
A Formal Tutoring Process Model for Intelligent
Tutoring Systems

Alke Martens and Adelinde M. Uhrmacher1

Abstract. The combination Computer Based Training systems with
Artificial Intelligence and Cognitive Science has led to the develop-
ment of Intelligent Tutoring Systems nearly 30 years ago. A common
agreement has been reached about the constituents of an Intelligent
Tutoring System (ITS). Nonetheless, the interpretation of the role of
each component in the ITS is still heterogeneous. Together with the
absence of formal methods in ITS, this leads to the situation, that the
components of ITSs are strongly domain dependent and not reusable.
The situation is analyzed for case-based ITS, i.e. ITS based on a nar-
rative story line. A formal model of the tutoring process is introduced
into the ITS architecture. The model is based on the idea to support
the training of two cognitive processes, i.e. the process of diagnostic
reasoning, and the process of general knowledge application. The in-
tegration of the tutoring process model as the central component in
the ITS has led to a homogenization of the architecture. Based on the
new architecture, the ITS Docs ’n Drugs has been realized.

1 Introduction

Intelligent Tutoring Systems can look back on a tradition of nearly
30 years. In the 1970s, Carbonell [1] made the first attempts to com-
bine Computer Aided Instruction systems (CAI) with Artificial Intel-
ligence (AI). Reflecting the development of techniques and methods
of AI, many different kinds of systems have been constructed in these
years. Facets have been and still are development of dialogue tech-
niques, planning, embedding agents as part of an Intelligent Tutoring
System (ITS) or even constructing an ITS as a multi-agent system
(for references see e.g. [6]). Simulation is part of many ITSs. ITSs
have been designed to be used in the World Wide Web.

Nowadays, there exists a kind of common agreement about the
ITS architecture. One of the first descriptions of this architecture can
be found in [2], where Clancey described the ITS GUIDON and in-
duces a model for the ITS architecture. Others have followed and
refined this description to what today can be called the classical ITS
architecture (see amongst others [3, 4, 11, 12]). The classical ITS ar-
chitecture consists of four models: the expert knowledge model, the
pedagogical knowledge model, the learner model, and the user inter-
face. The naming of the components varies (see e.g. [4] in compar-
ison with [3]). Some systems have an additional exercise generator
embedded (e.g. [4]). However, an exercise generator can not be used
in case-based training as described in this paper, so it will be left out
in the following.

Regarding the classical ITS architecture, it should be easy to reuse
components of existing ITSs for constructing a new ITS. However,
the reuse of components is seldom possible. One reason can be seen

1 University of Rostock, Institute for Computer Science, Rostock, Germany
email: martens@informatik.uni-rostock.de

in the fact that most of the ITSs are domain dependent. Moreover, in-
vestigation and comparison of descriptions of ITS architectures have
shown that the interpretation of the role of each component in the ITS
varies a lot (for references and detailed description of this research
see [6, 5]). Some systems centralize the expert knowledge model and
use it as central expert system (e.g. [2]). Some others use the expert
knowledge model as a complex database and focus on the pedagogi-
cal knowledge model (e.g. [8]). The heterogeneous interpretation of
the role of each component in the ITS, in combination with the ten-
dency to ad hoc implementation in the area of ITS development, has
led to incomparable and not reusable systems.

The approach described in the following has its background in the
development of the web- and case-based ITS ’Docs ’n Drugs - the
Virtual Policlinic’ [7] (see www.docs-n-drugs.de). Docs ’n Drugs is
part of the medical curriculum at the University of Ulm since the year
2000. Several hundreds of students have worked with the system, yet.

To develop Docs ’n Drugs, the classical ITS architecture and its
applicability to case-based training has been analyzed. One result
has been the insight, that a reuse of existing ITS or of ITS’s com-
ponents is not possible. Thus, the ITS architecture has been adapted
to the requirements of case-based training. A side effect has been
an approach towards homogenization of the ITS architecture, as de-
scribed in [5]. The suggested new architecture comprises all compo-
nents of the classical ITS architecture, as mentioned above. However,
expert knowledge model and pedagogical knowledge model are re-
duced to databases without own execution and delivery. Execution,
such as steering of the interaction with the learner, and delivery of
contents must be taken over by another component. Thus, in addi-
tion a new formally described component has been embedded as the
central component in the ITS. This component is called the tutor-
ing process model. The advantage of such an approach is the clear
separation of domain dependent content and the domain independent
delivery. This might be a basis for the development of exchangeable
components. Moreover, the formal model of this central component
provides an implementation independent description.

