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Collard Philippe and Verel Sébastien and Clergue Manuel 1

Abstract. We proposed a new search heuristic using the scuba div-
ing metaphor. This approach is based on the concept of evolvability
and tends to exploit neutrality which exists in many real-world prob-
lems. Despite the fact that natural evolution does not directly select
for evolvability, the basic idea behind the scuba search heuristic is
to explicitly push evolvability to increase. A comparative study of
the scuba algorithm and standard local search heuristics has shown
the advantage and the limitation of the scuba search. In order to tune
neutrality, we use the NKq fitness landscapes and a family of travel-
ling salesman problems (TSP) where cities are randomly placed on a
lattice and where travel distance between cities is computed with the
Manhattan metric. In this last problem the amount of neutrality varies
with the city concentration on the grid ; assuming the concentration
below one, this TSP reasonably remains a NP-hard problem.

1 Introduction
In this paper we propose an heuristic called Scuba Search that al-
lows us to exploit the neutrality that is present in many real-world
problems. This section presents the interplay between neutrality
in search space and metaheuristics. Section 2 describes the Scuba
Search heuristic in details. In order to illustrate efficiency and limit
of this heuristic, we use the NKq fitness landscapes and a travelling
salesman problem (TSP) on diluted lattices as a model of neutral
search space. These two problems are presented in section 3. Experi-
ment results are given in section 4 where comparisons are made with
two hill climbing heuristics. In section 5, we point out advantage and
shortcoming of the approach; finally, we summarize our contribution
and present plans for a future work.

1.1 Neutrality
The metaphor of an ’adaptative landscape’ introduced by
S. Wright [14] has dominated the view of adaptive evolution: an up-
hill walk of a population on a mountainous fitness landscape in which
it can get stuck on suboptimal peaks. Results from molecular evolu-
tion has changed this picture: Kimura’s model [7] assumes that the
overwhelming majority of mutations are either effectively neutral or
lethal and in the latter case purged by negative selection. This as-
sumption is called the neutral hypothesis. Under this hypothesis, the
dynamics of populations evolving on such neutral landscapes are dif-
ferent from those on adaptive landscapes: they are characterized by
long periods of fitness stasis (population is situated on a ’neutral net-
work’) punctuated by shorter periods of innovation with rapid fitness
increase. In the field of evolutionary computation, neutrality plays
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an important role in real-world problems: in design of digital circuits
[12], in evolutionary robotics [5]. In those problems, neutrality is im-
plicitly embedded in the genotype to phenotype mapping.

1.2 Evolvability
Evolvability is defined by Altenberg [13] as “the ability of random
variations to sometimes produce improvement”. This concept refers
to the efficiency of evolutionary search; it is based upon the work by
Altenberg [1]: “the ability of an operator/representation scheme to
produce offspring that are fitter than their parents”. As enlighten by
Turney [11] the concept of evolvability is difficult to define. As he
puts it: “if s and s′ are equally fit, s is more evolvable than s′ if the
fittest offspring of s is more likely to be fitter than the fittest offspring
of s′”. Following this idea we define evolvability as a function (see
section 2.2).

2 Scuba Search
The Scuba Search, heuristic introduced in this section, exploits neu-
trality by combining local search heuristic with navigating the neutral
neighborhood of states.

2.1 The Scuba Diving Metaphor
Keeping the landscape as a model, let us imagine this landscape with
peaks (local optima) and lakes (neutral networks). Thus, the land-
scape is bathed in an uneven sea; areas under water represent non-
viable solutions. So there are paths from one peak to another one for
a swimmer. The key, of course, remains to locate an attractor which
represents the system’s maximum fitness. In this context, the prob-
lem is to find out how to cross a lake without global information. We
use the scuba diving metaphor as a guide to present principles of the
so-called scuba search (SS). This heuristic is a way to deal with the
problem of crossing in between peaks. then we avoid to be trapped
in the vicinity of local optima. The problem is to get to know what
drives the swimmer from one edge of the lake to the opposite one? Up
to the classic view a swimmer drifts at the surface of a lake. The new
metaphor is a scuba diving seeing the world above the water surface.
We propose a new heuristic to cross a neutral net getting information
above-the-surface (ie. from fitter points in the neighborhood).

