
Algorithms for Distributed Exploration
Thomas Walker, Daniel Kudenko Malcolm Strens
Department of Computer Science Future Systems Technology Division

University of York QinetiQ
United Kingdom United Kingdom

Abstract.
In this paper we propose algorithms for a set of problems where a

distributed team of agents tries to compile a global map of the en-
vironment from local observations. We focus on two approaches:
one based on behavioural agent technology where agents are pulled
(or repelled) by various forces, and another where agents follow a
approximate planning approach that is based on dynamic program-
ming. We study these approaches under different conditions, such as
different types of environments, varying sensor and communication
ranges, and the availability of prior knowledge of the map. The re-
sults show that in most cases the simpler behavioural agent teams
perform at least as well, if not better, than the teams based on ap-
proximate planning and dynamic programming.

The research has not only practical implications for distributed ex-
ploration tasks, but also for analogous distributed search or optimi-
sation problems.

1 Introduction

Consider the following scenario. A number of agents (e.g., robots)
have the task to create a map of a region, with limited sensory range,
and possibly limited communication abilities. Such scenarios are of
practical importance especially in multi-robot exploration domains,
such as search and rescue.

Clearly, the exploration task can be performed more efficiently
when more than one agent is available. But what is the best dis-
tributed exploration algorithm to employ? Specifically, how can the
availability of a team of agents be best exploited to reduce explo-
ration time? Search algorithms that generate optimal solutions, such
as A∗ (and its distributed variants [8]), are only feasible for the ex-
ploration of relatively small regions. In the case of larger regions
different approaches are necessary.

To understand the complexity of this problem, we can relate it
to the formal models used in reinforcement learning and planning.
Even in the case that the agents have full communication, it is an in-
tractable planning problem: a partially observable Markov Decision
problem (POMDP) in which the observable state consists of the ex-
plored region of the map and the hidden state is the unexplored area.
The optimal exploration policy can, in theory, be obtained by form-
ing a large MDP over the belief states of the POMDP and solving
it by dynamic programming [5]. Unfortunately the number of be-
lief states is infinite and so approximate methods are needed. When
agents have limited communication, each one then has an even more
difficult decision problem: the hidden state consists not only of the
unexplored map area, but also the beliefs and plans and other agents.
While parts of this hidden state could be ignored in the planning pro-
cess, this may severely limit performance. For example, if agents do

not account for each other’s plans, effective cooperative behaviour
will not result.

Many related multi-agent approaches, such as [7] and [3], are as-
suming that agents are always in communication range. In contrast,
we consider algorithms that do not make such an assumption. In other
related work, Balch and Arkin [1] studied the impact of commu-
nationon distributed exploration, but the exploration technique used
was very basic.

In this paper we investigate different distributed exploration al-
gorithms and evaluate their performance under different conditions
such as varying sensor and communication ranges, and the availabil-
ity of prior knowledge of the map. We focus our study on two types of
approaches: one based on behavioural agent technology where agents
are pulled (or repelled) by various forces, and another where agents
follow a approximate planning approach that is based on dynamic
programming [2].

Our results show that heuristic behavioural methods can do as well
if not better than approximate planning approaches, unless the plan-
ning uses a very sophisticated model, i.e., avoids assumptions or ap-
proximations.

The paper is structured as follows. We first describe the two-
dimensional maze environment that we used to evaluate our ap-
proaches. We then discuss the individual algorithms and variations.
This is followed by a presentation of the empirical evaluation and re-
sults. Finally, we conclude the paper with a summary and an outlook
to future work.

2 The Simulator

We chose a two-dimensional grid world of size 50x50 as the envi-
ronment in which to evaluate the various exploration approaches (see
Figure 1 for a small example). Each cell in the grid world is either
clear or filled (i.e., a wall cell). The agents are able to move horizon-
tally or vertically to an adjacent clear cell, but are not permitted to
enter wall cells.

