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Abstract. The major hypothesis that we will be prove in this paper
is that unsupervised learning techniques of feature weighting are
not significantly worse than supervised methods, as is commonly
believed in the machine learning community.
This paper tests the power of unsupervised feature weighting
techniques for predictive tasks within several domains. The paper
analyses several unsupervised and supervised feature weighting
techniques, and proposes new unsupervised feature weighting
techniques. Two unsupervised entropy-based weighting algorithms
are proposed and tested against all other techniques. The
techniques are evaluated in terms of predictive accuracy on unseen
instances, measured by a ten-fold cross-validation process. The
testing has been done using thirty-four data sets from the UCI
Machine Learning Database Repository and other sources.
Unsupervised weighting methods assign weights to attributes
without any knowledge about class labels, so this task is
considerably more difficult. It has commonly been assumed that
unsupervised methods would have a substantially worse
performance than supervised ones, as they do not use any domain
knowledge to bias the process. The major result of the study is that
unsupervised methods really are not so bad. Moreover, one of the
new unsupervised learning method proposals has shown a
promising behaviour when faced against domains with many
irrelevant features, reaching similar performance as some of the
supervised methods.

1 INTRODUCTION

A major problem in predictive tasks within instance-based
algorithms is to find out which are the relevant features to be taken
into account. When experts are available in a particular domain,
these tasks could be easier. However, in general, when there is no
expertise available, some automatic methods should be used. Many
methods have been proposed and used in the literature trying to
establish the relevance of attributes. One of this kind of techniques
is feature weighting [1]. Feature weighting consists in the
assignment of an importance degree to each one of the available
features describing a domain or process. Normally weights are
scaled in the range [0..1] or in an equivalent range. Thus, features
with lower weights are the less important ones, while high weights
mean very important features.
   But there is an added problem to evaluate how well the different
feature weighting techniques, and in general, the feature selection
algorithms work. They must be evaluated in terms of the
performance of a task. In this paper, the predictive task accuracy is

used. Even making this decision, there is another key point. Which
predictive method should be used? In this study, instance-based
learning algorithms (IBL), and the nearest neighbour classifier will
be used because they are good techniques to make predictions
based on previous experience. In IBL algorithms, similarity is
commonly used to decide which instance is closest to a new
problem. Thus, this similarity criterion for predictive tasks will be
used to evaluate the different weighting techniques in the
experimental testing.

This paper aims at analysing and studying the performance of
several commonly used supervised feature weighting techniques
against some unsupervised feature weighting methods. Two new
unsupervised weighting techniques are proposed. The techniques
are evaluated in terms of predictive accuracy on unseen instances,
measured by a ten-fold cross-validation process. Of course, the
label class is not taken into account to find out the weights within
the unsupervised methods, but it is for the predictive accuracy
computation.

In recent years, many researchers are focusing on feature
weighting. Feature weighting is a very important issue. It is
intended to give more relevance to those features detected as
important, and at the same time, it is intended to give lower
importance to irrelevant features. Most general methods for feature
weighting use a global scheme. It means to associate a weight to all
the space of the feature. If a continuous attribute is present, a
discretization pre-process is suggested to allow making a weight
computation according to its interval values and its correlation with
the value class. The importance of one feature will be determined
by the distribution of the class values for that feature. Some
research has been done such as the mutual information technique
proposed in [20], the results reported by Mohri and Tanaka [15] of
his QM2 method, and Creecy et al. [4] about their introduced
cross-category feature importance (CCF) method, and other
research in [11]. On the other hand, unsupervised weighting
methods assign weights to attributes without any knowledge about
class labels, so this task is considerably more difficult [6], [7].
Also, it has commonly been assumed that unsupervised methods
would have a substantially worse performance than supervised
ones, as they do not use any domain knowledge to bias the process
[7]. To confirm this hypothesis, a performance analysis among
several supervised and unsupervised methods have been done. In
the unsupervised feature weighting literature, we have only found
the work done by [18] on a gradient descent technique and feature
selection approach [6] on unsupervised entropy-based method. The
new unsupervised methods proposed derive from the last cited



method. Some similar methods to those proposed in this paper can
be found in literature, where underlying idea is to remove or add
one feature at a time and use a heuristic to evaluate the new state of
the order of data, as proposed Maron and Moore in [8].