In the following, a short introduction in case-based training will
be given. After that, the tutoring process model is presented. The tu-
toring process model is constructed as an abstract model with two
extensions, i.e. the basic tutoring process model and the adaptive
tutoring process model [6]. The latter, which is focus of the paper,
embeds a learner model. The paper closes with a conclusion and an
outlook.

2 Case-based Learning

Case-based learning has a long tradition in some areas, e.g. law,
medicine, and business. Case-based training has often been realized

in ITS. Often problem-based learning has been mixed up with case-
based learning. Whereas case-based learning is based on a narrative
story line which contains a series of problems, problem-based learn-
ing is based on a problem description. In case-based learning, the
story’s development is influenced directly by the learner’s decisions.
In problem-based learning, the problem description does not change
and does not develop.

Docs ’n Drugs helps the students to train everyday clinical practice
in a case-based manner. The student takes over the role of a physician
in a hospital. He is confronted with a patient and has to choose the
correct and appropriate sequence of steps to treat the patient. If he
chooses wrong steps the patient’s state might deteriorate. Addition-
ally, the training cases are enriched with interaction parts, where the
student has e.g. to answer questions. The approach chosen in Docs
’n Drugs is based on the idea of supporting two cognitive processes
in case-based training. This idea is based on research about cognitive
processes in everyday clinical practices, described in [9, 10]. One in-
sight of this research has been that in everyday clinical practice at
least two cognitive processes are distinguishable:

1. The process of general knowledge application, such as knowing
how to act and react in an appropriate manner, and how to choose
the correct methods at the right time.

2. The process of diagnostic reasoning, such as taking the informa-
tion given and deducing a correct diagnosis.

Seemingly, these two processes are not dependent of the application
domain. The assumption is that case-based training should support
training of the two cognitive processes, independent of the training
domain.

Figure 1. Screenshot of Docs ’n Drugs

In Docs ’n Drugs, the screen shows information about the patient,
for example results of examinations, and utterances of the patient.
Page contents are adaptable to the student’s current performance and
his profile such as his experience in the application domain. The nav-
igation shows typical steps of the patient treatment process. Figure 1

shows a screenshot of the ITS. The navigation consists of the so-
called actions. Actions can be distinguished in temporarily available
actions and permanently available actions. Whereas the number of
temporarily available actions is adapted to the learner at run time,
the permanently available actions are always active. One of the per-
manently available actions is the differential diagnosis. The student
should note his suspected diagnoses continuously during the interac-
tion with the training case. The correction of this list of diagnoses
takes place based on the facts and rules in the expert knowledge
model and takes into account what the student has learned about the
case so far. In continuously actualizing and correcting his list of sus-
pected diagnoses, the student is training the process of diagnostic
reasoning.

Via choosing one of the temporarily available actions, the stu-
dent is training the process of general knowledge application, such
as ’which is the appropriate next investigation, given the patient’s ut-
terances and the results of the examinations’. The contents and infor-
mation displayed should adapt to the student’s performance and his
chosen sequence of steps. For example, a repetition of an anamnes-
tical question might lead to another answer. Three kinds of training
cases can be distinguished:

1. Guided training cases - the student has only one action available.
Thus, this kind of training case offers no possibility to choose next
steps. It is suitable for beginners in the application domain or for
case presentation. The process of general knowledge application
can only be trained in embedded interaction elements.

2. Half-guided training cases - the amount of temporarily available
actions is adapted at run time, taking the student’s performance
and knowledge into account. These training cases can be realized
in different granularities and for students with different expertise.
The adaptive tutoring process model plays its main role in steering
and adapting this kind of training case.

3. Unguided training cases - always all temporarily available actions
are active. Thus, no adaptation takes place. This kind of training
case is only suitable for experts in the application domain.

The following section focuses on the half-guided training cases.

3 Tutoring Process Model

The tutoring process model is the new central component of the ITS.
Related with the expert knowledge model, the tutoring process model
has access to the relations and entities of the domain’s expert knowl-
edge. In case-based training, the pedagogical knowledge can be per-
ceived as knowledge about the case’s contents, i.e. the didactically
elaborated elements of the training case. This knowledge may differ
from the expert knowledge such as it might contain misleading or in-
correct information. In Docs ’n Drugs, each entry in the pedagogical
knowledge is related to entries in the expert knowledge base. This
relation is used by the tutoring process to draw conclusions, to con-
struct corrections or help, and to adapt the training case. The tutoring
process model is also related with the learner model. Thus, it has
access to all information in the learner model, such as the learner’s
profile and the learner’s performance in the training case.

