
A Case Study of Revisiting Best-First vs.
Depth-First Search

Andreas Auer1 and Hermann Kaindl2

Abstract. Best-first search usually has exponential space require-
ments on difficult problems. Depth-first search can solve difficult
problems with linear space requirements, but it cannot utilize large
additional memory available on today’s machines. Therefore, we re-
visit the issue of when best-first or depth-first search is preferable to
use. Through algorithmic improvements, it was possible for the first
time to find optimal solutions of certain difficult problems (the com-
plete benchmark set of Fifteen Puzzle problems) using traditional
best-first search (with the Manhattan distance heuristic only). Our
experimental results show that this search can solve them overall
faster than any of the previously published approaches (using this
heuristic). Note that this search approach was believed to be inca-
pable of solving randomly generated instances of the Fifteen Puzzle
within practical resource limits because of its exponential space re-
quirements. So, our case study suggests that changes in hardware
and algorithmic improvements together can revise the previous as-
sessment of best-first search.

Notation
s, t Start node and goal node, respectively.
Γ(n) Successors of node n in the problem graph.
Γ(n) Parents of node n in the problem graph.
d Current search direction index; when search is

in the forward direction d = 1, and when in
the backward direction d = 2.

d′ 3− d; index of the opposite search direction.
ci(m, n) Cost of the direct arc from m to n if i = 1, or

from n to m if i = 2.
ki(m, n) Cost of an optimal path from m to n if i = 1,

or from n to m if i = 2.
g∗

i (n) Cost of an optimal path from s to n if i = 1,
or from t to n if i = 2.

h∗
i (n) Cost of an optimal path from n to t if i = 1,

or from n to s if i = 2.
gi(n), hi(n) Estimates of g∗

i (n) and h∗
i (n), respectively.

fi(n) Static evaluation function: gi(n) + hi(n).
C∗ Cost of an optimal path from s to t.
Lmin Cost of the best (least costly) complete path

found so far from s to t.
TREE1 The forward search tree.
TREE2 The backward search tree.
OPENi The set of open nodes in TREEi.
|OPENi| Number of nodes in OPENi.
CLOSEDi The set of closed nodes in TREEi.
pi(n) Parent of node n in TREEi.
pi

d(n) pd(pd . . . (pd
︸ ︷︷ ︸

i−times

(n)) . . .).

Ωm The set of nodes in OPENd′ which are

1 Ulmenstr. 5, A-3032 Eichgraben, Austria
2 Vienna Univ. of Technology, Inst. of Computer Technology, Vienna, Austria

descendants of m in TREEd′ .
MeetingNode Node where TREE1 met TREE2 and yielded

the best complete path found so far.

1 INTRODUCTION

Whenever sufficient memory is available, traditional best-first search
may be the choice, since it expands the fewest nodes among all
admissible algorithms using the same cost function [14]. However,
linear-space search algorithms such as DFBB (depth-first branch-
and-bound) [9] or IDA* (iterative-deepening-A*) [5] can solve much
more difficult problems because they face no real space limitations.
But they have large search overheads if there are many distinct cost
values, and if the problem graph is not a tree. Since machines with
larger and larger memories are becoming available, best-first search
can be applicable for many problems in practice (e.g., route plan-
ning). Can it solve problems now for which it was believed to be
incapable of previously?

In this paper, we investigate this question in a case study using the
domain of Fifteen Puzzle problems, which involve 15 sliding tiles in
a frame of 4 × 4 positions. The state space contains 16!/2 ≈ 1013

puzzle configurations. More precisely, we used the standard bench-
mark of 100 problem instances generated randomly and given in
[5]. All the compared algorithms had no domain-specific knowledge
about the puzzle available other than the Manhattan distance heuris-
tic. With this heuristic, IDA* was able to solve all 100 problem in-
stances in the sense of finding optimal solutions already in the early
eighties. In contrast, A* with 30,000 nodes of storage was not able
to solve a single one as reported in [5].