   The paper is organized in the following way. Some supervised
weighting techniques are described in Section 2. Section 3 outlines
main features about unsupervised global weighting algorithms,
including the new ones proposed. Section 4 shown the
experimental set-up and the results comparing the performance of
all feature weighting. Finally, in Section 5 conclusions and future
research directions are outlined.

2 SUPERVISED FEATURE WEIGHTING
There is some research in supervised feature weighting such as
those by [4, 9, 15, 16, 20]. In this study, global and local
supervised methods showing the best performance have been
selected for the comparison with unsupervised ones. These
methods are the Information Gain methods (IG [20], IG-DB [5]),
the Feature Projection method (PRO) [2], the RELIEF-F method
(RELF) [12], the global Class Distribution weighting method
(CDWG) [8] the Correlation-Based methods (CD, VD, CVD) [16],
and the local methods (CDWL [8], VDM [19] and EBL [16]). Due
to space constraints they are nor detailed here, but further details
can be found in the references.

3 UNSUPERVISED FEATURE WEIGHTING

Feature selection and feature weighting methods in supervised
domains have been thoroughly discussed in the literature, (see [20]
and [6]). On the other hand, very little work has been done for
unsupervised domains, probably due to the assumed hypothesis
that their performance would necessary be substantially worse than
the supervised method performance. The two methods found in the
literature, in addition to the new methods proposed are detailed in
this section.

3.1 Gradient-Descent Technique (GD)

The proposal of Shiu et al. in [18] consists mainly on defining a
feature-evaluation index E defined as:
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Where N is the number of instances in the data set. )1(
pqSM  is the

similarity between instances p and q evaluated with weight 1 for all
the attributes and )(w

pqSM  is the similarity evaluated with weight
attributes different from 1. Noticing that the feature-evaluation
E(w) will gradually become zero when )( w

pqSM  → 0 or 1, the main
idea is to find a weight set so that the feature-evaluation function
attains its minimum.

The method uses gradient-descendent technique to minimize E(w).
The change in wj (i.e. ∆wj) is computed as:
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where η is the learning rate, and for the computation of ∂E/∂wf the
following expressions are used:
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pqSM  is the similarity between instances p and q evaluated with

all weights equal to 1. )( w
pqSM  is the similarity between instances p

and q evaluated with the weights computed in the previous step. α
and η are positive parameters between 0 and 1. χ2 is the distance
between values of attribute j. N is the number of instances in the
data set . The stopping condition of the algorithm is that E becomes
less than or equal to a given threshold or until the number of
iterations exceeds a certain predefined number. The prospective
result is that, on the average, the similarity values { )(w

pqSM , p=1,N,

q<p} with trained weights are closer to 0 or to 1, than those
without trained weights such as { )1(

pqSM , p=1,N, q<p}.

3.2 Unsupervised Entropy-Based methods

In [6], the authors present a feature selection method for
unsupervised domains based in entropy computations. Starting
from this approach (UEB), we made an extension to obtain two
feature weighting algorithms (UEB-1 and UEB-2), trying to obtain
a superior performance assigning real-valued weights instead of
binary-value weights. The underlying idea is that data have orderly
configurations if they have distinct clusters, and have disorderly or
chaotic configurations otherwise [6]. From entropy theory, it can
be stated that entropy is lower for ordered configurations, and
higher for disordered configurations. The feature selection method
is based on the observation that removing an irrelevant feature
from the feature set may not change the underlying concept of the
data, but not so otherwise. Following this idea, the first step consist
in compute the entropy between two instances:

)1(log)1(log 22 SSSSE −−−−−−−−==

where S is the similarity measure based on a distance concept, and
assumes a very small value (close to 0.0) for very close pairs of
instances, and a very large (close to 1.0) for very distant pairs. For
the entire data set of N instances the entropy measure is given as:
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where Sij is the similarity value between the instance i and the
instance j normalized to [0,1]. When all features are numeric or
ordinal, the similarity of two instances is:

ijD
ij eS *α−−== , where Dij is the distance between the instances i and

j. The value of α is computed automatically by 
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D  is the average distance among all the instances. Euclidean
distance is used to compute the distance Dij. If all the attributes are

nominal, the similarity between two instances is: 
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where 
jkik xx == is 1 if xik equals xjk and 0 otherwise, and M is the

number of features.