The agents act simultaneously, but in a synchronized fashion. Each
turn consists of three phases during which each agent moves, scans
the surroundings, and possibly communicates with other agents.
When agents scan the surroundings, they receive information on the
state of the four cells adjacent to them. Communication is mostly
used to exchange information on the maze (i.e., exchange partial
maps of the maze), but can also be used to communicate move in-
tentions. Agents are able to communicate virtually simultaneously.

An agent’s beliefs are represented by a grid representing the map
where each cell could take one of three values (unknown, clear or
filled). An agent also has a list containing the positions of other
agents (if known) and possibly their plans.

3 Exploration Algorithms

As stated before, precise search and planning approaches break down
in the distributed exploration task as soon as the maze reaches a rea-
sonable size. This section presents various heuristic algorithms for
distributed exploration that are feasible also for larger mazes: a very
straight-forward greedy technique, an approach based on behavioural
agents, and an approach based on approximate dynamic program-
ming.

3.1 Simple Agent

This agent is very simple in that it moves towards the closest cell it
does not yet know about. When it finds out about this cell (either by
scanning it or another agent communicating with it) it will change to
move towards the next closest unknown cell.

3.2 Behavioural Agent

The behavioural agent is based on a schema architecture consisting
of two behaviours. One attracts the agent towards unexplored areas
while the other tries to keep the agents apart, which causes them
to scan different areas. These behaviours are determined by assign-
ing heuristic values to every cell (indexed by n) based on whether it
is known or unknown, and (if known) whether it is occupied by an-
other agent. Known cells are assigned a large negative value (penalty)
if occupied by another agent, and zero otherwise; we will call this
value p(n). An exploration bonus [6] term b(n) is also added, tak-
ing a small positive value for unknown cells (and zero for known
cells). These values are propagated back towards the agent to obtain
a heuristic exploration value V (n) of each cell n.

V (n)← b(n) + p(n) + γ ∗
∑

{n
′∈neighbours of n}

V (n′) (1)

where γ is a set decay rate. The computation of this heuristic ex-
ploration value function starts with the cells furthest away and only
one iteration is carried out.

This results in a system where the agents attempt to spread them-
selves across the map while also moving towards unexplored areas.
Unfortunately this system can result in deadlock since the repulsion
between agents can cause them to become trapped in dead ends they
have already scanned. To get around this dead ends are marked with
a value of−∞ after the above propagation function has been applied
but before the agent moves. This prevents an agent from moving into
areas where it is not possible to acquire new data. This fix removed
most of the problems resulting in deadlock situations. However, it
was still possible in very specific circumstances for the agents to get
themselves locked into loops where they moved in circles relative to
each other. To prevent this situation from occurring one of the agents
was set to ignore other agents. This results in a system where repul-
sion cannot cause deadlock, since at least one agent will always be
unaffected. Also, since this agent will continue moving its repulsion
force should influence other agents stuck in loops and cause them to
move on.

3.3 Approximate planning (AP)

The approximate planning (AP) agent propagates values of squares
using a more theoretically justifiable approach (dynamic program-
ming) that is known to yield optimal polices if all assumptions are

met. For each cell it associates an immediate reward r(n) equal to
the number of additional cells, that would become known if the agent
could move instantly to the new location1 In calculating this reward
we assume that all unknown cells will be empty (so the sensors will
scan to their maximum range except when obstructed by a known
filled cell). These rewards are then propagated by repeated applica-
tion of the Bellman backup operator:

V (n)← r(n) + γ max
{n

′∈neighbours of n}

V (n′) (2)

where γ is a set decay rate. Regardless of initialisation of V (n),
this dynamic programming value iteration process converges to the
expected discounted return for each cell, where the exploration bonus
is interpreted as the immediate reward in each cell.

Each agent plans its next move by greedily choosing a path
through cells with greatest value. The agents plan ahead for 10
moves.

The AP agent can be extended to take account of other agents’ in-
tentions by using their plans to affect the values it assigns to cells.
When one agent communicates its intention to scan a cell, the value
to a different agent of scanning that cell is decreased. (It isn’t typ-
ically set to zero because the agents’ plans may change or the cell
may actually be obscured, by an unseen wall.) By using this sys-
tem, agents within communication range should be able to form joint
plans that avoid doing duplicate work.