Having a machine with 2 GBytes main storage available mean-
while, we replicated this experiment by giving A* 43 million nodes.
Now it can solve 78 problem instances, but most of these are rela-
tively easy, while it still cannot solve the more difficult ones. Instead
of trying to get more and more main storage so that A* may be able
to solve them all, we found it more interesting and challenging to
achieve the result in question through search improvements.

With much improved heuristic functions, much more efficient
searches result [1, 6] and even solving Twenty-Four Puzzle problems
has become feasible [6, 7]. This, however, signifies improvements
of the knowledge made available to the search, which is an orthog-
onal approach. It is well known from the early days of knowledge-
based systems that improvements of the knowledge provided by hu-
mans can improve performance tremendously. We were not particu-
larly interested in these puzzles per se or in designing better heuristic
knowledge for them. It took a few decades until excellent (and still
admissible) heuristics were devised for them. In practice it will not
always be possible to develop such good heuristics before solutions
are required.

Another possibility for improvements is to let the search itself dy-
namically improve heuristic values according to [3]. Using this ap-
proach, a given and less perfect static heuristic can be improved by
the machine itself. The current paper contributes by showing how
this approach can be utilized well in traditional best-first search.

As indicated above, however, A* still does not perform well even
with much larger available storage, and it is in a certain sense optimal
over its unidirectional competitors (see [2]). So, we decided to study
bidirectional heuristic search in this regard. A typical representative
of traditional bidirectional heuristic search with “front-to-end” eval-
uations is BS* [8]. We found that it can solve 95 problem instances
on the 2 GByte machine. Those instances that it still cannot solve are
much more difficult than the ones it can.

A related algorithm based on dynamic improvements of the heuris-
tic named Max-Switch-A* [4] was reported to solve 79 of the given
puzzle instances with 256 MBytes of storage. On the machine with
2 GBytes, we found that it can solve 99, but it still cannot solve the
single most difficult problem in the given set.

Is there a better utilization of this approach in traditional best-first
search? Unfortunately, due to the dynamic nature of this improved
heuristic, its application in such a bidirectional algorithm poses dif-
ficult technical problems. Finally, however, we found a simple and
elegant way of using this heuristic in an algorithmic improvement of
BS*. This combination is able to solve the complete benchmark set
on the given machine with 2 GBytes. According to our best knowl-
edge, it can solve it overall faster than any of the previously published
approaches using the Manhattan distance heuristic.

The remainder of this paper is organized as follows. In order to
make it self-contained, we review some background material on the
bidirectional heuristic search algorithm BS* and on the dynamically
improved heuristic. Then we elaborate on the problems involved in
their combination and some concrete approaches. Finally, we demon-
strate the efficiency of the best combination we found in comparison
with the best competitors through presenting experimental results.

2 BACKGROUND

First, let us be precise on what constitutes a bidirectional search.
When there is one goal node t explicitly given, such a search pro-
ceeds both in the forward direction from the start node s to t and
in the backward direction from t to s [11]. Bidirectional search is
possible if for a given node n the set of parent nodes pi can be deter-
mined for which there exist operators that lead from pi to n. Search-
ing backwards means generating parent nodes successively from the
goal node t. In other words, backward search implements reasoning
about the operators in the backward direction.

Bidirectional search also works correctly in cases where the costs
of inverse arcs between any two nodes are different: the backward
search implements reasoning in the backward direction but takes ac-
count of the cost of going in the forward direction. More formally,
k1(m,n) = k2(n, m) is the cost of an optimal path from m to n.
So, k2(m,n) is the cost of an optimal path from n to m, and is used
for notational convenience only. All the bidirectional search algo-
rithms dealt with in this paper work correctly under these conditions
and do not require that the operators are reversible or that the cost of
a path is the same in either direction.

