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Abstract. The ability to use linguistic concepts to describe percep-
tions of measured data is an emerging feature for artificial sensing
systems. In this work, we address the problem of symbolically rep-
resenting odour categories using the data from an electronic nose.
One objective is to facilitate human and computer interaction and
therefore, the names given to the odours are coorelated with a human
user. Perceptual differences that arise between the human perception
of odours and the electronic one, represent a challenge to the system.
Therefore, to cope with these differences, the system maintains the
freedom to evaluate how appropriately the linguistic concepts repre-
sent the sensory perceptions. Finally, some experimental results are
shown where the odour categories are formed and new odours are
described using these categories.

1 Introduction
Electronic noses are rapidly increasing in popularity in both industry
and research. In the industry, electronic noses can be used to detect
poisonous or obnoxious odours, tract an odour source, and provide
quality control for different foodstuff. In research, a diversity of gas
sensors are continuously being developed from the traditional metal
oxide sensors to other emerging technologies such as infrared and
optical sensors. Also, in the data processing aspect, different pat-
tern recognition techniques have been applied. The technological ad-
vances in mimicking human olfactory senses, make it more feasible
to quantify odours, but this recent progression has also highlighted
some conceptual problems about olfaction that need to be consid-
ered. These problems are of particular concern in applications where
human and machine need to communicate about perceptions.

Unlike vision which has pre-determined scales to decompose dif-
ferent colours such as hue, saturation and value, or even audition
where frequencies using the decibel scale can describe the volume
of a particular sound, olfaction lacks similar quantifiable transfor-
mations [4]. Furthermore, the few attempts that have been made to
standardize odour classification such as Amoore’s odour tables [1]
have only considered a small selection of possible odours and are not
generally used in real situations. The consequence in electronic ol-
faction is twofold. The first is that most works on e-noses consider
experiments with a restricted amount of odours in a specific context.
Secondly, often a human expert is needed to understand the results
from the e-nose data and then provide the mappings from data clus-
ters of similar odour patterns to the correct odour name.

In this work, we consider how to automatically create a correspon-
dence between symbols, in this case linguistic names, and categories
of e-nose data. To accomplish this task, we create a system that first
creates categories using unsupervised clustering and then generalizes
from these categories by evaluating how well an odour name applies�
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to its own sensor representations. Since part of the objective is to fa-
cilitate human and machine interaction, the names outputted from the
system are correlated and with those of a human user. This may mean
that in the context of an unsupervised categorization, perceptual dif-
ferences between the human and the electronic nose may arise. How-
ever, these differences can be considered an asset especially when
dealing with olfaction, for example when the electronic nose detects
carbon monoxide that is normally perceived as odourless for a hu-
man. Therefore, to cope with the perceptual differences, the system
is tuned to provide as explicit information about the categorization
of odours as possible. We accomplish this task by adapting existing
fuzzy-based algorithms to generate informative odour descriptions.

This paper begins with a presentation of related work in Section
2. In Section 3, the data from the electronic nose and the necessary
pre-processing steps are described. Section 4 details the process of
creating odour categories using an existing fuzzy-based clustering
algorithm and also explains how odour names are mapped to the sen-
sor data. Also, relative issues such as the identification of unknown
odours and performance evaluation are discussed. Finally, in section
5, experimental results are presented that illustrate the function of
our method under different situations in odour classification.

2 Related Work

The relevant work can be approached from two angles. On one hand,
there is the work that has been accomplished in electronic olfaction
and the different kinds of classification techniques that have been
used on e-nose data. On the other hand, there is a handful of related
works that pertain to the more general problem of how to bind lan-
guage, concepts, and sensor data in autonomous sensing systems.