2.2 Scuba Search Algorithm
Despite the fact that natural evolution does not directly select for
evolvability, there is a dynamic pushing evolvability to increase [11].
The basic idea behind the SS heuristic is to explicitly push evolv-
ability to increase. Before presenting this search algorithm, we need



to introduce a new type of local optima, the local-neutral optima.
Indeed with SS heuristic, local-neutral optima will allow transition
from neutral to adaptive evolution. So evolvability will be locally op-
timized. Given a search space S and a fitness function f defined on
S , some more precise definitions follow.

Definition: A neighborhood structure is a function V : S → 2S

that assigns to every s ∈ S a set of neighbors V(s) such that s ∈
V(s).

Definition: The evolvability of a solution s is the function evol

that assigns to every s ∈ S the maximum fitness from the neighbor-
hood V(s): ∀s ∈ S , evol(s) = max{f(s

′

) | s
′

∈ V(s)}.
Definition: For every fitness function g, neighborhood structure

W and genotype s, the predicate isLocal is defined as:
isLocal(s, g,W) = (∀s

′

∈ W(s), g(s
′

) ≤ g(s)).
Definition: For every s ∈ S , the neutral set of s is the setN (s) =

{s
′

∈ S | f(s
′

) = f(s)}, and the neutral neighborhood of s is the
set Vn(s) = V(s) ∩N (s).

Definition: For every s ∈ S , the neutral degree of s, noted
Degn(s), is the number of neutral neighbors of s, Degn(s) =
#Vn(s)− 1.

Definition: A solution s is a local maximum iff isLocal(s, f,V).
Definition: A solution s is a local-neutral maximum iff

isLocal(s, evol,Vn).
Scuba Search use two dynamics one after another (see algo.1).

The first one corresponds to a neutral path. At each step the scuba
diving remains under the water surface driven by the hands-down fit-
nesses; that is fitter fitness values reachable from one neutral neigh-
bor. At that time the flatCount counter is incremented. When the div-
ing reaches a local-neutral optimum, i.e. when all the fitnesses reach-
able from one neutral neighbor are selectively neutral or disadvanta-
geous, the neutral path stops and the diving starts up the Invasion-of-
the-Land. Then the gateCount counter increases. This process goes
along, switching between Conquest-of-the-Waters and Invasion-of-
the-Land, until a local optimum is reached.

Algorithm 1 Scuba Search
flatCount← 0, gateCount← 0
Choose initial solution s ∈ S
repeat

while not isLocal(s, evol,Vn) do
M = max{evol(s

′

) | s
′

∈ Vn(s)− {s}}
if evol(s) < M then

choose s
′

∈ Vn(s) such that evol(s
′

) = M

s← s
′

, flatCount← flatCount +1
end if

end while
choose s

′

∈ V(s)− Vn(s) such that f(s
′

) = evol(s)

s← s
′

, gateCount← gateCount +1
until isLocal(s, f,V)

3 Models of Neutral Seach Space
In order to study the Scuba Search heuristic we have to use land-
scapes with a tunable degree of neutrality.

3.1 The NKq fitness Landscape
The NKq fitness landscapes family proposed by Newman et al. [9]
has properties of systems undergoing neutral selection such as

RNA sequence-structure maps. It is a generalization of the NK-
landscapes proposed by Kauffman [6] where parameter K tunes the
ruggedness and parameter q tunes the degree of neutrality.

3.1.1 Definition and properties

The fitness function of a NKq-landscape [9] is a function f :
{0, 1}N → [0, 1] defined on binary strings with N loci. Each lo-
cus i represents a gene with two possible alleles, 0 or 1. An ’atom’
with fixed epistasis level is represented by a fitness components
fi : {0, 1}K+1 → [0, q − 1] associated to each locus i. It depends
on the allele at locus i and also on the alleles at K other epistatic loci
(K must fall between 0 and N−1). The fitness f(x) of x ∈ {0, 1}N

is the average of the values of the N fitness components fi:

f(x) =
1

N(q − 1)

N
X

i=1

fi(xi; xi1 , . . . , xiK
)

where {i1, . . . , iK} ⊂ {1, . . . , i − 1, i + 1, . . . , N}. Many ways
have been proposed to choose the K other loci from N loci in the
genotype. Two possibilities are mainly used: adjacent and random
neighborhoods. With an adjacent neighborhood, the K genes near-
est to the locus i are chosen (the genotype is taken to have periodic
boundaries). With a random neighborhood, the K genes are chosen
randomly on the genotype. Each fitness component fi is specified
by extension, ie an integer number yi,(xi;xi1

,...,xiK
) from [0, q − 1]

is associated with each element (xi; xi1 , . . . , xiK
) from {0, 1}K+1.