As a formal model, the tutoring process model is described as the
so called ’abstract tutoring process model’ with two extensions: ba-
sic tutoring process model and adaptive tutoring process model. The
abstract tutoring model consists of the training caseC and additional
functions:

TPM = 〈C, show, enable〉 (1)

Here,C is the training case,show is the show state function, and
enable is the enable action function.

The basic tutoring process model is structured the same way. It
allows the construction and steering of training cases without an ex-
isting learner model. Thus, no adaptation to the learner model can
take place in the basic tutoring process model.

The adaptive tutoring process model contains a learner model.
Thus, it is a structure:

TPMadapt = 〈C, LM, show, enable〉 (2)

HereLM is the learner model.
In the following text, firstly the learner model is described, fol-

lowed by a description of the adaptive training case. The section
closes with the description of the adaptation functions of the adaptive
tutoring process model.

3.1 Learner Model

The learner model provides the basis of the adaptation. Thus, it
should contain at least two types of information. The first type is
information about the learner such as the learner’s profile, his level
of experience, and his identification. The second type is information
about the assumed knowledge of the learner, e.g. a history of his cho-
sen sequence of steps.

Accordingly, the learner model can be described as a structure con-
sisting of a learner profileLP and the knowledge of the learnerLW :

LM = 〈LP, LW 〉 (3)

Here,LP is a structureLP = 〈id, expertise〉, andLW is a struc-
tureLW = 〈id, Lpath, Lresult, Lacq〉
LP ’s components are:id - the identification of the learner, and
expertise - the learner’s expertise.
LW ’s components are:id - the identification of the training case,
Lpath - the partial path,Lresult is a set of results, andLacq is the
set of facts.

The learner modelLM currently defines a minimum of informa-
tion required for the adaptation process. The described prototype
[6] does not perform an actualization of the learner profile during
the interaction of a learner with a particular training case. In con-
trast to this, the learner’s knowledge must be actualized at run time.
Thus, the information about the path chosen by the learner, the re-
sults achieved, and information about the collected facts are updated
after every step of the learner.

The partial path inLpath denotes the sequence of actions chosen
by the learner (for definition of paths and partial paths see [6]). Thus,
it directly reflects one part of the process of general knowledge ap-
plication. After the learner has selected a subsequent step, this partial
path is actualized. The second part of the process of general knowl-
edge application is recorded in the setLresult, showing the results
of the learner’s interaction with the interaction elements in the train-
ing case. The set of factsLacq reflects the amount of information
which has de facto been displayed to the learner. After selecting the
information elements that should form the actual display, the facts
related to each of the elements are recorded inLacq.

3.2 Training Case

The training caseC is a structure:

C = 〈Q, A, q0, F, B, δ, select, allow〉 (4)

with:
Q finite set of states
A finite set of actions
q0 ∈ Q start state
F ⊂ Q finite set of final states
B finite set of bricks
δ state transition function
select select brick function
allow select action function

The description shows that each training case consists of a set
of statesQ and actionsA. Each state consists of a set of bricksB.
A subset of bricks forms the display of the learner (see figure 1).
Bricks exist as information bricks, containing only multimedia in-
formation, and as interaction bricks, containing interaction elements,
e.g. multiple-choice elements. Each actionA is associated with a
state. If the learner chooses the action he will reach the according
state. Actions are the temporarily available actions, mentioned in
section 2. These actions form a part of the navigation in figure 1.

The state transition functionδ of the training caseC is con-
structed as

δ : Q×A −→ Q ∪ {⊥} (5)

For each state (including the start state) and each action, the state
transition function defines the subsequent state. If the application of
the state transition function on a stateqi ∈ Q and an actiona ∈ A
leads to a stateq′

i, then the application of the state transition function
on another stateqj ∈ Q with the same actiona must lead to the
same state, i.e.:
∀qi, qj , q

′
i, q

′
j ∈ Q\F, ak ∈ A :

δ(qi, ak) = q′
i ∧ δ(qj , ak) = q′

j ⇒ q′
i = q′

j

The symbol⊥ denotes, that the actual implementation of the
system should prevent this state transition to be executed. It is:
∀qf ∈ F, F ⊂ Q, a ∈ A : δ(qf , a) = ⊥

The function select is responsible for selecting all the bricks
that are part of a state:

select : Q −→ 2B (6)

It is: ∀q ∈ Q : select(q) 6= ∅. Thus, each state must have at least
one brick. This is one way to make sure that states are not empty -
and that the learner does not get an empty display.