Considering first electronic olfaction, the general definition pro-
posed by [6] of an e-nose includes both an array of gas sensors of
partial selectivity and a respective pattern recognition process to de-
tect simple or complex odours. Both a variety of sensing technologies
(metal oxide semiconductors, conducting polymers, acoustic wave
devices and fiber-optic sensors) as well as pattern recognition tech-
niques have been applied in research, industrial and recently, even
commercial domains. The most commonly used technique to analyse
e-nose data has been the artificial neural network. Although, ANN’s
have provided good results in applications with limited odour cate-
gories as shown in [9], using black-box classification fails to address
the problems of representing the knowledge of odour categories in
order to classify a larger spectrum of odours. Also a well-trained
network requires a large number of samples, which can be an elab-
orate process considering the long sampling times required for e-
noses (2-5 minutes), sensitivities to environmental conditions, and
hard-to-model long term drift of the sensor results. There are also
other relevant issues considering odour classification, such as the in-
herent uncertainty present in the human models of evaluation and as



described by Dubois [4] the psycho-schematic difficulties to asso-
ciate an odours’ chemical composition to its name (e.g, the smell of
rose consists of more than 400 different components). Thus in recent
years, there has been a movement to capture the vagueness and/or un-
certainty in the e-nose data and treat the data in a more human-like
manner. Both systems that rely on expert knowledge have been con-
sidered [2], as well as the use of fuzzy-based logic and hierarchical
clustering techniques as presented in [10].

In other sensor systems that have attempted to use symbolic rep-
resentations to represent artificial perceptions, works done in vision
tend to dominate the literature. These works can be divided into two
different approaches. The first approach is works which try to explic-
itly represent perceptual knowledge. Contributions include Garden-
fors’ [5] conceptual spaces where a geometrical modeling of con-
cepts is used. For example, in vision, the different primary colours
are mapped onto a conceptual space where similar colours are lo-
cated closer to each other. The problem with using explicit repre-
sentations in olfaction are again the lack of accepted classification
standards and also the range of odours would make the geometrical
modeling a tedious and complicated task.

Another approach is to use non-explicit representation of concepts
but instead apply different learning techniques to coordinate the per-
ceptions between artificial sensor system and a human user. This is
usually accomplished by using language dependent learning where
words are bootstrapped. This approach is successful in vision based
sensors, mainly because the capacity of the sensing mechanisms is
known. For example in [12] an Sony Aibo robot is trained to asso-
ciate the word “ball” with the visual perception of the object. Since
the human has access to the images produced from the camera and
since these images are somewhat similar to own our perception of
objects, the algorithms are tuned to determine how to decompose
images. The problem with olfaction is that there is little if no corre-
spondence between how we perceive odours and how an electronic
nose perceives them. The advantages from the differences in sensing
mechanism is the possibility for the e-nose to outperform the human
senses, for example in quantifying concentrations and in the detec-
tion of some odourless gases like carbon monoxide. Therefore, the
risk of using supervised algorithms is that these unique sensing fea-
tures are compromised.

In this work we consider a hybrid approach and consider a semi-
explicit representation of odours. This is accomplished by first repre-
senting the knowledge of odours based only on the sensory data from
an electronic nose. Then a symbolic interpretation of that knowledge
is achieved by coordinating a human vocabulary of odour names to
the sensory perceptions. In cases where the perceptions disagree, this
information is explicitly highlighted in order to provide a human user
with more information about the sensing abilities of the e-nose.

3 Electronic Nose Data

In this work, the odours were sampled using a commercially avail-
able electronic nose, Cyranose 320. This e-nose consisted of 32 thin-
film carbon-black conducting polymer sensors of variable selectivity.
The array of sensors are contained in a portable unit also consisting
of pumps, valves and filters that are required to expose the sensor
array to a vapor gas.

The sampling of an odour occurs in 3 different phases. The first
phase is a baseline purge, where the sensors are exposed to a steady
state condition, for example the air in the room. The duration of the
purge is 30 seconds. The second phase is a sampling cycle where
a valve is switched to allow vapors from a sampling inlet to come

into contact with the sensing array. The duration of this cycle is 20
seconds. Finally, a sequence of purging cycles is used to remove the
sampled odour from the unit and restore the sensor response to the
baseline values. Figure 1, illustrates a typical response from one sen-
sor.
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Figure 1. Example of sensor data throughout the three phases of sampling
an odour with one of the 32 gas sensors.