Those numbers are uniformly distributed in the interval [0, q−1]. The
parameters of NKq-landscape tune ruggedness and neutrality of the
landscape [4]. The number of local optima is linked to the parameter
K. The largest number is obtained when K takes its maximum value
N − 1. The neutral degree (see tab. 1) decreases as q or K increases.
The maximal degree of neutrality appears when q takes value 2.

Table 1. Average neutral degree on NKq-landscapes with N = 64
performs on 50000 genotypes

K
q 0 2 4 8 12 16
2 35.00 21.33 16.56 12.39 10.09 8.86
3 21.00 13.29 10.43 7.65 6.21 5.43
4 12.00 6.71 4.30 2.45 1.66 1.24

100 1.00 0.32 0.08 0.00 0.00 0.00

3.1.2 Parameters setting

All the heuristics used in our experiments are applied to a same
instance of NKq fitness landscapes2 with N = 64. The neigh-
borhood is the classical one-bit mutation neighborhood: V(s) =

{s
′

| Hamming(s
′

, s) ≤ 1}. For each triplet of parameters N ,
K and q, 103 runs were performed.

3.2 The Travelling Salesman Problem on randomly
diluted lattices

The family of TSP proposed by Chakrabarti [3] is an academic
benchmark that allows to test our ideas. These problems do not reflect
the true reality but is a first step towards more real-life benchmarks.
We use these problems to incorporate a tunable level of neutrality
into TSP search spaces.
2 With random neighborhood



3.2.1 Definition and properties

The travelling salesman problem is a well-known combinatorial op-
timization problem: given a finite number N of cities along with the
cost of travel between each pair of them, find the cheapest way of vis-
iting all the cities and returning to your starting point. In this paper we
use a TSP defined on randomly dilute lattices. The N cities randomly
occupy lattice sites of a two-dimentional square lattice (L × L). We
use the Manhattan metric to determine the distance between two
cities. The lattice occupation concentration (i.e. the fraction of sites
occupied) is N

L
2 . As the concentration is related to the neutral degree,

we note TSPn such a problem with concentration n. For n = 1, the
problem is trivial as it can be reduced to the one-dimensional TSP.
As n decreases from unity the problem becomes nontrivial: the dis-
creteness of the distance of the path connecting two cities and the
angle which the path makes with the Cartesian axes, tend to disap-
pear. Finally, as n → 0, the problem can be reduced to the standard
two-dimensional TSP. As Chakrabarti [3] stated: “it is clear that the
problem crosses from triviality (for n = 1) to NP-hard problem at a
certain value of n. We did not find any irregularity |...| at any n. The
crossover from triviality to NP-hard problem presumably occurs at
n = 1.”

The idea is to discretize the possible distances, through only al-
lowing each distance to take one of D distances. Varying this terrace
parameter D from an infinite value (corresponding to the standard
TSP), down to the minimal value of 1 thus decreases the number
of possible distances, so increasing the fraction of equal fitness neu-
tral solutions. So, parameter n = N

L2 of the TSPn tunes both the
concentration and the neutral degree (see fig. 1). In the remaining of
this paper we consider TSPn problems where n stands in the range
[0, 1].
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Figure 1. Average proportion of neutral neighbors on TSPn as function
of L, for N = 64 (values are computing from 50000 random solutions)

3.2.2 Parameters setting

All the heuristics used in our experiments are applied to a same in-
stance of TSPn. The search space S is the set of permutations of
{1, . . . , N}. The neighborhood is induced by the classical 2-opt mu-
tation operator: V(s) = {s

′

| s
′

= 2-opt(s)}. The size of neighbor-
hood is then N(N−3)

2
. For each value of L, 500 runs were performed.

4 Experiment Results

4.1 Algorithm of Comparison

Two Hill Climbing algorithms are used for comparison.

