion types of messages [6] are modelled. Auxiliary procedures, like
inference of state given a sub-goal accomplishment or a reward, are
necessary to model other types of messages.

Thecommunicative observation likelihoodmp(s
W :t, σt)4 defines

the probability that payloads of messages inσt are observed, given
the lastW statessW :t. This is necessary since message’s payload
is influenced by system’s state at the generation cycle and messages
may be delayed up toW−1 cycles. It is reasonable to assume that the
payloads of two messages are conditionally independent given the
system state and the emitter agent. The communication observation

4 Notationsk:t is used for the values assumed by variables in the cycles
t− k + 1 to t, that isst−k+1, . . . , st.
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likelihood can be defined directly from payload likelihoods as

mp(s
W :t, σt) =

∏
m∈σt

f im
p (stm , Rm, cm),

wherem is transmitted by Rm at cycletm, im is its informational
class and ecm is its payload.

2.2 Messages Transmission and Communicative
Transition

As message transmission only depends the employed communica-
tion media, we define thedelay modelof each communication net-
work d. Let m be a message sent by Agent Rx to Agent Ry at cy-
cle t using communication networkd. The probability that it is re-
ceived after exactlyw cycles iswd

p (st, Rx, Ry, lm, w). Message’s
delay is conditioned at its lengthlm (that depends on its infor-
mational class), since the greater a message, the more it is error
prone; at system statest, specially if a wireless device is used,
since topology changes with state and there may be signal interfer-
ence; and by the communicating agents, as physical distance may
be determinant for transmission time. Theloss probabilityof m is
wd

p (st, Rx, Ry, lm, W ) and the probability that it is instantaneously
received iswd

p (st, Rx, Ry, lm, 0). We assume that: (a) the delay of a
message is defined at its generation cycle and does not change during
its transmission; e (b) the delays of two messages are conditionally
independent given their generation state, their lengths and their par-
ticipants. This assumption is true if either transmission capacity is
greater enough to avoid collisions or the instantaneous communica-
tion load is expressed in system state.

Figure 1. Diagram for communicative transition in EMTDP.

The communicative transition functiondefines the evolution of
communication state〈σt, σt

S〉. Figure 1 shows possible messages’
flows among message repositories. At cyclet, a messagem gener-
ated by Rx’s c-action inφt

x is either instantaneously received (even
E1 of m ∈ σt

y andm 6∈ σt−1
S ) or will be delayed or lost (event

E2, whenm ∈ σt
S and m 6∈ σt−1

S ). Messages inσt−1
S may be

received with delay at the present cycle (eventE3 of m ∈ σt
y

andm ∈ σt−1
S ), may be delayed by one more cycle (eventE4 of

m ∈ σt
S andm ∈ σt−1

S ) or is lost (eventE5). Given the condi-
tional independe assumptions, the communicative transition function
ep(σ

t−1
S , sW :t, φt, σt, σt

S) is defined as the product of individual
messages’ delay probabilities for each of the five events described
above. EventE1 has probabilitywp(s

t, Rx, Ry, lm, 0) and eventE2
is complementary it. The the lest three events, the message has been

generated at cyclet − w, w ≥ 1 and has already been delayed for
w − 1 cycles. Ifw = W , eventE5 has probability 1 and eventsE3
andE4 have both probability 0. Otherwise, eventE5 has probability

0, and eventE3 has probability wp(s
t−w,Rx,Ry,lm,w)∑W

u=w wp(st−w,Rx,Ry,lm,u)
. Event

E4 is complementary toE3 and we define the transition function
ep(σ

t−1
S , sW :t, φt, σt, σt

S) as the product of individual messages’
events.

2.3 Instantaneous Reward and Exact Solution

The last component is theshared instantaneous rewardfunction
r(st, at, φt) = v(st)− cA(at, st)− cΦ(φt, st). The instantaneous
gain v(s) is a measure of state quality with respect to task accom-
plishment. The joint action costcA(a, s) allows the designer to ex-
press variations in action’s cost given the system’s state and also the
cooperative nature of actions. The joint c-action costcΦ(φt, st) cap-
tures communication cost dependence on environment and internal
features (for instance, this cost may be higher if the agent is in a low
power situation). The cooperative nature of communication may be
expressed by assigning greater costs to redundant c-actions (two syn-
chronize between the same agents) and to states where the recipient
is performing subtasks that are critical.