The signals are gathered in a response vector where each sensor’s
reaction is represented by �������	��
�������������	�������	� as shown
in Figure 1. The response vectors are then normalized using a sim-
ple weighting method and auto-scaled. As each odour is sampled,
the name of the odour is provided. Therefore, every sample is repre-
sented by a linguistic name, ��� (for � different odours) and a 32x1
response vector.

4 Category Acquisition
The process to obtain the odour categories that represent the percep-
tions from the electronic nose data is summarised in Figure 2.
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Figure 2. Overview of the system that forms odour categories using
electronic nose data



4.1 Clustering
The sensor data is organized into clusters by applying different
fuzzy-based clustering techniques. The process is iterative and con-
sists of first implementing a fuzzy c-means algorithm (FCM) with a
known number of clusters. To do this, a partition matrix is initialized
with random variables and an objective function is minimized result-
ing in a new classification vector. This classification vector is then
used as an initial condition for the subsequent Gath-Geva algorithm
(GG) presented in [7]. The Gath-Geva presents some advantages over
the FCM in that it allows for clusters of different shape and size. The
FCM, however, is still needed to provide a good initialization to re-
duce the risk of the Gath-Geva converging in local minima/maxima.
Through each iteration, the known number of clusters is increased. In
order to determine the optimum number of clusters, a set of validity
measures are used throughout each evaluation. In this work, optimum
criteria for cluster partitioning is defined as clusters with good sep-
aration, minimal volume and maximal number of points located in
the vicinity of the cluster center. Three different global validity mea-
sures are applied namely Compactness and Separation [13], Partition
Coefficient and Partition Entropy [8], to satisfy this criteria. A voting
vector is created which combines the results from the different va-
lidity measures giving more weight to the separation criterion. The
results from the validity measures are then used to determine which
number of clusters generates optimum partitioning. More about the
validity measures and the clustering algorithms can be found in their
respective references.

Once the clusters are formed, they are made into categories by as-
sociating the appropriate odour names to each cluster. This is done
by creating a contingency table. The contingency table is a statistical
technique that allows us to examine the relationship between sub-
jects’ scores on two categorical variables [11]. Typically, in a contin-
gency table, the rows of the table represent the categories in variable�
, and the columns represent the categories of variable � (where

�
and� are nominal). Each entry of the table is then a non-negative inte-

ger giving the number of observed events for each combination of
row and column. In our contingency table, the rows are the differ-
ent odour names � assigned by the human at sampling time, and the
columns are the  , unlabeled clusters found by the clustering algo-
rithm. Since fuzzy-based analysis was used, each point on our data
space belongs to every cluster with a degree membership between
0 and 1 (although it should be noted that the GG tends to provide
slightly crisper clusters). Therefore, each entry of the table is rep-
resented by the number of prototypical points having label � � in
cluster !#" . Prototypical points are points whose membership degree
to a cluster is equal to 1.

4.2 Level-1 rules
Level-1 rules are used to manage the results from the contingency ta-
ble. They are fuzzy-based rules which examine every column of the
contingency table and map the appropriate odour name to each of
the clusters. Since there is no guarantee that clusters will not overlap,
or that the e-nose data is able to differentiate between two different
odours, we create rules that allow for the possibility of using com-
pound category names (e.g sweet and fragrant). The rules can also
be used to differentiate between two clusters that may have the same
name. This is used in cases where the e-nose may be more sensitive
and splits the same odour into two or more clusters. The fuzzy rules
therefore allow the user to either better coordinate the names between
human and electronic perception or to emphasize cases where the
number of clusters exceeds the number of available odours.