In this paper we focus on the kind of traditional bidirectional
search with “front-to-end” evaluations: the heuristic evaluation func-
tions fd(n) estimate the cost of an optimal path to the appropriate
endpoint (i.e., f1(n) uses t as the target for the forward search, and
f2(n) uses s as the target for the backward search). We can view such

procedure GenericBS∗(s, t)
1. g1(s)← g2(t)← 0; f1(s)← f2(t)← h1(s);Lmin ←∞;
2. OPEN1 ← {s}; OPEN2 ← {t};
3. CLOSED1 ← CLOSED2 ← Ø;
4. until OPEN1 = Ø or OPEN2 = Ø do
5. <Determine the search direction and set d>;
6. d′ ← 3− d; /* set the opposite search direction */
7. <Select m ∈ OPENd>;
8. OPENd ← OPENd \ {m};
9. CLOSEDd ← CLOSEDd ∪ {m};
10. if m ∈ CLOSEDd′

then /* nip m in TREEd and prune TREEd′ */
11. Ωm ← {n | n ∈ Γd′(m) ∧ pd′(n) = m};
12. OPENd′ ← OPENd′ \Ωm;

else
13. EXPAND(m);

endif
enduntil

14. if Lmin =∞
then no path exists
else

15. the solution path with cost Lmin is
(s, . . . , p2

1(MeetingNode), p1(MeetingNode),
MeetingNode, p2(MeetingNode), . . . , t).

endif
endprocedure.

Figure 1. A generic BS* algorithm.

a search essentially as two A*-type searches in opposite directions,
but it has a more subtle termination condition for guaranteeing op-
timal solutions. These searches in opposite directions are performed
quasi-simultaneously, i.e., on a sequential machine one node is ex-
panded after another, but the search direction is changed at least from
time to time. The decision for searching in the forward or backward
direction is usually made anew for each node expansion, most of-
ten according to the cardinality criterion [11]: search in the direction
with fewer open nodes.

The typical representatives of traditional bidirectional heuristic
search with “front-to-end” evaluations are the two algorithms BHPA
[11] and BS* [8]. In order to be more precise, we developed a pseu-
docode formulation of a generic BS* algorithm shown in Fig. 1. It is
generic in containing a few statements and conditions with possible
variations, which are indicated by numbers in bold face. In order to
make the pseudocode more readable, its procedure for node expan-
sion is given separately in Fig. 2.

One statement with variations is number 5 in procedure
GenericBS∗ (see Fig. 1). The original BS* algorithm [8] uses the
above-mentioned cardinality criterion here, more precisely:

if |OPEN1| ≤ |OPEN2| then d← 1 else d← 2.

Another generic statement is number 7 in procedure GenericBS∗.
Much as usual in traditional best-first search, BS* selects one of the
nodes with lowest fd-value from OPENd.

While BHPA explores part of the search space twice, BS* can
avoid this due to the following improvements over BHPA:

• nipping:
When a node is selected for expansion which is already closed in

procedure EXPAND(m)
1. TrimFlag← false;
2. foreach n ∈ Γd(m) do
3. g ← gd(m) + cd(m,n);
4. if not <screening condition>

then /* process node n */
5. f ← g + hd(n);
6. if n /∈ TREEd /* n is a new node */

then
7. gd(n)← g; fd(n)← f ; pd(n)← m;
8. OPENd ← OPENd ∪ {n};
9. elsif g < gd(n) /* better path to n found */

then
10. gd(n)← g; fd(n)← f ; pd(n)← m;
11. if n ∈ CLOSEDd

then /* reopen n */
12. CLOSEDd ← CLOSEDd \ {n};
13. OPENd ← OPENd ∪ {n};

endif
endif

14. if n ∈ TREEd′ and g1(n) + g2(n) < Lmin

then /* update Lmin */
15. Lmin ← g1(n) + g2(n);
16. MeetingNode← n;
17. TrimFlag← true;

endif
endif

endforeach
18. if TrimFlag

then /* trim the open lists */
19. Remove from OPEN1 and OPEN2 those nodes n

satisfying the <trimming condition> and which
are not source nodes (for OPEN1 the source node
is s; for OPEN2 it is t)

endif
endprocedure.

Figure 2. The procedure for node expansion.

the opposite search tree, BS* closes it without expansion.
• pruning:

In the same situation, BS* removes descendants of this node in
the opposite OPEN3−d list.