A team policyπ is composed by individualcommunicativeand
acting policiesπt

Cx andπt
Ax for each cyclet. The communicative

policy is based on pre-communication historyht
x•Σ and acting pol-

icy, on the pos-communication historyht
x, where information about

communicative stages are already available:

πt
Cx :(Ox × Φx × Σx ×Ax)t−1 ×Ox → Φx

πt
Ax :(Ox × Φx × Σx ×Ax)t−1 ×Ox × Φx × Σx → Ax

The valueVπ(s) of a team policy with initial states is a function of
the expected shared instantaneous rewards, over all possible system’s
evolutions5 e, given an optimization criteria. Under finite horizonT ,
for instance, it is evaluated as:

Vπ(s) =
∑

e

T∑
t=1

Tp(s
t−1, at

π, st)op(s
t, at

π, ot)

ep(σ
t−1
S , sW :t, φt

π, σt, σt
S)mp(s

W :t, σt)r(st, at
π, φt

π),

where at
π = (πt

A1(h
t
1), . . . , π

t
An(ht

n)) and φt
π =

(πt
C1(h

t
1•Σ), . . . , πt

Cn(ht
n•Σ)). The optimal solution of EMTDP is

the policyπ∗ = arg maxπ Vπ(s) that maximizes the value. As a
COM-MTDP may be reduced to an EMTDP, defining the optimal
policy is computationally prohibitive [2, 10].

3 BaQuaRA HEURISTIC

Our generic heuristic approach to solve EMTDP is based on my-
opically evaluating communication gain. It is called BaQuaRA6

(Bayesian Quantitative Rational Acting) heuristic, for its based
on Bayesian inference, quantitative a priori planning and rational
decision-making based on modeling joint process by RMM. A RMM
Mx for Agent Rx is composed by an-dimensional game matrixUx,

5 A evolutione is the sequence〈s, o1, φ1
π , σ1, σ1

S , a1
π , . . . aT

π , sT+1〉.
6 From tupi, a Brazilian indigene language,mbae´kwara, ´things knower´.

3



the joint action utilities, and alternative models for team external be-
havior with associated probabilities. Each such model is either a re-
cursive definition of an external agent behavior, by its own game ma-
trix and the models it assigns to the other agents (including Rx), or
a probability distribution over its actions.Mx solution results inIn-
tentional Probability Distributions(IPDs)ix(a−x) over external ac-
tionsa−x. They summary expected team behavior from Rx’s view-
point when this team has a rational reasoning. The rational policy for
Rx is to choose the action that maximizes its utility, given the IPDs
for the rest of the team, that is:

πAx = arg u∗(Mx) = arg max
a∈Ax

∑
a−x

Ux(〈a, a−x〉)ix(a−x),

whereu∗(Mx) is the value that Rx expects to gain performing
its best action. In BaQuaRA approach, agents’ game matrix is de-
rived from a pre-plan, which providesU t(s) utilities (global mea-
surements) of joint actions in each cycle and state of an EMTDP.
In this work, pre-plan is obtained from the Q-values of a central-
ized solution of a fully observable EMTDP, which is equivalent to an
MDP. Under full observability, the decentralized policyπt

Ax(s) =
argx maxa∈A U t(s)(a) implements the pre-plan. Under partial ob-
servability, as the agent does not known actual system state, it main-
tains probability distributions overS, namedbelief state. Let bt

x(s)
be Rx’s belief state at cyclet. Its RMM M t

x for cyclet decision mak-
ing has as game matrix the expected value of pre-plan over this belief
state:Ux =

∑
s∈S bt

x(s)× U t(s).
Pre-plan also serves to model external behavior models and we

proposed three RMM versions: Optimistic, Coordinated State and
External Observation. In the first two, there is an alternative team
model for each possible states with probability bt

x(s). Rx assumes
that its teammates actually know system state and expected it to also
know system state, at the Optimistic version, that is, they implement
U t(s). In Coordinated State, Rx assumes that its teammates expect
that system’s state is the one defined by implementing pre-plan with-
out error in the execution of actions7. These versions are simple, but
do not express the actual decision making. In the External Obser-
vation version, the agent maintains estimates about external belief
states, using EMTDP model and Bayesian inference to assign proba-
bilities to teammates’ local histories. It assumes that the team imple-
ments an Optimistic RMM over these belief states.