4.3 Identification of New Odours
Unknown points or new odours can be classified by evaluating the
degree of fulfillment $��&%'� where % is the unknown odour. The ex-
pression for the degree of fulfillment is given by,

$#�&%(�)
+* �-, .(/ �0! � �213* �-, .54 �0!768�21:989;9<13* �-, .5= �0! " �>9 (1)

where the membership degree of % is computed for each cluster ! "
for  clusters found in the unsupervised algorithm. If the categorical
name for each cluster ?#" replaces !#" , Equation 1 can be rewritten
as,

$��&%'�@
A*B�-, .(/-�&? � �213*C�-, .54D�&? 6 �C1:9;989<13*C�-, .E=F�&?�"8�>9 (2)

The next step is to transform this expression into a fully symbolic
description by applying a secondary set of rules called Level-2 rules.

4.4 Level-2 rules
The level-2 rules are applied to the degree of fulfillment to better
describe unknown odours by mapping an odour’s relation to the dif-
ferent clusters into symbolic adjectives. At this stage of the work,
the rules are used to interpret the membership relations * �-, .HG , into
meaningful symbols. In the experiments described in this paper, this
is acheived using the following:

I 
 JK L MONQPSR�T *CU'V�W XZY R 9 [M N8\ � PSR 9 [ T *CU V�W X Y R 9 ]M N8\ 6 PSR 9 ] T * U'V�W X T_^
` a
b (3)

I
is now the set of linguistic descriptions and Equation 2 can be

re-written as,

$#�&%'�c
 M N , � �&? � �C1 M N , 6 �&? 6 �21d9;9�9<1 M N , " �&?#";�>9 (4)

The result from the classification is a odour description that con-
tains explicit information on how an unknown odour relates to the
known odours. This can be interpreted as a more natural method of
providing classifications since it is not unlike the human model of in-
terpreting odours (e.g. Smells a lot like...) [4]. A potential problem,
however, is that the larger the repository of odours sampled by the
electronic nose, the larger the descriptions may be. In this case, some
form of trimming the description is implemented, where the terms
with the highest degree of similarity are preserved.

4.5 Performance Evaluation
Evaluating the performance of a system that preserves its own repre-
sentation of odours is difficult since misclassified points cannot nec-
essarily be interpreted as erroneous. In, supervised algorithms, the
category boundaries are determined by linguistic concepts, however,
in non-supervised algorithms, the sensor data dictates how the cate-
gories represented and thus a more individualistic learning approach
is used. Therefore, in this work our performance measure is not based
on the number of correctly classified odours. Instead, we develop a
measure that reflects how well the electronic perception of odours
matches the human perception. To obtain this measure we examine
the properties of the contingency analysis. From the contingency ta-
ble, one can obtain a measure of dependency of the clusters to the



human labels. This is obtained by calculating the entropy of the table
also known as the coefficient of uncertainty e .

e��0!gf �h�)
ji �0!k�@� i �0!gf �h�i �0!k� l (5)

i �0!gf R �c
m�dn ��, "co �p"Hqsr o �p"o �;tCl (6)

i �0!k�@
m�un �Ao �>t'qsr o �>t l (7)

where o tp��
wv " o "x� , o "�t�
yv � o "x� , and o "x� is the probability
that the prototype is in  and the human label is z . The coefficient of
uncertainty can range between 0 and 1. A value of e{
 ^ implies
that there is a strong association between the human odour names
and the clusters of sensor data. A value of e|
 R implies that there
is no association between these two variables.

5 Experiments
5.1 Case 1
Experiments are performed on a number of different odours extracted
from an ASTM atlas of odour character profiles by Dravnieks[3].
The odour profiles were designed to develop odour character infor-
mation of 168 chemical compounds. Dravnieks’ tables are useful for
the purpose of our experiments since they contain a statistical anal-
ysis using a human panel. Of the total profiles listed in Dravniek’s
tables, 6 profiles were chosen to be used as subjects, shown in Table
1. These particular profiles were chosen in an attempt to represent as
large as a spectrum of odour descriptions as possible.

Table 1. The substances and their respective descriptions taken from [3]

Odourant Descriptors

Hexanal woody,resinous,herbal,green
Hexanoic Acid sour, vinegar, pungent, acid

3-Hexanol alcoholic, etherish,anaesthetic
Octanol oily, fatty
Linalool fragrant, perfumery, light
Vanillin sweet, chocolate, vanilla

Using these subtances, the experiments performed consist of the
following steps:} Examine how well the electronic nose can differentiate between

the six profiles and recognize unseen samples of the same odours.} Determine how well the electronic nose can use the six profiles as
descriptions for unseen samples of five additional complex odours
that are not in the profiles list.