3.2.1 Unsupervised Entropy-Based method 1 (UEB-1)

The algorithm computes the entropy of data by removing a feature.
For M features this is repeated M times. Features are ranked in
descending order of relevance by finding the descending order of
the entropy after removing each of the M features one at a time.
Feature selection algorithms focuses on deciding if one attribute is
relevant or not. On the other hand, feature weighting algorithms
focus on giving a relevance measure for each attribute. In our
method (UEB-1) that is the first extension of the UEB algorithm, to
obtain feature weights instead of feature selection, the approach
takes the entropy values computed for each one of the attributes,
and applies a scaling process to assign weights. To obtain weights
in [0,1] range for each attribute k, the following computation is
done:
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In Figure 1, an outline of the algorithm is described. CompEnt(i)
computes the entropy of the data after discarding the ith feature.

P = Entropy values for M features
For i = 1 to M

Pi = CompEnt(i)
Endfor
For i = 1 to M
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         Endfor
Figure 1 .   UEB-1 Algorithm outline.

3.2.2 Unsupervised Entropy-Based method 2 (UEB-2)

The second extension (UEB-2) performs a wrapper approach in the
sense that implements an update of weights in each step of the
cycle taking into account the last values of computed weights.
Taking this into account, UEB-1 can be seen as a filter approach.
In UEB-2, an initial weight of 0.5 is assigned to each attribute and
the entropy for the entire database is computed. Then, it computes
the new entropy value after removing one attribute at a time. If the
new entropy value after removing one attribute is less than the
entropy of the entire database, then the weight of that attribute is
decreased by 0.1. If the new entropy value after removing one
attribute is greater than the entropy of the entire database, the
weight of that attribute is increased by 0.1. This
increasing/decreasing parameter was set to 0.1 after an empirical
study. This cycle is performed several times allowing the weights
to reach a minimum or maximum value in the [0,1] range. After an
empirical evaluation, this parameter was set to 6. An outline of the
algorithm is presented in Figure 2. Total_Entropy is the entropy for
the entire database taking into account all the attributes.
CompEnt(i) computes the entropy of the data after discarding the
ith feature.

For i = 1 to M
wi = 0.5

Endfor
PT = Total_Entropy
For j = 1 to 6

For i = 1 to M
Pi=CompEnt(i)
If Pi< PT then

Wi=Wi-0.1
else

Wi=Wi+0.1
Endif

Endfor
 PT = Total_Entropy

Endfor

Figure 2 .   UEB-2 Algorithm outline.

Table 1.   Major properties of databases considered in the experimentation
DB SN #I C OD NOD #C %M

Air pollution AP 365 5 0 0 4 0
Annealing AN 798 6 29 3 6 64.9%
Audiology AD 200 0 8 61 24 0
Australian AS 690 6 4 4 2 0
Auto AU 205 15 0 8 7 0.004
Bands BA 512 20 0 20 2 4.87
Breast Cancer BC 699 0 9 0 2 0
Bridges BR 108 3 0 8 3 0.06
Cleveland CL 303 5 2 6 2 0
Contracept MC CM 1473 2 4 3 3 0
Credit CR 690 6 0 9 2 0.64%
Dermatology DE 366 1 0 33 6 0
Ecoli EC 336 7 0 0 8 0
Flag FL 194 3 7 18 8 0
German GE 1000 7 0 13 2 0
Glass GL 214 9 0 0 7 0
Hayes-Roth HR 132 0 0 4 3 0
Hepatitis HE 155 6 0 13 2 5.7
Horse-Colic HC 301 7 0 16 2 30
Ionosphere IO 351 34 0 0 2 0
Iris IR 150 4 0 0 3 0
LED LD 300 0 0 7 10 0
LED-17 LI 200 0 0 24 10 0
Liver  Disord. LD 345 6 0 0 2 0
Machine MA 209 6 0 0 8 0
Pima In. Diab. PI 768 8 0 0 2 0
Post-Operative PO 90 1 7 0 3 0
Soybean(large) SL 307 0 6 29 19 21.7
Vehicle VE 946 18 0 0 4 0
Votes VO 435 0 0 16 2 7.3
Waveform WF 300 21 0 0 3 0
Waveform-40 WA 300 40 0 0 3 0
Wine WI 178 13 0 0 3 0
Zoo ZO 90 0 0 16 7 0

