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Abstract. The rational behavior of non-cooperative players is often
formalized by means of the game theoretic notion of Nash equilib-
rium. However, there are several practical applications (e.g., multi-
agent planning, mechanism design, and routing protocols design),
where the computation of any Nash equilibrium could not be satisfac-
tory, since we are often interested only in equilibria that satisfy some
additional requirements. Even though such Nash equilibria, called
constrained Nash equilibria, received a great deal of interest, a com-
prehensive formalization and a deep investigation of the complexity
issues related to their computation are still missing.

In this paper, we present a formal framework for specifying and
working with these constraints, by focusing on graphical games,
where a playerp may be directly interested only on part of the other
players, called neighbors ofp. We study the computational complex-
ity of the main problems arising in this framework for pure strategies.
Furthermore, we identify some restrictions on players’ interaction
that make some of these problems easy, by exploiting the graph rep-
resentation of the structure of the game, and a generalization of graph
acyclicity called treewidth. In these tractable cases, we also provide
highly-parallelizable algorithms for the computation of constrained
Nash equilibria.

1 Introduction

Game theory (see, e.g., [15]) is a mathematical framework for rep-
resenting the interaction of rational agents that try to achieve their
(possibly contrasting) goals. Roughly, agameG consists of a setP
of players each one having to perform some actions (orstrategies).
After a playerp ∈ P had chosen a strategy, she gets a payoff deter-
mined by her chosen action, as well as by the actions pursued by the
other players she is interested in, called theneighbors ofp. Then, the
aim ofp is to maximize such a payoff.

A widely accepted rational behavior for non-cooperative players is
based on the notion of Nash equilibrium, which is guaranteed to exist
for some kind of randomized strategies, after the famous Nash’s the-
orem [14]. According to Papadimitriou, determining the complexity
of computing a Nash equilibrium is one of the most important open
questions [16], and in fact several interesting results about the com-
putation of equilibria in particular settings had already appeared in
the literature (see, e.g., [5, 3, 2, 12, 19]).

In this paper, we focus on the setting ofpureNash equilibria (see,
e.g., [3, 6]), i.e., we assume that each player have to chose exactlyone
strategy among a set of possible ones in order to achieve her goal —
conversely in the setting ofmixedNash equilibria, players express
probabilities of choosing individual strategies. Recently, complexity
issues related to pure Nash equilibria have been deeply investigated
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in [6], where it is proven that, even in very restrictive settings, de-
termining whether a game has a pure Nash Equilibrium is NP-hard.
In the same paper, some tractable classes of games have been identi-
fied, and efficient algorithms for the computation of their pure Nash
equilibria have been proposed.

However, in many real world cases, such as multi-agent planning,
mechanism design, and routing protocols design, it is not sufficient
to compute any (pure) Nash equilibrium. Sometimes, we may want
to ensure that a player does not choose some particular action, or we
may be interested in Nash equilibria whose global outcomes satisfy
some particular requirement.

Such Nash equilibria with additional properties, calledcon-
strained Nash equilibriain this paper, received a great deal of inter-
est, because they can be applied fruitfully in many practical contexts.
For instance, Koutsoupias and Papadimitriou [13] studied the prob-
lem of routing the traffic over a network, and recognized that these
systems are often non-cooperative, since each player uses to self-
ish route its traffic, and aims at the maximization of its own utility.
Then, the authors proposed the study of theworstNash equilibrium,
i.e., the configuration with the maximum social cost (summation of
the expected players’ utilities). The idea is that, by computing this
parameter, it is possible to get equilibria corresponding to network
configurations with a link-latency upper bound below some given
threshold.

Other important applications of constrained Nash equilibria have
been suggested by Conitzer and Sandohlm [2] in the context of au-
tomatic mechanism design. In this case, the focus is on the design of
the game rules, which should guarantee that a “desirable” outcome
(according to a given objective) is reached in equilibria, despite the
fact that each agent is driven by her own interest.