4 Evaluation Scenarios

Figure 1. Different types of maps from left to right, Spacious, Medium,
Narrow, Empty

We have evaluated the above exploration algorithms on 3 types
of maze that have been randomly generated: spacious, medium, and

1 Note that this may be an overestimate of the real “value of information” for
visiting that cell, because some of the additional cells would have become
known in moving to the new location.

narrow. The main difference between these mazes is the ratio of clear
versus wall cells. We also chose a number of manually created mazes
to cover some extreme cases.

The first type of map (“spacious”) has relatively few walls and
plenty of empty space. The second type (“medium”) has more walls
but still quite a lot of empty space. The third type (“narrow”) are
maps with long winding walls and corridors. There are also no loops
in the map so agents must backtrack to go down different branches.
The extreme cases consisted of a map with nothing but a wall sur-
rounding the edges, a grid shaped map and a map with a single circuit
around the edge.

In order to perform the testing 2 sets of maps were generated. Each
set consisted of ten 50x50 maps of each type with starting positions
of agents fixed. The first set was used to determine how the param-
eters of the agents should be set. The second set was used for test-
ing. The parameters were set experimentally by using the ones that
minimised the average number of turns taken per map. The finishing
criterion for each run was set as the point where each cell on the map
that could be scanned had been scanned by at least one agent.

Each maze was explored by teams of four agents. Each team
was homogeneous, i.e., consisted of agents of one type. Each agent
started the exploration in one of the four corners on the maze. The
performance of the agent teams was measured in terms of the average
proportion of the mazes covered in a given number of steps.

The agents were tested over a number of different communication
and sensor ranges. Also, both the behavioural agent and the approx-
imate planner were tested with and without prior knowledge of the
maze structure (the agents still had to explore all cells in both cases).
In both agents the propagation functions were adapted so that val-
ues would not propagate through wall cells that the agent was aware
of due to prior knowledge. In the case of the approximate planning
agent the evaluation function was adapted to take account of the fact
that the agent will now know exactly how many cells will be scanned
when an agent is in a particular space since it knows when a sensor
is going to hit a wall.

5 Evaluation Results

5.1 Results on Spacious Mazes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900

Simple Agent
Behavioural Agent

AP Agent
AP Agent with No communication of intentions

Figure 2. Average proportion of spacious mazes covered as a function of
moves

In the case of the spacious mazes there was no statistically sig-
nificant difference (using standard error) in the performance of be-
havioural agent teams and the AP agent teams in terms of the time
taken to scan the complete map. Also there was no significant dif-
ference in performance between agents using prior knowledge of the
maze and agents having no such knowledge. As expected, the simple
agent performs drastically worse from very early on. Its performance
also varies significantly due to a ”sticking” effect where two agents
on the same cell that can communicate will effectively become stuck
together since they will both have the same belief about the world
and hence both make the same decisions.

The AP agent without communication of intentions performs sig-
nificantly worse for communication ranges of about 5 upwards,
partly because it also suffers from this sticking effect.

5.2 Results on Medium Mazes

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 200 300 400 500 600 700 800 900 1000

Simple Agent
Behavioural Agent

AP Agent
AP Agent with No communication of intentions

Figure 3. Average proportion of medium mazes covered as a function of
moves from move 200 (below this point they are roughly the same except for
the Simple agent which is noticeably worse from about move 50 onwards)

In the case of the medium mazes the team of simple agents was
clearly outperformed across all communication ranges by all other
teams. Again there was no significant difference between the perfor-
mance of the behavioural agents and the AP agents in the time taken
to scan the complete maze. Also, prior knowledge of the maze does
not seem to play a significant role, except for the one AP agent case
above.