For the first step, 50 samples of each odours in the profile list were
taken, for a total of 300 samples. These samples were inputted into
the clustering algorithm and the total number of optimum clusters
were found to be 5.

The contingency table in Table 2, shows the labels of each of the
cluster prototypes. Recall that prototypical points are points with
a membership value equal to 1. Making allowances for compound
cluster names, the 5 clusters obtain the odour names according to
Table 3.

From this table, it can be seen that the electronic nose can distin-
guish only 5 of the profile odours whereas a human can distinguish

Table 2. Prototypical points found in each cluster with a given name

Odourant ~ � ~ 6 ~�� ~�� ~@�
Vanillin 42 0 0 0 0
Octanol 3 37 0 0 0
Hexanal 0 0 23 0 0

Hexanoic Acid 0 0 0 23 0
3-Hexanol 0 0 0 21 2
Linalool 0 0 0 1 31

Table 3. The final names assigned to each cluster

Odourant Descriptors

C1 sweet, chocolate vanilla
C2 oily, fatty
C3 woody,resinous,herbal,green
C4 alcoholic,etherish,anaesthetic � sour, vinegar, pungent, acid
C5 fragrant, perfumery, light

all six. This lack of sensitivity of the nose is explicitly shown from
Table 3, by the fact that Cluster 4 contains a compound description of
alcoholic and sour. The consequence is that these adjectives that the
e-nose uses to describe “alcoholic” odours are the same adjectives
used to describe “sour” odours. By evaluating the entropy of the Ta-
ble 2, the coefficient of uncertainty e��0!gf �h� is approximately 0.74
which reflects some degree of matching between the perceptions of
the nose and the human.

The next step is to test a series of complex odours. The choice of
the odours are targetted towards the existing descriptions contained
in the profile list. For each unknown odour, 10 samples were taken.
Table 4 summarizes which substances were used for testing, their
perceptions from a human user, and the descriptions given by the
nose. From these results, it can be seen that the electronic nose and
the human panel agree on some of the substances (e.g both describe
chocolate as sweet substance). The level-2 rules have been used to
better illustrate the relation between these points and the known cat-
egories, through the use of adjectives such as, very or moderate. For
example, the Corn oil was only considered moderately woody and
moderately oily, which may indicate that the point resides between
these two categories. Therefore, from this information, it can also be
deduced how the known concepts relate to each other.

5.2 Case 2
The second experiment examines a situation where the e-nose is
more sensitive than a human user. We consider a situation where 12
containers contain 4 different substances. Each of these containers
is given a number and the actual chemical contents of the container
is shown in Table 5. A blindfolded human is allowed to sample (by
smelling) the contents of each container only once. The task of the
human is twofold. The first task is to discriminate among the odours,
that is to say, determine which among the 12 samples are similar to
each other. This is a process of categorisation. Once the odour cate-
gories are formed, the second task is to give each of the categories a
name, Table 5.

The experiment is then repeated but using an electronic nose to
sample the odours. Unlike the human user, the electronic nose is ca-
pable of making a distinction between the 20% ethanol and the 30%
ethanol. 4 cluster prototypes are found using the unsupervised algo-



Table 4. The identification of new odours with respect to the trained concepts

Odourant Human Descriptors E-nose Descriptors

Melted Chocolate chocolate, sweet very sweet
Corn Oil oily, fatty moderately woody,herbal 1 moderately oily

White Wine Vinegar vinegar, pungent very alcoholic, sour
Ethanol alcoholic, strong little woody,herbal 1 moderately acoholic,sour

Table 5. Contents of the odour containers and the respective names
assigned by the human user according to his/her perception. Note that two

different ethanol contents are given the same name.
Container Actual Contents Human Assigned Name

1-3 100 % Ethanol OdourA
4-6 30% Ethanol OdourB
7-9 20% Ethanol OdourB
10-12 5% Ethanol OdourC

rithm each corresponding to the different concentrations of ethanol.
This is an obvious advantage to using an electronic nose that is par-
ticularly sensitive to concentrations of certain gases such as ethanol.