4.1.1 Hill Climbing

The simplest type of local search is known as Hill Climbing (HC)
when trying to maximize a solution. HC is very good at exploit-
ing the neighborhood; it always takes what looks best at that time.
But this approach has some problems. The solution found depends
on the initial solution. Most of the time, the found solution is only a
local optima. We start off with a probably suboptimal solution. We
then look in the neighborhood of that solution to see if there is some-
thing better. If so, we adopt this improved solution as our current best
choice and repeat. If not, we stop assuming that the current solution
is good enough (local optimum).

Algorithm 2 Hill Climbing
step← 0
Choose initial solution s ∈ S
repeat

choose s
′

∈ V(s) such that f(s
′

) = evol(s)

s← s
′

, step← step + 1
until isLocal(s, f,V)

4.1.2 Hill Climbing Two Steps

Hill Climber can be extended in many ways. Hill Climber two Step
(HC2) exploits a larger neighborhood of stage 2. The algorithm is
nearly the same as HC. HC2 looks in the extended neighborhood of
stage two of the current solution to see if there is something better. If
so, HC2 adopts the solution in the neighborhood of stage one which
can reach a best solution in the extended neighborhood. If not, HC2
stop assuming the current solution is good enough. So, HC2 can
avoid more local optimum than HC. Before presenting the algorithm
3 we must introduce the following definitions:

Definition: The extended neighborhood structure3 from V is the
function V2(s) = ∪s1∈V(s)V(s1)

Definition: evol2 is the function that assigns to every s ∈ S the
maximum fitness from the extended neighborhood V2(s). ∀s ∈ S ,
evol2(s) = max{f(s

′

)|s
′

∈ V2(s)}

Algorithm 3 Hill Climbing (Two Steps)
step← 0
Choose initial solution s ∈ S
repeat

if evol(s) = evol2(s) then
choose s

′

∈ V(s) such that f(s
′

) = evol2(s)
else

choose s
′

∈ V(s) such that evol(s
′

) = evol2(s)
end if
s← s

′

, step← step + 1
until isLocal(s, f,V2)

3 Let’s note that V(s) ⊂ V2(s)



4.2 Performances

In this section we present the average fitness found using each heuris-
tic on both NK and TSP problems.

4.2.1 NKq Landscapes

Figure 2 shows the average fitness found respectively by each of
the three heuristics as a function of the epistatic parameter K for
different values of the neutral parameter q. In the presence of neu-
trality, according to the average fitness, Scuba Search outperforms
Hill Climbing and Hill Climbing two steps. Let us note that with
high neutrality (q = 2 and q = 3), the difference is still more
significant. Without neutrality (q = 100) all the heuristics are nearly
equivalent. The Scuba Search have on average better fitness value
for q = 2 and q = 3 than hill climbing heuristics. This heuris-
tic benefits in NKq from the neutral paths to reach the highest peaks.

4.2.2 TSPn Problems

Table 2 shows the fitness performances of heuristics on TSPn land-
scapes. The average and the best fitness found by SS are always
above the ones for HC. As for NKq landscapes, the difference is
more important when neutrality is more significant (L = 10 and
L = 20). Performances of SS are a little better for L = 10 and
L = 20 and a little less for L = 30 and L = 100. Let us also note
that standart deviation is still smaller for SS.

Table 2. Average and standart deviation of fitness found on TSPn
(N = 64) performed on 500 independants runs. Best fitness found is putted

in brackets
heurist L

10 20 30 100
HC 1015(90) 19310(164) 29313(256) 87244(770)
SS 934(84) 1808(162) 28112(254) 85741(764)

HC2 958(86) 18415(162) 28218(252) 85461(764)

4.3 Evaluation cost

4.3.1 NKq Landscapes

Table 3 shows the number of evaluations for the different heuristics.
For all the heuristics, the number of evaluations decreases with K.
The evaluation cost decreases as ruggedness increases. For HC and
HC2, the evaluation cost increases with q. For HC and HC2, more
neutral the landscape is, smaller the evaluation cost. Conversely, for
SS the cost decreases with q. At each step the number of evalua-
tions is N for HC and N(N−1)

2
for HC2. So, the cost depends on

the length of adaptive walk of HC and HC2 only. The evaluation
cost of HC and HC2 is low when local optima are nearby (i.e. in
rugged landscapes). For SS, at each step, the number of evaluations
is (1 + Degn(s))N which decreases with neutrality. So, the num-
ber of evaluations depends both on the number of steps in SS and
on the neutral degree. The evaluation cost of SS is high in neutral
landscape.