In addition, BS* uses the formula

fd(n) = gd(n) + hd(n) ≥ Lmin (1)

for removing nodes from the OPENd lists:

• trimming:
When a new solution with reduced cost Lmin is found, BS* re-
moves all those open nodes (in both directions) whose fd-values
satisfy (1). This is the <trimming condition> of statement num-
ber 19 in procedure EXPAND (see Fig. 2).

• screening:
If the fd-value of a newly generated node satisfies (1), BS* does
not place it in the OPENd list at all. In fact, formula (1) is also
the <screening condition> of statement number 4 in procedure
EXPAND.

BS* terminates when OPEN1 or OPEN2 is empty. BS* is admis-
sible if hd is consistent.3 We assume the availability of a consistent
static heuristic evaluation function hd in both directions.

In this paper, we also make use of the Max heuristic [3]. For a
given node A to be expanded in the forward direction d = 1, it is
known based on the search already undertaken to A, how much the
actual path is more costly than its heuristic estimate:

Diff2(A) = g1(A)− h2(A) (2)

Moreover, fmin2 is the minimal f2-value of all open nodes in the
opposite search frontier. As proven and illustrated in [3], adding these
two components does not overestimate an optimal path through A.
Since such a dynamic estimate may also be smaller than the static
heuristic, the maximum of the two is taken:

F1(A) = max(f1(A), fmin2 + Diff2(A)) (3)

The resulting function F1 is admissible but not consistent.

3 HOW TO USE A DYNAMICALLY IMPROVED
HEURISTIC IN A BS*-LIKE ALGORITHM

The first and immediately obvious use of Fd — the general version
of F1 as given in (3) — is instead of fd for sorting the nodes in the
OPENd lists for expansion. However, there are a few technical prob-
lems involved with incorporating the Max method into BS*, two of
which we name here. First, the search fronts meet later, since the use
of Fd has the side effect of delayed expansion of those nodes with a
high chance of meeting the other search frontier. This is also a reason
why algorithms with the Max heuristic do not dominate their coun-
terparts without. A bigger problem is that BS* requires a consistent
heuristic because of nipping and pruning. Even worse, the usual trick
to make an admissible heuristic consistent (using the maximum of
the heuristic values on a path) cannot be applied, since fmind may
increase dynamically during the search.

Still, we have been able to devise several admissible algorithms
based on BS* that make use of the Max heuristic. We sketch here
two selected algorithms:

• Max-BS*
The first algorithm is a simple modification of BS*. In fact, only
statement number 7 in procedure GenericBS∗ has to be instanti-
ated differently to the original BS* algorithm. As indicated above,
the modified algorithm uses Fd instead of fd for sorting the nodes
in the OPENd list for expansion. But it does so only in one di-
rection, i.e., d is fixed. This allows nipping and pruning from one
side, still avoiding exploration of the search space twice.

• BiMax-BS∗
F

This algorithm utilizes the Max heuristic in both search directions
concurrently, i.e., really bidirectionally. However, it does it in a
completely different way than Max-BS*. In particular, BiMax-
BS∗

F does not use Fd for node selection, but fd like the origi-
nal BS* algorithm. In contrast, BiMax-BS∗

F uses this dynamically
improved heuristic for trimming and screening. More precisely, it
uses the following formula as the <trimming condition> of state-
ment number 19 and as the <screening condition> of statement
number 4 in procedure EXPAND, and for either value of d:

Fd(n) = max(fd(n), fmind′ + Diffd′(n)) ≥ Lmin (4)

3 hd is said to be consistent if hd(m) ≤ hd(n) + kd(m, n) for all nodes m
and n. If for any goal node t hd(t) = 0, this implies that hd is admissible,
i.e., the heuristic function never overestimates the minimal cost.

28.6

1.47
8.18 4.22 3.44 1.13

61.4 62.3
58.1

27.5
23.4 22.1

13.8

100.0

0.87

100.0

0

20

40

60

80

100

IDA* Trans�
(6�mio.�nodes)

BIDA*�
(Depth=16)

BIDA*�
(Depth=14)

BIDA*
(Depth=7)

Max-BAI-Trans
(4,1)

Max-BAI-Trans
(4,8)

BiMax-BS*F

R
es

ul
ts

�r
el

at
iv

e�
to

�K
or

f's
�ID

A
*�

in
�% Nodes�generated

Running�time

Figure 3. Comparison on the complete benchmark set of Fifteen Puzzle problem instances.