4 EMPIRICAL EVALUATION

To test the performance of unsupervised feature weighting
methods, a nearest neighbour classifier was implemented.
L’Eixample similarity measure [17], and CAIM discretization
method [13] have been used when required in order to calculate
feature weights or similarity between attribute value pairs. This
selection was made on the basis of preliminary performance tests
on similarity measures and discretization methods. Anyway,
similar results were obtained with other discretization and



similarity approaches, which are not described here, due to space
constraints.

We did not directly compare UEB-1 and UEB-2 with UEB itself
due to the fact that the last one is a feature selection method and we
propose feature weighting algorithms.

Table 2.    Accuracy results with no weights (NW), global and local supervised weighting schemes and unsupervised weighting schemes.
NW IG IG-DB PROJ RELF CDWG CD VD CVD CDWL VDM EBL GD UEB-1 UEB-2

AP 91.17 99.47 99.47 99.75 87.61 95.58 98.67 98.39 100.00 95.31 97.25 99.19 91.70 64.43 77.10
AN 91.48 92.47 90.60 92.85 92.09 91.48 94.00 91.35 92.97 90.37 93.24 94.25 91.97 83.75 90.97
AD 77.50 80.00 68.50 78.00 72.50 78.00 78.00 77.50 78.00 77.00 77.50 76.00 71.00 76.50 72.50
AS 82.03 82.90 82.03 83.19 82.90 82.90 80.58 78.41 79.86 82.90 81.59 82.75 82.61 75.80 81.16
AU 75.33 80.79 77.40 84.72 75.29 75.33 73.86 77.77 81.24 75.83 80.83 77.46 76.79 35.01 50.21
BA 76.30 78.52 71.30 78.33 77.22 76.48 70.93 73.89 78.70 76.48 81.48 80.37 71.67 73.70 69.44
BC 95.90 95.04 95.92 96.10 95.49 96.12 94.40 94.44 94.61 96.12 96.32 96.76 94.40 94.19 92.69
BR 86.03 94.79 94.79 91.46 87.69 86.03 90.69 89.59 94.03 84.69 89.79 92.56 86.69 90.13 88.55
CL 75.86 77.52 78.51 75.88 75.51 75.84 74.19 76.86 74.89 75.84 77.81 77.18 78.46 71.54 75.86
CM 45.01 45.28 45.89 45.14 44.74 45.21 45.35 45.89 45.35 44.33 46.71 45.89 44.60 44.81 44.40
CR 81.16 82.75 81.45 82.32 82.61 82.46 80.14 79.71 80.00 82.46 81.30 82.17 80.14 78.55 81.45
DE 94.23 95.28 83.18 95.13 95.83 94.23 97.05 96.22 95.85 93.68 92.61 93.16 92.05 57.65 91.82
EC 80.49 80.84 80.54 83.26 80.49 80.49 80.79 78.41 79.67 79.58 81.75 80.58 81.66 59.74 80.49
FL 49.21 60.66 65.47 60.60 58.04 51.32 48.80 55.96 61.11 49.24 64.83 64.30 53.44 36.54 45.84
GE 70.50 69.90 66.70 71.10 70.50 70.70 66.40 70.40 69.20 70.70 72.50 70.80 66.60 63.20 69.80
GL 72.97 80.96 75.44 74.77 73.44 73.38 71.42 73.44 77.15 76.72 77.27 73.52 73.52 66.44 52.57