Communication decision making is based on c-actions’informa-
tion value[5], which predicts the effect of a c-action onto agent’s
RMM. Since communication is unreliable, it is necessary to consider
every possible message’s reception cycle and its loss (t+w, 0 ≤ w ≤
W ). Message’s payload is also stochastic and agent has to consider
everyf ∈ Fi. The pos-communication valueu∗e•(M

t
x) of a c-action

e is
∑

(w,f) pe•(w, f)u∗(M t
x(w, f)). The probabilitype•(w, f) de-

pends on the payload likelihood and the delay model. The value of
RMM M t

x(w, f) is defined aftere’s message(s) is(are) incorporated
into emitter and/or on recipient. The knowledge change is evaluated
by prospective Bayesian inference of agents’ belief state (for Coor-
dinate State, just the of the information being transmitted). The dif-
ference between pre- and pos-communication RMM’s values is the
expected coordination gain, while c(e) is the expected communica-
tion cost. The information valueit(e) establishes the tradeoff be-
tween coordination and synchronization cost and BaQuaRA agent’s
communicative policy is the c-action(s) with maximumpositivein-
formation value:

7 Suitable for transition independent domains with known initial state [12, 6].

πt
Cx = arg max

e∈Ex

it(e) = arg max
e∈Ex

(u∗e•(M
t
x)− u∗(M t

x))− c(e).

Belief states are obtained by Bayesian inference using EMTDP
probabilistic. Pre-communication belief statebt+1

x•Σ summarizes
ht+1

x•Σ, incorporatingot+1
x e at

x to a priori belief statebt
x. The main

difficulty is that external actions are not directly accessible and state
transition depends onjoint action. We solve that by using IDPs
from RMMs and defining theexternal actionlikelihoodγt

x(a−x) =
(1−αx)×N +αx× ix

t(a−x). It is the probability that Rx assigns
to its teammates’ actions at cyclet, using Bayesian average with a
non-informative distributionN to avoid inconsistencies.bt+1

x•Σ(s) is
proportional to:

ox
p (s, at

x, ot+1
x )

∑
sa∈S

[
bt
x(sa)

∑
at
−x

[
Tp(sa, at, s)γt

x(at
−x)

]]
. (1)

Rx may maintain an estimative of Ry ’s belief statebt
x,y•Σ. For

this, external observation probabilities are evaluated asPr(ot
y) =∑

s

∑
ay

oy
p (s, ay, ot

y)γt−1
x (ay)bt

x•Σ(s). Using these probabilities,

Equation 1 is applied for every possible observationot
y, averaging

by their probabilities and using a priori valuesbt−1
x,y e γt−1

x,y (at−1
−y ).

IPDsγt−1
x,y are obtained from the local RMM model of Ry.

After communicative stages, Rx evaluates its pos-communication
belief statebt

x using its messagesσt
x and its a priori knowledge

bt
x•Σ. Due to conditional independence of messages, they may be

sequentially incorporated into belief state and it is sufficient to de-
fine a estimator for a single messagee. An instantaneous message
carries information about system statest and aw-delayed message,
about statest−w. In both cases, there are two sources of infor-
mation: the transmission and the payload probabilities. The prob-
ability that a messagem with payload fm is sent from Ry to
Rx and received after exactlyw cycles when system state iss is
wp(s, Ry, Rx, lm, w)fp(s, Ry, fm). Let Sg andSr the random vari-
ables for the generation and reception states of a message. The belief
statebt

x(s) after the reception ofm is:

∝Pr(Sr = s)
∑

sg∈S

[
Pr(m|Sg = sg)Pr(Sr = s|Sg = sg)Pr(Sg = sg)

]
∝bt

x•Σ(s)
∑

sg∈S

[
wp(sg, Ry, Rx, lm, w)fp(sg, Ry, cm)

Pr(sg evolves tos in w cycles)× bt−w
x (sg)

]
.

where the evolution probability is evaluated using agent’s actions
and its external action likelihoods for the lastw−1 cycles. The same
inference procedure can be prospectively used to infer the effect of
a c-action onto agent’s future belief state. Every pair(w, f) rises
a specific belief state and an associated RMM. Whenw > 0, fu-
ture system’s transitions are obtained by evaluating RMMs for future
cycles and thus changing belief states according to external actions
likelihood and not taking future observations into account.