This formula essentially combines formula (1) with the general-
ized version of (3). Its application improves both the number of
nodes expanded and the memory utilization of BS* through dis-
carding many more nodes even before they are stored (screening),
due to the dynamically improved heuristic of the Max method. In
effect, it prunes many nodes which otherwise would have to be
expanded. Since BiMax-BS∗

F uses the consistent heuristic fd for
sorting the nodes in both OPENd lists (instead of the admissible
but not consistent Fd), it can also apply nipping and pruning in
both directions.
In addition, BiMax-BS∗

F performs F -leveling (instead of the car-
dinality criterion for each node): The search continues in its cur-
rent direction d until no open node with the current fmind is left,
then fmind is increased. In order to make good use of the Max
method, the differences in one frontier used for improving the
heuristic values in the other should be as high as possible. There-
fore, it is useful to have reached the next level of f -values for im-
proving the search in the other direction. That is why BiMax-BS∗

F

does not change its search direction for each node. Whenever the
next level of f -values is reached in the current search direction, it
decides about the new search direction using the cardinality crite-
rion. In this way, statement number 5 in procedure GenericBS∗ is
instantiated.

More algorithms and details as well as admissibility proofs are
documented (in German) in the diploma thesis of the first author of
this paper. The major difficulty in developing BiMax-BS∗

F was that
normally an improved heuristic is utilized in a best-first search for
sorting the open nodes. This turned out, however, as less useful here
than its utilization for pruning nodes, which is more usual in depth-
first search.

4 EXPERIMENTAL RESULTS

Now let us have a look on specific experimental results for find-
ing optimal solutions to the set of 100 Fifteen Puzzle problems. We
compare our new algorithms with those that achieve the best pub-
lished results in this domain. We also compare them with IDA* as
the linear-space reference algorithm, as well as A* and BS* as the
unidirectional and bidirectional best-first search references. All the
compared algorithms used no domain-specific knowledge about the
puzzle other than the Manhattan distance heuristic. The processor
used was an AMD K7-1800+ and the main storage available was up
to 2 Gbytes.

A* stored up to 43 million nodes. On the set of 78 problems that
it was able to solve with this memory, our best algorithm BiMax-
BS∗

F just generated 14.0% of the nodes generated by A* and needed
15.9% of its time.

On the 95 problems solvable by BS*, BiMax-BS∗
F just generated

26.0% of the nodes and needed 29.3% of the time of BS*. Using
the Max heuristic in one direction only for sorting the nodes in the
OPEN list was not that effective, but our new algorithm Max-BS*
also generated just 38.3% of the nodes and needed 40.9% of the time
of BS*. Max-Switch-A* [4] has about the same results, but BiMax-
BS∗

F has clearly the best results, due to its more effective use of the
Max heuristic in both directions.

Fig. 3 shows a comparison of several algorithms (again in terms
of the average number of node generations and their running times)
for solving the complete set of 100 problem instances. The data are
again normalized to the respective search effort of IDA*. Just to give
an idea of the overall difficulty of the given problem set, note that
IDA* generates some 363 million nodes on average, which needs
36.11 seconds on the given machine to find an optimal solution to
one problem instance. For the single most difficult problem, IDA*
needs 628.9 seconds to find an optimal solution, while BiMax-BS∗F
just uses 68.5 seconds.

The algorithm Trans [12] implements a form of enhanced iterative-
deepening search that uses a transposition table for IDA*. Trans uti-
lizes its table actually for two purposes, for recognizing transposi-
tions and for caching the best heuristic values acquired dynamically.
Fig. 3 shows the best result that we achieved with this algorithm,
where it used a hash table with 6 million nodes. In fact, this table
just uses an order of magnitude less storage than the 2 GBytes avail-
able. While the number of nodes generated slowly but steadily de-
creased with increasing table size, the running time became worse
with larger tables. One reason is the longer initialization time of the
table in the beginning, which is measurable for the very easy prob-
lems. The other reason is that a larger table means hashing in a higher
number of nodes. In an efficient implementation of the Fifteen Puz-
zle such as the one used in our experiment, even the effort of hashing
causes an overhead that cannot be ignored. Compared to a previously
published result in [3], the overall overhead of memory access is rel-
atively larger. We think that this is due to the CPU being relatively
faster than memory access on the new machine.