5.3 Results on Narrow Mazes

Interestingly, for the Narrow Mazes the behavioural agent team per-
formed significantly better than the AP agents. From Figure 4 it can
be seen that at times the behavioural team has as much as a five per-
cent lead over the other teams in terms of the amount of map covered
as a function of time. Also, there is no significant difference between
the performance of the simple agent team and the AP agent team with
no communication of intentions. In this case the use of prior knowl-
edge has a significant impact on the performance of the AP agent
team. This is probably due to the fact that normally the AP agents as-
sume that all unscanned cells are empty which in the case of this type
of maze is probably not true. By using prior knowledge the agent is

Figure 4. Average proportion of narrow mazes covered as a function of
moves starting from move 200 (below this point the graphs are roughly the

same)

able to accurately calculate the exploration bonuses for these sorts of
maps.

5.4 Results on Extreme Cases

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600

Simple Agent
Behavioural Agent

AP Agent
AP Agent with No communication of intentions

Figure 5. Proportion of Empty mazes covered as a function of moves

In the case of a completely empty map (Figure 5) the AP team
clearly performed better than the other teams of agents. In fact the
AP’s performance was not much behind the lower bound for the map
(calculated by the fact that it is not possible for a team of agents to
scan more than 12 cells per turn after the first) up until about time 200
where its performance started to tail off. The reason the behavioural
team falls behind may be due to the fact that since one of the agents
ignores other agents symmetry is broken resulting in lower perfor-
mance. The AP team also has the advantage that in nearly all cases
their assumption about their sensors will hold since the only filled
cells are around the edge.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 2 4 6 8 10 12 14 16 18 20

Simple Agent
Behavioural Agent

Behavioural Agent with Prior knowledge
AP Agent

AP Agent with Prior Knowledge
AP Agent with No communication of intentions

Figure 6. Average time taken to cover 90% of a Spacious map as a
function of Sensor Range

 150

 200

 250

 300

 350

 400

 450

 500

 0 2 4 6 8 10 12 14 16 18 20

Simple Agent
Behavioural Agent

Behavioural Agent with Prior knowledge
AP Agent

AP Agent with Prior Knowledge
AP Agent with No communication of intentions

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 2 4 6 8 10 12 14 16 18 20

Simple Robot
Behavioural Agent

Behavioural Agent with Prior knowledge
AP Agent

AP Agent with Prior Knowledge
AP Agent with No communication of intentions

Figure 7. Average time taken to cover 90% of a Medium map as a function
of Sensor Range

5.5 The Effect of Sensor Range

As could be expected, increasing sensor range improved performance
for all agents as shown in figures 6 and 7. In the cases of the Medium
Mazes and the Narrow Mazes typically the agents performance failed
to improve when the sensor range was above about 5 since there will
be so few points on the map where the agents will use their full sensor
range.

6 The Effect of Communication Range

From Figure 8 it can be seen that Communication range has a signif-
icant impact up to 10 cells at which point it quickly decreases. This
trend holds for the other two types of maze as well. This is proba-
bly due to the agents acting as ”relays” between each other to allow
one agents belief to be communicated to other agents that are further
away than the communications range. Once this reaches about 1/5
of the width of the map the agents will be within communications
range of each other regularly so each agents belief about the world
will be almost the same. By the time the range reaches 1/2 of the

 200

 400

 600

 800

 1000

 1200

 1400

 1600

-10 0 10 20 30 40 50 60 70 80

Simple Agent
Behavioural Agent

Behavioural Agent with Prior knowledge
AP Agent

AP Agent with Prior Knowledge
AP Agent with No communication of intentions

Figure 8. Average time taken to scan 100% of a Spacious map as a
function of Communication Range

map it is almost the same as if it were infinite.

7 Discussion

Distributed exploration is an example of a Partially Observable
Markov Decision Problem (POMDP). The partially observability
arises because certain state information (the map data and other
agents’ states) is hidden from each decision-making agent. It is, in
theory, possible to obtain the optimal policy for a POMDP [5] by
transforming it into an MDP over belief states, then solving the MDP
by dynamic programming [2]. In practice, the size of the belief state-
space is very large or infinite, and so approximate solution methods
are required, even if there is no multi-agent aspect to the problem.