Of course, most of the well-known results on Nash equilibria do
not apply to this new setting. Thus, we would like to know what hap-
pens if we add constraints to the game, and whether computing such
an equilibrium is a tractable problem, or under which restrictions it
could be feasible in polynomial time.

In this paper, we face the above problems in the setting ofgraph-
ical games[12, 8, 9, 11, 10, 19] where each player may be directly
interested only on part of the other players — thus, for each player
p, we encode its payoffs by a table containing a cell for each pos-
sible combination of the actions ofp’s neighbors and ofp herself.
This setting turned out to be very useful in large population games
(modelling, e.g., the interactions of agents over the internet), where
representing all utility functions extensively (as implicitly assumed
in traditional applications of game theory [15]) is either inconvenient
or unfeasible. Our main contributions are the followings.
• In Section 3, we provide a formal framework for working with

games comprising (i) constraints on the outcomes, which are en-
forced over the payoffs of players, (ii) constraints on the actions,
that may force players to choose or to avoid some action, and (iii)



objective functions on the global outcome, which allow us to com-
pute equilibria that are optimal w.r.t. some (global) criterium.

• For each of the above class of constraints, we prove novel com-
plexity results for the problem of deciding the existence of Nash
equilibria. Specifically, we are able to identify hard cases (in Sec-
tion 4) and new relevant tractable cases (in Section 5, that we be-
lieve correspond to situations that are likely to occur in real appli-
cation scenarios.

• Specifically, in Section 5 we identify some restrictions on players’
interaction based on the graphical representation of the structure
of the game, by exploiting a generalization of graph acyclicity,
called treewidth [17], and we prove that computing a pure Nash
equilibrium that satisfy all the constraints is feasible in polynomial
time for games having bounded treewidth, if the constraints are
smooth – very roughly, with polynomially bounded output values.

• Finally, for all the tractable cases, we provide efficient algorithms
that can be implemented on a logspace alternating Turing ma-
chine, showing that the computation is highly-parallelizable.

2 Games and Nash Equilibria

A gameG is a tuple〈P,Neigh,Act , U〉, whereP is a non-empty
set of distinct players,Neigh and Act are functions, andU is a
set of functions. In particular, for each playerp ∈ P : Neigh pro-
vides a set of playersNeigh(p) ⊆ P − {p}, called neighbors
of p; Act(p) defines the set of her possible actions (alsostrate-
gies); and U contains a table encoding her utility functionup :
Act(p)×j∈Neigh(p) Act(j) → ℜ. Intuitively, Neigh(p) contains the
players who potentially matter w.r.t. top’s utility function. Indeed, in
general, a player may be not directly interested in all other players,
and thus her utility function is defined only in terms of the actions
played by her neighbors and by herself. These games are known as
graphical games[12, 8, 9, 11, 10, 19], or games ingraphical normal
form (short: GNF) [6].

A possible outcomex of G is aprofile (also known asglobal strat-
egy), i.e., a set containing exactly one strategy for each player. Let
x be a profile,p a player, andup the utility function ofp. Then, we
denote bypayp(x) the payoff of a playerp w.r.t. x, i.e., the output
of up applied to the actions played byp and her neighbors according
to the profilex.

Example 1 Consider the gameG1 for the playersp1 and p2, with
Act(p1) = {a, b, c} andAct(p2) = {d, e}, whose utility functions
are shown in the table on the left in Figure 1. For each profile, the
first (resp. second) number in the table is the utility function ofp1

(resp.p2). For instance, for the profilex in whichp1 playsa andp2

playsd, they get payoff2 and3, respectively. 2

Let us now formally define the main concept of equilibrium stud-
ied in this paper. Given a profilex, a playerp, and an individual
strategyy for p we denote byx−p[y] the profile where the individ-
ual strategy of playerp in x is replaced byy. Then,x is apure Nash
equilibrium for G if, ∀p ∈ P, 6 ∃y ∈ Act(p) such thatpayp(x) <
payp(x−p[y]).