Another technique to prune duplicate nodes was proposed in [13],
using a finite state machine. Its results are not included in Fig. 3,
since we lack data on the running time (no such data are given in
[13], and we did not re-implement this technique). IDA* employing

this pruning technique generated 100.7 million nodes on the same
set of instances as reported in [13], which means 27.7 percent of
the number of nodes generated by pure IDA*. Ignoring that the fi-
nite state machine must be built in a pre-processing stage first, we
estimate that this approach would require about 30 percent of the
running time of IDA*. Since the best (bidirectional) algorithms are
clearly faster than this approach, however, it is not necessary to have
the exact data for the comparison available.

In principle, we have provided all the available storage to BIDA*
[10], the most efficient algorithm of the perimeter approach. But it
cannot make use of it. Even to the contrary, a comparison of results
with perimeter depths 7, 14 and 16 as shown in Fig. 3 suggests that
the version with the least memory use (7) achieved the best running
time, possibly since it fit into the cache. We actually determined this
optimum for the given machine empirically by letting it run with
many different perimeter depths. In effect, we tuned this competitor
to achieve its best result under the given conditions. The version with
perimeter depth 14 was the one reported as best originally in [10],
and the one with 16 in [3].

Also Max-BAI-Trans cannot really utilize the whole memory
available. The version (4,1) stores 4 million nodes for the Max heuris-
tic and 1 million nodes for the Trans part. This version just needs 256
MBytes. We also tuned this competitor and achieved its best results
with 4 million nodes for the Max heuristic and 8 million nodes for
the Trans part. Increasing the memory size in either way resulted in
longer running times. The explanation for the different result in [3]
as compared to IDA* is the same as for Trans above.

Our new algorithm BiMax-BS∗
F can store 43 million nodes in the

given 2 GBytes of memory. It can utilize it well by achieving the best
overall running time. (Even the number of generated nodes is com-
parable to BIDA*, which performs “front-to-front” evaluations that
are much more expensive per node searched.) Its (constant) overhead
per node results in a factor of about 12 compared to the running time
of IDA* on the given machine, which runs in cache throughout and
does not access a hash table. But the savings in terms of nodes gen-
erated overcompensate this to a great extent.

The superiority of BiMax-BS∗
F in terms of running time over its

best competitors is statistically significant. For example, the proba-
bility that the improvement of the running time over BIDA* (with
perimeter depth 7) is due to chance fluctuation is 0.47 percent ac-
cording to a test that compares the means of the paired samples of
the absolute running times. Compared to the best version of Max-
BAI-Trans (4,8) on the machine used, it is 2.94 percent. Note, that
we compare BiMax-BS∗

F here with versions of its competitors that
were tuned for their advantage.

Let us also briefly make a comparison relative to the difficulty of
the problem instances. BiMax-BS∗

F is particularly better on the more
difficult problems, while it is also often worse on the easy problems.
Since these can be solved in the order of a second, this does not mat-
ter much. It may matter, however, whether to wait some 20 seconds
(or up to 68 seconds), or twice as long (or even longer) for the solu-
tion to a more difficult problem (the most difficult one).

5 CONCLUSION

Much larger main storage is available today than previously. Depth-
first search cannot utilize it, but additionally available memory may
be given to some memory-bounded search algorithm. However, as
indicated by their results above, memory-bounded algorithms do not
necessarily scale up with increasing memory size. In addition, some
of the better algorithms for memory-bounded search need to be tuned

for a given machine using their parameters, whose values may have
to be determined empirically first.