Therefore approximate planning in which we make various simpli-
fying assumptions, to make the planning process tractable, must be
considered. In this case, we have made several simplifying assump-
tions: we have not planned over every possible future observation,
instead assuming that the planned path will be passable. Similarly,
our planning ignores possible interference from other agents that are
beyond communication range (although it does form joint plans with
any agents that are in range, through communication of intentions).
Furthermore, the planning mechanism is greedy (it does not consider
all options) and the time horizon is limited (10 steps). Together these
assumptions (and several others) led to acceptable computation time
for the planning mechanism, but affect optimality of the resulting
behaviour. Hence the possibility arises that a heuristic method could
outperform approximate planning.

The experimental results did indeed show better performance from
the simpler (and faster) heuristic approach. While the ideal solution
remains the exact optimal policy that would be obtained by planning
over belief states, it is worth asking the questions: (i) How many of
the planning assumptions/approximations would have to be reversed
in order to exceed the heuristic performance? (ii) If optimal plan-
ning is intractable for a “toy-problem” like this, how feasible it is to
obtain near-optimal approximate planning in a larger domain? The
answers to these questions will be application-specific, but it may
be that in many complex, partially observable domains, reactive be-
haviours (whether heuristic or learnt) are the only feasible approach
for multi-agent cooperation.

It is also worth noting that the relative performance of AP varied
significantly across the different types of scenario; this may indicate

that some of the approximations made are less erroneous in some
scenarios than in others.

From the results over communication ranges it can be seen that
while to start with the increased communication range had a very
significant impact in the case of all agents. However, the impact of
this quickly tailed off to the point where being able to communicate
over a fraction of the map was almost as good as being able to com-
municate over all of it.

8 Conclusion

In summary, we presented a number of heuristic techniques for dis-
tributed exploration and evaluated them on a wide range of scenarios
and under varying conditions. The results show that in most cases
the simpler behavioural agent teams perform at least as well, if not
better, than the teams based on approximate planning and dynamic
programming. The results can also be applied to distributed search
tasks or optimisation problems that are analogous to exploration.

For multi-agent problems that have a large element of partial ob-
servability (about the environment state or other agents’ beliefs) it
may be impractical to implement an approximate planning solu-
tion: heuristics or learnt/optimised behaviours may be more appro-
priate. Nevertheless it is useful to approach the problem from the
perspective of sequential decision theory (and the POMDP model)
in order to reason about effective behaviour: for example even our
heuristic behaviours keep track of a belief distribution (indicating
known/unknown areas of the map).

The effective multi-agent exploration obtained with the heuristic
method makes use of repulsion between nearby agents within sen-
sor/communications range (this force could also be seen as defining
a potential field). In non-physical environments (e.g. data mining)
the same approach could be used if an appropriate distance measure
is available. Therefore our exploration algorithm has properties in
common with Tabu search [4].

REFERENCES
[1] Tucker Balch and Ronald C. Arkin, ‘Communication in reactive multia-

gent robotic systems’, Auton. Robots, 1(1), 27–52, (1994).
[2] Richard E. Bellman, Dynamic Programming., Princeton University

Press., 1957.
[3] Wolfram Burgard, Mark Moors, and Frank Schneider. Collaborative ex-

ploration of unknown environments with teams of mobile robots.
[4] F. Glover and M. Laguna, Tabu Search, Kluwer, 1997.
[5] J. J. Martin, Bayesian Decision problems and Markov Chains, John Wi-

ley, New York, 1967.
[6] R. Sutton, ‘Integrated architectures for learning, planning and reacting

based on approximating dynamic programming’, in Proceedings of the
Seventh International Conference on Machine Learning. Morgan Kauf-
mann, San Mateo, CA, (1990).

[7] Brian Yamauchi, ‘Frontier-based exploration using multiple robots’, in
Proceedings of the second international conference on Autonomous
agents, pp. 47–53. ACM Press, (1998).

[8] Makoto Yokoo and Toru Ishida, ‘Search algorithms for agents’, in Multi–
Agent Systems, ed., Gerhard Weiß, 165–199, MIT Press, Cambridge,
Massachusetts, (1999).