Example 2 Consider again the gameG1 shown in Figure 1. The
strategy in whichp1 and p2 play a and d, respectively, is a pure

Figure 1. Tabular representation of gamesG1 andG2.
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Figure 2. A dependency graph for the gameG3 and a tree decomposition.

Nash equilibrium. Indeed, it is easy to see that neither of them may
improve her payoff by changing her action (keeping the action of the
other player fixed). Conversely, the gameG2, whose utility functions
are reported in the table on the right of the same figure, does not
admit any pure Nash equilibrium. 2

The interaction among players ofG is usually represented by an
undirected graphG(G) = (P, E), calleddependency graph, whose
vertices coincide with the players ofG, and{p, q} ∈ E if p is a
neighbor ofq, i.e.,p ∈ Neigh(q). Note that this graph is undirected,
even if the neighborhood relationship is not necessarily symmetric.
Indeed, it can be observed that, as far as Nash equilibria are con-
cerned, any player’s choice may also affect the strategies of the play-
ers she depends on.

As an example of a simple dependency graph, the gameG1 is rep-
resented byG(G1) consisting of two vertices connected by means
of an edge. In the left of Figure 2 we show the more involved in-
teractions of playersG, F, P, R andM in a gameG3. Note thatM
is directly interested only inR, G is directly interested in bothF
andP , while there is no player directly interested in the strategies of
all the other players inG3. It is worthwhile noting that, even if each
player depends on a small number of other players directly, all of
them depend on each other transitively. However, by encoding just
the explicit direct relationships, the graphical normal form (GNF)
provides a natural and compact representation of such games.

A fundamental structural property of graphs isacyclicity. Many
hard problems turned out to be easy for acyclic structures. However,
in many practical contexts, the graphs are in fact cyclic, but not very
intricate. In these case, it can be useful to consider some generaliza-
tions of graph acyclicity, that allow us to identify and deal with struc-
tures having the same nice properties as acyclic graphs. In particular,
we will use the notion oftreewidth[17], which provides a measure of
the degree of cyclicity of graphs, and is currently the broadest known
generalization of graph acyclicity.

Definition 3 ([17]) A tree decompositionof a graphG = (V, E)
is a pair〈T, χ〉, whereT = (N, F ) is a tree, andχ is a labelling
function assigning to each vertexp ∈ N a set of verticesχ(p) ⊆ V ,
such that the following conditions are satisfied: (1) for each vertex
b of G, there existsp ∈ N such thatb ∈ χ(p); (2) for each edge
{b, d} ∈ E, there existsp ∈ N such that{b, d} ⊆ χ(p); (3) for
each vertexb of G, the set{p ∈ N | b ∈ χ(p)} induces a connected
subtree ofT . 2

For instance, Figure 2 shows on the right a tree decomposition for
G(G3) having width 2.

Thewidthof the tree decomposition〈T, χ〉 is maxp∈N |χ(p)−1|.
The treewidthof G is the minimum width over all its tree decompo-
sitions. Let nowk > 0 be a fixed constant. A tree decomposition of
width at mostk (if any) can be computed in linear time. We say that a
gameG hask-bounded treewidth if the treewidth ofG(G) is at most
k. A (possibly infinite) class of gamesC is said to have bounded
treewidth if there is ak such that, for each gameG ∈ C, G has
k-bounded treewidth.



3 Nash Equilibria with Additional Properties

In this section, we provide a formal framework for specifying ad-
ditional properties of Nash equilibria, in terms of constraints on the
payoffs of individual players, on the actions to be played, and on the
global outcome of the game.