The function allow determines all the actions which are asso-
ciated with one state:

allow : Q −→ 2A (7)

It is: ∀a ∈ A, q ∈ Q : a /∈ allow(q) ⇒ δ(q, a) = ⊥
Thus, if an action is not part of the set of actions determined by
allow, the state transition functionδ, applying this action to any
given state, will lead to the result⊥. If the stateq ∈ Q is a final
state, i.e.qf ∈ F , then theallow function will return an empty set:
qf ∈ F : allow(qf) = ∅. Otherwise, the set of actions determined
by allow mustn’t be empty:∀q ∈ Q\F : allow(q) 6= ∅

3.3 Structured Bricks and Actions

In the adaptive tutoring process model, bricks and actions are struc-
tures themselves. A brickb ∈ B is a structure:

b = 〈id, con, PRE, POST 〉 (8)

with: id is the identification of the brick,con is the list of content
elements,PRE is the set of pre conditions, andPOST is the set of
post conditions. Thecon list can be distinguished inconinfo, i.e. a
multimedia information element, andconinteract, i.e. a multimedia
interaction element. The post conditionPOST denotes the facts of
the training case that reflect the state of the training case after the
brick has become part of the page to be displayed to the learner.
Thus, the facts noted in the bricks that have been displayed are
added to the setLacq of the learner model.

An actiona ∈ A is a structure:

a = 〈id, name, PRE〉 (9)

with: id is the identification of the action,name is the (display)
name, andPRE is the set of pre conditions. The pre conditionPRE
determines, whether the according brick or action will be part of the
actual display of the current learner. The evaluation of a pre condition
takes into account the learner’s profileLP as well as the learner’s
knowledgeLW . The other way around, pre conditions can be con-
structed by the training case authors using as well profile information
(’this brick should only be seen by experts’) as facts in the training
case (’if fact XY has been seen, the action Z should be active’).

3.4 Adaptation

The functionsshow and enable in the adaptive tutoring process
model are mainly responsible for the adaptation of states and actions.
The show state functionshow is a function

show : 2B × LP × LW −→ 2B (10)

with: show(Bq, expertise, Lacq) = Ba

Bq is the set of bricks determined byselect, i.e. the bricks associated
with the stateQ. expertise is the profile entry of the learner model,
and Lacq is the amount of facts the learner has acquired so far
in the training case. The functionshow determines, which subset
of bricks will actually be displayed, taking the learner model into
account, withBa 6= ∅, i.e. there should be at least one brick that can
be shown to the learner. With this condition, the tutoring process
ensures that no empty display occurs accidentally. Thus, withb ∈ B
andpreb ∈ PREb it is:
(Ba ⊆ Bq ⊆ B) ∧ ∀b ∈ Ba .
(preb ∈ Lacq ∨ preb = expertise ∨ PREb = ∅)
The set of pre conditions of a brick can be the empty set - this kind
of brick will be displayed without condition to every type of learner.

The enable action functionenable is a function

enable : 2A × LP × LW −→ 2A (11)

with: enable(Aq, expertise, Lacq) = Aa

Similar to theshow function, theenable function takes the set of
actions determined byallow, i.e. Aq, and derives which actions
will actually be available in this step, i.e.Aa with Aa 6= ∅. It uses
the entriesexpertise and Lacq in the learner model. So, the set
of temporarily available actions is adapted to the learning at run
time. However, there should be at least one action that meets the pre
conditions, i.e. witha ∈ Aa andprea ∈ PREa it is:
(Aa ⊆ Aq ⊆ A) ∧ ∀a ∈ Aa .
(prea ∈ Lacq ∨ prea = expertise ∨ PREa = ∅)
As can be seen above, the set of pre conditionsPRE of an action
a ∈ A can also be the empty set - then, the action is always active.