HR 70.62 70.62 70.62 73.49 72.72 70.62 70.62 70.62 70.62 78.21 85.03 85.03 72.26 76.56 70.62
HE 79.60 75.57 78.24 78.86 80.82 78.93 80.05 78.86 76.42 78.93 81.35 84.86 75.09 82.20 79.60
HC 74.22 79.36 74.77 76.86 78.03 75.19 78.74 80.63 76.94 75.19 78.46 79.90 71.38 73.60 72.19
IO 90.87 91.72 90.57 91.14 90.87 91.14 91.71 91.44 92.00 91.14 93.44 94.87 90.86 77.48 87.73
IR 94.00 94.67 95.33 94.67 94.67 95.33 95.33 95.33 94.67 94.67 96.00 96.00 93.33 92.67 94.00
led 66.67 68.00 67.33 66.00 68.00 66.67 65.67 65.00 68.00 66.67 66.00 64.67 67.67 66.00 66.67
LI 38.00 62.50 47.00 54.50 64.00 38.00 60.50 57.00 57.00 38.00 53.50 55.50 36.00 11.50 38.00
LD 64.85 64.57 63.18 63.41 64.83 65.19 66.42 64.04 65.56 65.19 69.24 69.85 58.76 61.79 63.54
MA 71.55 69.53 72.05 67.33 71.15 71.05 67.53 68.13 68.53 71.65 72.58 72.68 68.83 63.87 69.67
PI 71.35 69.74 70.02 71.19 71.21 70.29 66.14 70.14 69.01 70.29 73.17 72.67 70.47 62.01 69.32
PO 53.33 56.67 57.78 56.67 56.67 53.33 51.11 66.67 52.22 56.67 62.22 63.33 55.56 56.67 53.33
SL 91.07 91.50 71.73 93.25 92.68 91.07 92.84 91.21 91.37 90.47 92.97 92.97 90.04 88.71 89.74
VE 68.41 68.19 70.21 68.91 68.41 68.06 58.37 67.83 67.35 68.29 69.60 69.50 66.74 46.22 57.91
VO 93.58 95.16 95.05 97.04 96.10 94.52 96.10 95.16 94.63 94.52 96.74 95.88 94.63 88.52 92.64
WF 71.95 76.68 75.77 76.17 73.71 74.42 69.12 69.54 72.92 74.34 73.47 73.19 75.82 43.13 61.80
WA 69.67 81.33 72.67 79.67 71.00 71.00 59.67 72.00 79.00 71.33 81.33 81.67 73.00 32.67 72.33
WI 96.22 97.28 97.98 97.87 96.92 95.15 97.06 96.69 96.11 96.11 99.52 97.87 95.74 74.17 89.50
ZO 96.09 96.09 97.09 98.09 97.09 96.09 97.00 98.00 96.09 97.00 95.09 96.09 96.09 86.09 96.09
Av. 76.68 79.60 77.19 79.34 78.26 77.11 76.74 78.13 78.56 77.35 80.37 80.40 76.16 66.35 73.22
SD 14.92 13.37 13.74 14.01 13.03 14.99 15.38 13.50 13.84 14.88 12.93 13.26 14.97 19.41 15.90

Table 3.   Accuracy results over artificial databases HR15 and IR15
NW IG IGDB PROJ RELF CDWG CD VD CVD CDWL VDM EBL GD EUB11 EUB2

HR 70.62 70.62 70.62 73.49 72.72 70.62 70.62 70.62 78.21 70.62 85.03 85.03 72.26 76.56 70.62
HR15B 45.33 68.24 64.45 47.80 52.20 46.15 69.01 68.19 63.68 44.62 68.35 76.65 38.52 26.48 45.33

IR 94 94.67 95.33 94.67 94.67 95.33 95.33 94.67 94.67 95.33 96.00 96.00 93.33 92.67 94.00
IR15C 78.83 95.33 93.33 94.67 92.04 84.13 96.00 96.67 95.33 85.46 94.67 95.33 75.50 27.79 95.33