Let G = 〈P,Neigh,Act , U〉 be a game andP ′ be a non-empty
subset of the players. Anevaluation functionfP ′ for players inP ′

is any polynomial-time computable function that, for each combined
strategyx for the players in

⋃
p∈P ′ Neigh(p) ∪ P ′, maps the set

{payi(x) | i ∈ P ′} to a real number. Moreover,fP ′ is saidsmooth
w.r.t. G if it is computable in logspace and, for eachx, fP ′(x) =
O(poly(|G|)), wherepoly(|G|) is any polynomial in the size|G| of
the game. Note that, since the output values of smooth functions are
bounded by a polynomial in|G|, then logarithmic space is sufficient
for their encodings.

We next build constraints on profiles by exploiting different types
of evaluation functions. A functionfP ′ is saidlocal w.r.t. a player
p ∈ P ′ if P ′ ⊆ Neigh(p) ∪ {p}, i.e., if it can be evaluated by
looking at the outcome of the neighbors of playerp only.

Notice that local functions can be profitably used for modelling
comparison among payoffs of (directly) interacting players. Other-
wise, i.e., if there exists no playerp such thatfP ′ is local w.r.t. it,
fP ′ is saidglobal.

An interesting class of evaluation functions are those generated
by binary operators, as described next. Let⊕ be a commutative
and associative binary operator over the set of real numbers, and
let ⊥ be its neuter element (e.g.,0 for +, 1 for ×). Then, the
evaluation function induced by⊕, referred to as theaggregation
functionF⊕, is inductively defined as follows:F⊕

∅ (x) = ⊥, and
F⊕

P ′(x) = F⊕
P ′−{i}(x) ⊕ payi(x), with i ∈ P ′. For instance, the

aggregation functionF+ induced by the+ operator is theutilitarist
social welfare, whileFmin returns the minimum payoff, andFmax re-
turns the maximum payoff — note that all these examples are smooth
functions if the payoffs are small (logarithmic-space encodable) w.r.t.
the game size, or if they are bounded by some fixed constant.
We consider three types of constraints:

1. A constraint on the payoffsof the players in a setP ′ is an expres-
sionc of the form[fP ′ op(c) k], with k ∈ ℜ andop(c) ∈ {<, >
, =, 6=,≤,≥}. Moreover, iff is a (smooth) aggregation function,
thenc is said(smooth) aggregation constraint. The semantics is
as follows: a Nash equilibriumx satisfiesc, denoted byx |= c, if
fP ′(x) op(c) k. For instance, ifop(c) is < then we require that
the evaluation offP ′ on the Nash equilibriumx is less thank.
Finally, the constraint is saidlocal if fP ′ is local.

2. A constraint on the actionsof a playerp is an expressionc of the
form [op(c) a], with a ∈ Act(p) andop(c) ∈ {=, 6=}. A Nash
equilibriumx satisfiesc of the form[= a] (resp.[ 6= a]), denoted
by x |= c, if p plays (resp. does not play)a in x.

3. An objective functionfor the players in a setP ′ is an expressiono
of the form[op fP ′ ], whereop ∈ {min, max} andfP ′ is an eval-
uation function. IffP ′ is a (smooth) function, theno is also said a
(smooth)objective function. If fP ′ is an aggregation functionF⊕

P ′ ,
then we additionally require thatmin andmax distribute over⊕.
A Nash equilibriumx is saidoptimalw.r.t. an objective function
o of the form[min fP ′ ] (resp.,[max fP ′ ]), denoted byx |= o, if
there exists no Nash equilibriumy such thatfP ′(y) < fP ′(x)
(resp.,fP ′(y) > fP ′(x)).

Finally, a constrained gameis a pairG = (G, C), whereG is
a game andC is a possibly empty set of constraints denoted also
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Figure 3. Reduction from EXACT COVER.

by constr(G). The subset of global constraints inC is denoted by
constrglob(G). A game is said anoptimization game, if it is also
equipped with an objective function, denoted byobj (G).