To handle the fact that the e-nose can detect more odour categories,
three solutions are possible. The first solution is to acquire the cate-
gory names according to the human perception, making no explicit
emphasis on the extra cluster formation. The symbolic classification
would be co-ordinated with the results from the human user. When
the testing data is categorized, even though a single point may be-
long to any one of four different categories, only one of three dif-
ferent category names would be outputted. The classification result
is comparable to that from a supervised algorithm such as the ANN
(multi-layer feed-forward network, MLFF)as shown in Table 6. If
the intention of the application is to match perceptions between the
artificial nose and the human, then this approach would be sufficient.

Table 6. Correct classification results on the testing data on 20 new
samples of each odour

Method OdourA OdourB OdourC

MLFF 98% 100% 98%
GG 92% 99% 91%

A secondary approach can be taken in order to enhance the clas-
sification and attempt to communicate the fact that there exists a
discrepancy between the two categories which were merged in the
human perceptual context. This is accomplished by using the param-
eters found from the fuzzy clustering process in order to better de-
scribe the unlabelled data not only in terms of the categories to which
they belong but also in terms of the categories to which they possess
a similarity as shown in Equation 2.

Finally, a third alternative would be to differentiate between two
categories that have the same name using the level-1 rules. This
would occur when the category names are being determined. For ex-
ample, if two categories in the contingency table ! 6 and ! � both
have a dominating association to OdourB, they could be differenti-
ated from one another by the addition of a suffix to the name such
as ���Dz��H�-� ^ and ���Dz��H����� . This method explicitly tells the user
that another category has been created, however, generating a more
descriptive classification would be beneficial in order to understand
the relationship between these different odour categories.

6 Conclusion
In this work, we have discussed the implementation of using unsu-
pervised techniques to represent the perception of odours from an
electronic nose. Although unsupervised algorithms create a greater
chance for perceptual conflicts than supervised techniques, we argue
that perceptual differences can be highlighted and used as a means
to inform the user. Futhermore, in sensing system such as olfaction
which are continuously evolving, this information can be used to
make actual hardware implementations, such as the addition of a new
sensor designed for special selectivity. Ultimately, the understanding
of where and how perceptual differences may occur, allow us to bet-
ter handle the sensing systems.In this work, linguistic concepts were
used as a means to better promote this understanding, provided that
the concepts adequately represent the sensor data to which they re-
fer. In sensing systems, such as olfaction which currently, is absent
of any quantifiable metric to classify odours, it is believed that this
kind of representation can be equally appreciated from a human user
interacting with the system.

REFERENCES
[1] J. Amoore, ‘Psychophysics of odor’, in Cold Spring Harbor Symposia

in Quantitative Biology, volume 30, pp. 623–637, (1965).
[2] T. Osaki B. Yea, R. Konishi and K. Sugahara, ‘The discrimination of

many kinds of odor species using fuzzy reasoning and neural networks’,
Sensors and Actuators, 45, (1994).

[3] A. Dravnieks, Atlas of Odor Character profiles (ASTM Data Series
Publication DS 61), American Society for Testing, USA, 2000.

[4] D. Dubois, ‘Categories as acts of meaning: The case of categories in
olfaction and audition’, Cognitive Science Quaterly, 1, (2000).

[5] P. Gärdenfors, Conceptual Spaces: The Geometry of Thought, MIT
Press, Cambridge, MA, 2000.

[6] J. Gardner and P. Bartlett, Electronic Noses, Principles and Applica-
tions, Oxford University Press, New York, NY, USA, 1999.

[7] I. Gath and A. Geva, ‘Unsupervised optimal fuzzy clustering’, IEEE
Trans. on Pattern Analysis and Machine Intelligence, 11(7), 773–781,
(1989).
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