With all the parts specified in the subsections, the adaptive tu-
toring process model is a structure:
TPMadapt = 〈Q, A, q0, F, B, δ, select, allow, LP, LW,
show, enable〉

3.5 Sequence of Functions in Adaptation

The sequence of functions to be executed is important. The sequence
after the selection of an action by the learner is:

• Determine the next state with theδ function.
• Take this state and derive the set of associated bricks, using the

select function.
• Take this set of bricks and the learner model and determine with

show, which of the bricks should be shown to the current learner.
• Actualize the learner model with the bricks’ post condition (only

of the bricks determined for display).
• Determine the amount of actions associated with the state, using

theallow function.
• Take this set of actions and the actualized learner model and deter-

mine withenable which actions should be available to the current
learner.

This sequence is important, because after determining the bricks
that should be displayed, the entries in the learner model are updated.
This will likely influence the choice of available actions. The under-
lying assumption is that the learner will have the information of the
bricks available and thus has a new state of knowledge - which should
be taken into account when allowing him to select a subsequent step
in the treatment process.

4 Example

In this section, an example of the adaptation of a state to a learner
model will be given. The learner with theid = 2 works with the
training case number9. This training case tells the story of a young
female patient, returning from a trip to Africa with a fever. The case
is developed for beginners, advanced, and expert learners. Learner
number2 is a beginner, he is student of the second semester clin-
ical medicine. The learner profile contains the following entries:
LP = 〈2,′ beginner′〉. The learner has seen the start page and has
read the introduction to the training case. He has chosen the ’travel
anamnesis’ as the first action. Currently, he has the display ’travel
anamnesis’ available and the menu-buttons ’anamnesis’ and ’body
examination’ (see figure 1). His learner knowledge has the entries:
LW = 〈9, (q0, atravel), ∅, {’sun-tanned skin’, ’fever’, ’africa’}〉
As a next step, the learner clicks the anamnesis button. From the
menu, he selects the ’inoculation anamnesis’aino ∈ A. He wants to
see whether the patient has got the correct preparation for the trip to
Africa.

After the selection, the tutoring process model’s functionδ deter-
mines the new state:δ(qtravel, aino) = qino. The stateqino ∈ Q
consists of four bricks, i.e.select(qino) = {b1, b2, b3, b4}. Brick b1

is suitable for beginners, brickb2 has an empty pre condition, brick
b3 is designed for experts, and to get brickb4, the fact ’headache’
must exist inLW . Taking the learner model’s entries into account,
the functionshow determines the bricksb1 andb2 to be displayed:
show({b1, b2, b3, b4},′ beginner′, {’sun-tanned skin’, ’fever’,
’africa’}) = {b1, b2}.
The following table shows the bricks. Now the new display and the
new navigation can be shown to the learner.

brick id con PRE POST

b1 1 (text, ’The patient made
malaria prophylaxis with
the medication noted in her
certificate of vaccination.’)

’beginner’ ’malaria
prophy-
laxis’

b2 2 (picture, vaccination card
malaria)

∅ ∅

b3 3 (text, ’The patient smiles
and says: ’I have made
malaria prophylaxis’.’)

’expert’ ∅

b4 4 (text, ’The vaccination
card tells you that the
patient has made a malaria
prophylaxis. Try to find
out, if the medication
noted down in the card
might have effected the
headache.’)

’headache’ ’malaria
prophy-
laxis’

After having decided, which bricks can be displayed, the tutoring
process updates the learner model. When the learner has the derived
display available, he has the new entry ’malaria prophylaxis’ in his
set of acquired factsLacq in the learner knowledgeLW . With the
updated knowledge in the learner model, the tutoring process now
determines which actions should be available from the current state.

The functionallow takes the stateqino and determines the set of
actions associated with it:allow(qino) = {aana, athalab}. Here the
example is shortened due to comprehensibility. Usually, the amount
of available actions is larger. This set of actions is now used by
the enable function. This function derives, together with the actu-
alized entries in the learner model, which actions will be available:
enable({aana, ath, alab},′ beginner′, {’sun-tanned skin’, ’fever’,
’africa’, ’malaria prophylaxis’}) = {aana, alab}.

The actionaana is the first anamnesis. This action has been avail-
able in the beginning of the training case and has no pre conditions.
Thus, it should be always available. The actionath is an action al-
lowing the learner to choose a therapy. Because the learner is a be-
ginner, and has not acquired the necessary knowledge yet, this action
is blocked. However, the actionalab, leading to laboratory examina-
tions, is available now, because the pre condition, i.e. the knowledge
of ’malaria prophylaxis’, is part ofLacq. The following table shows
the actions.

action id name PRE

aana 1 ’Anamnesis’ ∅
ath 2 ’Therapy’ ’expert’
alab 3 ’Laboratory examina-

tion’
’malaria prophylaxis’

5 Conclusion and Outlook

In this paper a formal adaptive tutoring process model for case-based
ITSs has been introduced. The tutoring process model provides a new
perspective on the ITS architecture. It is used to separate content and
delivery in the classical ITS architecture and thus provides the means
for reusability of components in ITS.