An example of optimization game is the computation of the Nash
equilibria that guarantee the best utilitarist social welfare, i.e., the op-
timal Nash equilibria with respect to the objective function[max F+].

4 Hard Cases

In this section, we study the problems of deciding the existence of
pure Nash equilibria in the presence of constraints, and of computing
a Nash equilibrium (if any) that optimizes a given objective function.
Following [8, 9, 6], we consider in our analysis games in graphical
normal form.

Let us first focus on games with no objective function to be opti-
mized. For this setting, deciding the existence of a pure Nash equi-
librium is known to be NP-complete for general games. However,
the problem is LOGCFL-complete for acyclic games and bounded
treewidth games without constraints [6].

We recall that LOGCFL consists of all decision problems that
are logspace reducible to a context-free language. We have:AC0 ⊆
NC1 ⊆ LOGSPACE ⊆ NL ⊆ LOGCFL ⊆ AC1 ⊆ NC2 ⊆ P. It
follows that all problems in LOGCFL are highly parallelizable.

Note that, in this paper, we are interested in Nash equilibria sat-
isfying additional properties, which is a more general and somehow
more intricate case. In fact, such properties are expressed as con-
straints that may relate players that do not directly interact, i.e., which
are not necessarily neighbors of each other. In this case, we are able
to sharpen the hardness results of [6], by proving that computing
constrained Nash equilibria is hard even for simple kinds of players’
interactions, as in the acyclic games. We remark that previous results
cannot be exploited here, since they were based on complicated in-
teractions with cyclic dependency graphs.

Theorem 4 Deciding whether a constrained gameG has a Nash
equilibrium satisfying all the constraints isNP-complete. Hardness
holds even for acyclic games with a fixed number of actions, and with
|constr(G)| = 1.

Proof (Sketch). Membership:We can guess a profilex, and verify in
polynomial time thatx is a Nash equilibrium forG and that all the
constraints are satisfied.

Hardness:Recall that given the elementsI1, ..., In and a num-
ber of setsS1, ..., Sm, each one containing exactly three elements
in {I1, ..., In}, deciding whether there exists an exact cover, i.e.,
a setC ⊆ {S1, ..., Sm} such that

⋃
Si∈C

Si = {I1, ..., In} and
Si ∩ Sj = ∅ for eachSi, Sj ∈ C with i 6= j, is NP-complete [4].

We define a GNF gameG as follows: The set of players, de-
noted byPI , contains exactly one playerpk

j for each itemIj in Sk.
Let Ii, Ij andIh be three elements inSk. We define the neighbor-
hood as follows:Neigh(pk

i ) = {pk
j }, Neigh(pk

j ) = {pk
i , pk

h}, and
Neigh(pk

h) = {pk
j } — see Figure 3 for the acyclic undirected graph

representation of the game associated to the setsS1 = {p1
1, p

1
2, p

1
3}

andS2 = {p2
2, p

2
4, p

2
5}.

Players inPI may choose a strategy in the set{IN ,OUT}. Letx
be a profile. Then, each playerp ∈ PI is such that
• up(x) = 1, if p playsIN and all her neighbors playIN ;



• up(x) = 0, if p playsOUT and all her neighbors playOUT ;
• up(x) = −2, in all other cases.

Finally, constr(G) contains the one constraint
[Πn

i=1

∑
k|Ii∈Sk

paypk
i
(x) = 1].

Then, it is easy to see that there exists an exact cover⇔ G admits
a Nash equilibrium satisfyingconstr(G). 2

Since general constraints with associated general evaluation func-
tions lead to intractable games, one may wonder whether the use of
aggregation functions make the problem any easier. Unfortunately,
we next show that deciding the existence of constrained Nash equi-
libria is hard even in this restricted case. However, this time, hardness
occurs only if we can have an unbounded number of constraints.

Theorem 5 LetG be a game, andconstr(G) be a set of aggregation
constraints. Then, deciding whether there exists a Nash equilibrium
is NP-complete. Hardness holds even for acyclic games with a fixed
number of actions.