Using the standard benchmark of Fifteen Puzzle problems for a
case study, this paper shows that traditional best-first search can find
optimal solutions now (even with the old Manhattan distance heuris-
tic). It solves such problems faster overall, especially the more diffi-
cult ones. In order to achieve this result, algorithmic improvements
were necessary for utilizing a dynamically improved heuristic. We
had to overcome several problems, especially how to make good use
of the dynamic Max heuristic in a BS*-like algorithm.

This paper also shows that bidirectional heuristic search was nec-
essary for this result, since no known unidirectional best-first search
can solve all the given problem instances (A* being known as op-
timal in terms of expanded nodes). Also in contrast to switching to
unidirectional search, we show now that the continuation of bidi-
rectional search works better with the dynamic Max heuristic. It is
important to be able to utilize it in both directions.

We cannot make any claims yet about the performance of this par-
ticular approach on other problem domains. Still, the important les-
son learned is that traditional best-first search is able to solve prob-
lems that it was believed to be incapable of. This search paradigm
is out of question for solving very difficult problems or when hav-
ing much time available for finding solutions. For solving problems
in “real-time” situations, however, where humans are waiting for a
solution in the order of seconds to minutes, it can make an impor-
tant difference. On currently available machines, traditional best-first
search can solve relatively difficult problems efficiently.

REFERENCES
[1] J. Culberson and J. Schaeffer, ‘Searching with pattern databases’, in

Advances in Artificial Intelligence, ed., G. McCalla, 402–416, Springer-
Verlag, Berlin, (1996).

[2] R. Dechter and J. Pearl, ‘Generalized best-first strategies and the opti-
mality of A∗’, J. ACM, 32(3), 505–536, (1985).

[3] H. Kaindl and G. Kainz, ‘Bidirectional heuristic search reconsidered’,
Journal of Artificial Intelligence Research (JAIR), 7, 283–317, (1997).

[4] H. Kaindl, G. Kainz, R. Steiner, A. Auer, and K. Radda, ‘Switching
from bidirectional to unidirectional search’, in Proc. Sixteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-99). San Fran-
cisco, CA: Morgan Kaufmann Publishers, (1999).

[5] R.E. Korf, ‘Depth-first iterative deepening: An optimal admissible tree
search’, Artificial Intelligence, 27(1), 97–109, (1985).

[6] R.E. Korf and A. Felner, ‘Disjoint pattern database heuristics’, Artificial
Intelligence, 134, 9–22, (2002).

[7] R.E. Korf and L.A. Taylor, ‘Finding optimal solutions to the Twenty-
Four Puzzle’, in Proc. Thirteenth National Conference on Artificial In-
telligence (AAAI-96), pp. 1202–1207. Menlo Park, CA: AAAI Press /
The MIT Press, (1996).

[8] J.B.H. Kwa, ‘BS∗: An Admissible Bidirectional Staged Heuristic
Search Algorithm’, Artificial Intelligence, 38(2), 95–109, (1989).

[9] E.L. Lawler and D. Wood, ‘Branch-and-bound methods: a survey’, Op-
erations Research, 14(4), 699–719, (1966).

[10] G. Manzini, ‘BIDA*: an improved perimeter search algorithm’, Artifi-
cial Intelligence, 75(2), 347–360, (1995).

[11] I. Pohl, ‘Bi-directional search’, in Machine Intelligence 6, pp. 127–140,
Edinburgh, (1971). Edinburgh University Press.

[12] A. Reinefeld and T.A. Marsland, ‘Enhanced iterative-deepening
search’, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (PAMI), 16(12), 701–709, (July 1994).

[13] L.A. Taylor and R.E. Korf, ‘Pruning duplicate nodes in depth-first
search’, in Proc. Eleventh National Conference on Artificial Intelli-
gence (AAAI-93), pp. 756–761. Menlo Park, CA: AAAI Press / The
MIT Press, (1993).

[14] W. Zhang and R.E. Korf, ‘Depth-first vs. best-first search: new results’,
in Proc. Eleventh National Conference on Artificial Intelligence (AAAI-
93), pp. 769–775. Menlo Park, CA: AAAI Press / The MIT Press,
(1993).