The adaptive tutoring process model has been described in detail
and the adaptation process has been sketched. The central tutoring
process model of the ITS Docs ’n Drugs has been modelled based
on the formal model. Thus, the tutoring process model prooved its
viability and applicability.

The tutoring process model has been developed as an abstract
model with the two extensions basic tutoring process model and
adaptive tutoring process model. Whereas the first one does not need
a learner model, the second one is described with an inherent, simple
learner model. It should be easy and will be part of future work, to
develop an extensive learner model and integrate it into the adaptive
tutoring process model. The gain for the tutoring process model will
be a finer grained adaptation process. For example, a finer distinction
of the learner’s expertise and its adaptation at run time would allow
a better adaptation of the training case - a learner which starts as ’be-
ginner’ and performs very well, might ascent an become ’expert’ at
run time.

The tutoring process model can not only be used as the basis of
the development of an ITS’s central component, but also as a cen-
tral component of an authoring system. There, the model can help to
develop the training cases and simulate a learner’s interaction with
a training case. The interaction bricks of the tutoring process model
haven’t been specified yet. Here, future work could be to catego-
rize different types of interaction and provide the authors with pre-
implemented default interaction elements, where they only have to
fill in content.

REFERENCES
[1] J. R. Carbonell, ‘AI in CAI: An Artificial Intelligence Approach to

Computer-Assisted Instruction’,IEEE Transactions on Man-Machine
Systems, 11(4), 190–202, (1970).

[2] W. J. Clancey, ‘Methodology for Building an Intelligent Tutoring Sys-
tem’, in Methods and Tactics in Cognitive Science, eds., W. Kintsch,
J. R. Miller, and P. G. Polson, 51–84, Lawrence Erlbaum Associates,
(1984).

[3] A. T. Corbett, K. R. Koedinger, and J. R. Anderson, ‘Intelligent Tu-
toring Systems’, inHandbook of Human-Computer Interaction, eds.,
M. Helander, T. K. Landauer, and P. Prabhu, 849–874, Elsevier Science
B.V., (1997).

[4] R. Lelouche, ‘Intelligent Tutoring Systems from Birth to Now’,KI -
Kuenstliche Intelligenz, 4, 5–11, (1999).

[5] A. Martens, ‘Discussing the ITS architecture’, inWorkshop ’Expressive
Media and Intelligent Tools for Learning’, 26th German Conference on
AI KI-2003, Hamburg, Germany, (2003).

[6] A. Martens,Ein Tutoring Prozess Modell fuer fallbasierte Intelligente
Tutoring Systeme, Ph.D. dissertation, Rostock, Germany, 2003.

[7] A. Martens, J. Bernauer, T. Illmann, and A. Seitz, “‘Docs ’n Drugs -
The Virtual Polyclinic”’, in Proc. of the American Medical Informatics
Conference AMIA 01, Washington, USA, (2001).

[8] M. Mayo, A. Mitrovic, and J. McKenzie, ‘CAPIT: An Intelligent Tu-
toring System for Capitalization and Punctuation’, inProc. of the Int.
Workshop for Advanced Learning Technologies IWALT 2000, pp. 151–
157, Palmerston North, (2000).

[9] V. L. Patel, D. R. Kaufman, and J. F. Arocha, ‘Steering through the
murky waters of a scientific conflict: situated and symbolic models of
clinical condition’,AI in Medicine, 7, 413–438, (1995).

[10] V. L. Patel and A. W. Kushniruk, ‘Understanding, Navigating and Com-
municating Knowledge: Issues and Challenges’,Methods on Informa-
tion in Medicine, 460–470, (1998).

[11] S. P. Smith,Developing an authoring environment for procedural task
tutoring systems, Ph.D. dissertation, Massey University, Palmerston
North, New Zealand, 1997.

[12] C. W. Woo,Instructional Planning in an Intelligent Tutoring System,
Ph.D. dissertation, Dept. of CSAM, Illinois Institute of Technology,
Chicago, IL, 1991.