Proof (Sketch). Membership follows from Theorem 4. The hardness
part is based on the same construction as in the proof of Theorem 4,
by replacing the one constraint inconstr(G) by the following n
constraints:aci : [F+

{pi
k
|Ii∈Sk}

= 1], ∀i. 2

Optimization Games.We next consider the problem of computing
the Nash equilibrium that optimizes a given objectiveobj (G), by
characterizing its complexity in terms of classes of search problems.

An NP metric Turing machineMT is a polynomial-time nonde-
terministic Turing machine that, on every computation branch, halts
with the encoding of a binary number on its output tape. The out-
put of MT is the maximum number over its computations. The
classOptP contains all integer functions that are computable by
an NP metric Turing machine. Moreover,OptP[O(log n)] is the
subclass ofOptP containing all functionsf whose valuef(x) has
O(log n) bits, wheren = |x| (see [1]). For instance, computing the
cardinality of a maximum clique or of a minimum vertex cover in
a graph areOptP[O(log n)] functions. Then,FNP//OptP (resp.,
FNP//OptP[O(log n)]) is the class of all partial multi-valued func-
tions g computed by polynomial-time nondeterministic Turing ma-
chinesT such that, for everyx, g(x) = T (x ·h(x)), where· denotes
the concatenation operator, andh is a function inOptP (resp., in
OptP[O(log n)]).

Theorem 6 LetG be a constrained game. Then, computing a Nash
equilibrium (if any) that optimizes an objective function (resp., a
smooth objective function)obj (G) is FNP//OptP-complete (resp.,
FNP//OptP[O(log n)]-complete). Hardness holds even for the op-
timization of the utilitarist social welfare, and for games with a fixed
number of actions and with|constr(G)| = 0.

Proof (Sketch). Membership:The valuev that optimizes the objec-
tive function can be computed by an NP metric Turing machine.
Then, we can guess a profilex and verify in polynomial time that
x is a Nash equilibrium forG, that all the constraints are satisfied,
and that the value of the objective function is exactlyv. Moreover,
note that ifobj (G) is a smooth objective function, thenv can be
computed inOptP[O(log n)].

Hardness:Consider theFNP//OptP[O(log n)]-complete prob-
lemX-MAXIMAL MODEL: Given a formula φ in conjunctive nor-
mal form on the variablesY = {Y1, ..., Yn} and a subsetX ⊆ Y ,
compute a satisfying truth assignmentM for φ whoseX-part is max-
imal, i.e., for every other satisfying assignmentM ′ there exists a
variable inX which is true inM and false inM ′.
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Figure 4. Reduction from X-MAXIMAL MODEL.

We define a gameG(φ) with an objective functionobj (G) such
that (i) there is a one-to-one correspondence between Nash equi-
libria of G(φ) and satisfying truth-value assignments ofφ, and (ii)
each Nash equilibriumx that optimizesobj (G) corresponds to aX-
MAXIMAL MODEL. The players ofG(φ) are partitioned in three
sets:Pv, corresponding to all variables ofφ; P ′

v, corresponding to
theX variables ofφ; andPc, corresponding to the clauses ofφ. All
players may choose an action in{t, f, u} (read: true, false, unde-
fined). Figure 4 shows the dependency graph and a Nash equilibrium
of G(φ) for a formulaφ = (Y1∨Y3∨Y4)∧(¬Y2∨Y4)∧(Y4∨Y5∨Y6).
The utility functions are designed as follows: The strategies of “vari-
able” players inPv encode truth-value assignments for the corre-
sponding variables inφ. At Nash equilibria, these assignments sat-
isfy φ. Similarly, the strategies of “clause” players encode the eval-
uation of the corresponding clauses ofφ, given the choices of their
variable-players neighbors. Finally, each playerx′ in P ′

v is a copy
of a playerx in Pv corresponding to anX-variable occurring inφ.
Playerx′ plays the same action asx, but gets her maximum payoff
1 if she can playt, while all other variable players have no incentive
to change their actions as long as their profile encodes a satisfying
assignment. The objective function is[max f+

P ′
v
], so that any optimal

Nash equilibrium corresponds to a satisfying assignment forφ with
a maximum number ofX variables made true, which is clearly an
X-MAXIMAL MODEL of φ.