Table 3. Average number of evaluations on NKq-landscape with N = 64

K
q 0 2 4 8 12 16

HC 991 961 807 613 491 424
SS 2 35769 23565 15013 8394 5416 3962
HC2 29161 35427 28038 19192 15140 12374
HC 1443 1159 932 694 546 453
SS 3 31689 17129 10662 6099 3973 2799
HC2 42962 37957 29943 20486 15343 12797
HC 1711 1317 1079 761 614 500
SS 4 22293 9342 5153 2601 1581 1095
HC2 52416 44218 34001 22381 18404 14986
HC 2102 1493 1178 832 635 517
SS 100 4175 1804 1352 874 653 526
HC2 63558 52194 37054 24327 18260 15271

4.3.2 TSPn Problems

Table 4 shows the number of evaluations on TSPn. Scuba Search
uses a larger number of evaluations than HC (nearly 200 times on
average) and smaller than HC2 (nearly 12 times on average). As ex-
pected, for SS the evaluation cost decreases with L and so the neu-
trality of landscapes; whereas it increase for HC and HC2. Land-
scape seems more rugged when L is larger.

Table 4. Average number of evaluations (x 106) on the family of TSPn
problems with N = 64

L
10 20 30 100

HC 0.0871 0.101 0.105 0.117
SS 25.3 20.2 16.6 13.0

HC2 183.7 204.0 211.4 230.5

5 Discussion and conclusion

According to the average fitness found, Scuba Search outperforms
the others local search heuristics on both NKq and TSPn as soon as
neutrality is sufficient. However, it should be wondered whether effi-
ciency of Scuba Search does have with the greatest number of eval-
uations. The number of evaluations for Scuba Search is lesser than
the one for HC2. This last heuristic realizes a larger exploration of
the neighborhood than SS: it pays attention to neighbors with same
fitness and all the neighbors of the neighborhood too. However the
average fitness found is worse than the one found by SS. So, consid-
ering the number of evaluations is not sufficient to explain good per-
formance of SS. Whereas there is premature convergence towards
local optima with HC2, SS realizes a better compromise between
exploration and exploitation by examining neutral neighbors.

The main idea behind Scuba Search heuristic is to try to explic-
itly optimize evolvability on a neutral network before performing a
qualitative step using a local search heuristic. If evolvability is almost
constant on each neutral network, for instance as in the well-known
Royal-Road landscape [8], SS cannot perform neutral moves to in-
crease evolvability and then have the same dynamic than HC. In this
kind of problem, scuba search fails in all likehood.

In order to reduce the evaluation cost of SS, one solution would
be to choose a “cheaper” definition for evolvability: for example, the
best fitness of n neighbors randomly chosen or the first fitness of
neighbor which improves the fitness of the current genotype. An-
toher solution would be to change either the local search heuristic



 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

0 2 4 8 12 16

A
ve

ra
ge

 F
itn

es
s 

Fo
un

d

K

HC
Scuba Search
HC Two Step

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

0 2 4 8 12 16

A
ve

ra
ge

 F
itn

es
s 

Fo
un

d

K

HC
Scuba Search
HC Two Step

(a) (b)

 0.65

 0.7

 0.75

 0.8

 0.85

0 2 4 8 12 16

A
ve

ra
ge

 F
itn

es
s 

Fo
un

d

K

HC
Scuba Search
HC Two Step

 0.65

 0.7

 0.75

 0.8

 0.85

0 2 4 8 12 16
A

ve
ra

ge
 F

itn
es

s 
Fo

un
d

K

HC
Scuba Search
HC Two Step

(c) (d)

Figure 2. Average fitness found on NKq-landscapes as function of K, for N = 64 and q = 2 (a), q = 3 (b), q = 4 (c), q = 100 (d)

which evolvability or the one which allows to jump to a fitter solu-
tion. For instance, we could use Simulated Annealing or Tabu Search
to optimize neutral network then jump to the first improvement met
in the neighborhood.

This paper represents a first step demonstrating the potential inter-
est in using the scuba search heuristic to optimize neutral landscape.
Obviously we have to compare performances of this metaheuristic
with other metaheuristics adapted to neutral landscape as Netcrawler
[2] or extrema selection [10]. All these strategies use the neutrality
in different ways to find good solution and may not have the same
performances on all problems. SS certainly works well when evolv-
ability on neutral networks can be optimized.
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