4 EXPERIMENTAL RESULTS

The TER system [10] is a two helicopter-agent flight across enemy
territory to reach a destination position as soon as possible. Heli-
copterT has no firepower but HelicopterE can destroy the enemy
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radar unit located in an unknown position (from 1 to 8) along their
10-unit length path. To espace detection by the radar,T travels at
lower speed. WhenE, that always flies at the same speed, arrives at
the radar, it destroys it with certainty. After this,T starts to fly faster
if it observes the destruction, event whose likelihood is a function of
theobservabilityparameterλ (within the range[0, 1]) andT ’s from
the radar.E may communicate the destruction toT at fixed costc
within the range[0, 1]. A COM-MTDP model [10] has been pur-
posed for TER to optimally balance out coordination improvement
and communication cost. EMTDP model is an extension of it con-
sisting of one informational class for deterministic radar’s destruc-
tion, a unique communication network andE’s Inform c-action. De-
lay model introduces communication unreliability in the sense that
a message may be lost with probabilitypc. BaQuaRA’s solution is
composed by an External Observation version toE and an Optimistic
version toT . Pre-plan is obtained from a centralized MDP for TER.

Figure 2. Suboptimality of BaQuaRA under reliable communication.

As noted in [10], optimal solution to TER implements a kind of
plan recognition: sometimes it is better toE to delay its communica-
tion in order to infer ifT has observed radar’s destruction. Though
plan recognition is not pre-defined in BaQuaRA solution, it is a con-
sequence from RMM modelling. Still, our heuristic gain is some-
times suboptimal, as it is shown by its difference from optimal’s gain
in Figure 2. This is mainly due to little inconsistencies between the
estimatedT ’s belief state maintained byE and its actual value, when
T does not receive an observation. Pre-plan indicates, fromE’s view-
point, thatT will fly faster, but it actually happens that it flies slowly
and the team looses gain. Another source of suboptimality follows
from the agent’s incapability to reason about the lack of commu-
nication. If it remains just one possible position for the radar, RMM
prescribes faster motion toT , even at the expense of being destroyed.
Knowing thatE would have informed it about the radar destruction,
T could better define its action.

A typical performance degradation for low observability8, due to
unreliable communication, is shown in Figure 3, forλ = 0.3. For
high observability settings, results indicates that unreliability has lit-
tle effect. The most interesting point is that performance does de-
grade with greater loss probability, but communication cost has little
effect as we fixpc. This is a consequence of automatically adjusting
the number of sent messages, as shown in right graphic of Figure 3.
For low communication costs, the expected number of messages in-
creases with loss probability.E retransmits of a message if it is lost

8 In the graphic, we are compare gains with reliable optimal ones, so the
suboptimality may be slower.

Figure 3. Performance under unreliable communication (µ = 0.3).

(fact that it can implicitly detect) and the information value of re-
sending it is positive. As communication cost increases, the number
of expected messagesdecreases: message loss probability is a part
of communication decision and the higher is the loss probability, the
lower is information value until a threshold where no communication
is performed.

5 CONCLUSIONS

The EMTDP model subsumes previous purposes as it provides the
capability to analyze the optimality of team decisions underimper-
fectcommunication. As communication in situated systems is inher-
ently unreliable, EMTDP enlarges the class of formally tractable sys-
tems. Messages’ transmission and communication language are part
of the model, allowing reasoning about information gain and its in-
corporation in local knowledge avoiding the use of auxiliary external
procedures. We have proposed a novelgenericheuristic approach
that provides rational decentralized policies dealing withlostandde-
layed messages. Such a generic solution is important since unreli-
able communication is just starting to be systematically treated and
insights can be gained from the prescribed solutions. In particular,
we have shown that BaQuaRA’s performance is suitable, despite its
generality, to define almost optimal policies for a specific system.
Ongoing work with different systems [12, 6] shows that this quality
remains. Our future research includes the investigation of message
delay impact on team decision and the extension of BaQuaRA to ful-
fills the reasoning about the lack of communication.
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