Although for benchmark data used, the class information is
know, the class label was hidden in the unsupervised algorithms
in order to create an “artificial” unsupervised domain but
keeping available the label to evaluate the methods' performance
afterwards. Next, some tests were carried out to evaluate the
generalisation accuracy using both supervised global and
unsupervised global weighting techniques, trying to show in an
empirical way that the generalisation accuracy can be
maintained when using unsupervised methods. Thus, the goal
was to reject the commonly agreed hypothesis that the
unsupervised weighting method performance is substantially
worse than supervised methods' performance. All tests were
performed with thirty-four databases selected from the UCI
database repository [3] and other sources. Detailed description
of the databases is shown in Table 1, where short name (SN),
number of instances in each database (#I), number of continuous

attributes (C), ordered discrete attributes (OD), not ordered
discrete attributes (NOD), number of classes (#C) and missing
values percentage (%M.) are depicted. To verify the accuracy of
the nearest neighbour classifier, a test by means of a 10-fold
cross-validation process was implemented. The average
accuracy over all 10 trials is reported for each data test and for
each weighting scheme. The highest accuracy achieved in each
data set is shown in boldface in Table 2. Av. is the average
databases and SD is the standard deviation across all databases.
Afterwards, to analyse the performance of the unsupervised and
supervised weighting methods, when faced against databases
with many irrelevant features, the following experiment was
done. Two new databases were artificially created. Iris database,
which has all four continuous attributes, was selected and was
expanded with fifteen irrelevant continuous attributes. Values
for these attributes were randomly generated in the range [0,10].



A similar approach was implemented to the Hayes-Roth
database, which has only discrete attributes. Fifteen binary
irrelevant attributes were added, and these values were randomly
selected between 0 and 1. Results are detailed in the Table 3.

5 CONCLUSIONS AND FUTURE WORK

Main conclusions after the analysis of the performance among
all weighting schemes are that, in general, unsupervised
weighing algorithms maintain a very close relation with
supervised weighting schemes. Moreover, accuracy of
unsupervised methods over all databases is very similar to
accuracy obtained with supervised approaches. After a two-
tailed paired t test, even though we cannot conclude that both
supervised and unsupervised methods are indistinguishable,
unsupervised method accuracy is only between a 5% and 9%
lower than supervised methods. On the contrary, a commonly
greater decrease was thought to be true.  In spite of the initial
belief or hypothesis that very low accuracy could be obtained
when you do not know the class labels of instances, the accuracy
achieved by unsupervised weighting methods is high enough to
consider these methods as very promising tools in classification
and retrieval tasks, specially, in front of new unknown and
unsupervised databases. These results show in an empirical way
that you can use unsupervised weighting algorithms to determine
the feature relevance in unsupervised databases, as a first
approach.

We think that this is due to the fact that similarity
computations between instances in unsupervised methods
capture the intrinsic distribution of different instances (different
"classes") in a similar way than supervised methods do.

The UEB-1 method seems to a have a higher variability than
the other two unsupervised methods. GD method seems to be as
good as the supervised methods when facing relevant features.
On the other hand, UEB-2 seems to be a good method needed to
be tuned for a better performance. It has shown a very promising
behaviour when faced against domains with many irrelevant
features (see Table 3). Additionally, UEB-2 reaches similar or
better performance than some of the supervised methods, and
definitively better than using no weights at all. Thus, the UEB-2
seems to be a very promising method that should be studied
further.

After analysing Table 2 and Table 3, we have observed that
our unsupervised methods UEB-1 and UEB-2 perform well
when facing domains where total number of discrete attributes
are greater than total number of continuous attributes. Specially,
in AP, AU, GL, LI, VE and WF databases, the number of
ordered discrete attributes was zero, and their performance was
poor. We think this situation implies that entropy variation of
similarity values computed by our methods will be lower, and
hence, the variation of feature weights will be lower too, leading
its behaviour to a more regular feature weight distribution with
worse performance.

A first step has been done in the design of suitable
unsupervised feature weighting techniques, to be used in
predictive tasks in instance-based algorithms. Also, the proposed
unsupervised entropy-based weighting approach (UEB-2) seems
to be promising, especially to detect irrelevant features. More
experiments are being carried out to support this statement.
   Future work will be focused both on a further tuning (0.1
increment/decrement parameter, and number of cycles) and
sensitivity analysis of these methods, and on the design, study
and analysis of other unsupervised weighting algorithms.
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