Finally, in order to prove that the general (non-smooth) case is
FNP//OptP-hard, we may show a reduction from the problem
X-LEXICOGRAPHICALLY MAXIMAL MODEL. In this case, we
use the same game as above, but we have to define a more complex
and non-smooth objective function. 2

5 Tractable Cases
The hardness proof of Theorem 5 relies on the use of an unbounded
number of global aggregation constraints. Thus, it is natural to in-
vestigate what happens if the number of these constraints is fixed, or
bounded by some constant.

Let h > 0 be a fixed constant. We say that a gameG is h-weakly
constrainedif |constrglob(G)| ≤ h and all constraints are smooth. A
classC of games isweakly constrainedif there is a constanth such
that all graphs inC areh-weakly constrained — notice that there is
no bound on the number of local constraints.

We next show that, for classes of weakly constrained games hav-
ing acyclic or bounded-treewidth dependency graphs (and hence also
for acyclic games), the problem of deciding the existence of Nash
equilibria is feasible in polynomial time, and it is also parallelizable.

Before explaining the details of the algorithm, we give some pre-
liminary definitions and notations. LetG be a game, and letS be
a subset of nodes ofG(G). Note that nodes ofG(G) correspond
one-to-one to players ofG, and thus we will use the two terms
interchangeably, hereafter. A non-empty setP ′ of players is [S]-
connected(in G(G)) if, for each pairh, h′ ∈ P ′, there exists a



Input : A constrained gameG = (〈P, Neigh, Act, U〉, C)

Boolean FunctionfindNashk(x : Strategies, Px : SetOfPlayers,
Pcomp : SetOfPlayers,

{valc : Real | c ∈ constrglob(G)})
var val′c : Real, for eachc ∈ constrglob(G);
begin

for eachc ∈ constrglob(G) do val′c = ⊥;
for each [Px]-componentP ′ ⊆ Pcomp do

guessS ⊆ Px ∪ P ′, with S ∩ P ′ 6= ∅ and|S| ≤ k;
guessa combined strategyy for S ∪ Neigh(S);
for eachc ∈ constrglob(G) do

guessa valueV S
c and letval′c := val′c ⊕ V S

c ⊕ F
⊕

S∩P ′ (y);
checkthat all the following conditions hold

C1:x andy are matching strategies;
C2:∀i ∈ S, 6 ∃ a strategyyi s.t. ui(y) < ui(y−i[yi]);
C3:P ′ ∩ Px ⊆ S;
C4:y satisfies all thelocal constraints w.r.t. players inS;
C5:findNashk(y, S, P ′, {V S

c | c ∈ constrglob(G)});
if this check failsthen return false;

end for (* over [Px]-components *)
for eachc ∈ constrglob(G) do

if val′c 6= valc then return false;
end for (* over constraints *)
return true ;

end;

begin (* MAIN *)
∀c ∈ constrglob(G) let value(c) denote its desired value;
return findNashk(∅, ∅, P, {value(c) | c ∈ constrglob(G)});

end.

Figure 5. Algorithm DecideNashExistencek.

pathh = h1, . . . , hn = h′ in G(G) such that no playerhi in the
path belongs toS. The [S]-componentsof G(G) are the maximal
[S]-connectedsets of players inG. Finally, let x1 andx2 be two
combined strategies for two sets of playersP1 andP2. We say that
x1 andx2 arematching strategiesif all the players inP1 ∩ P2 play
the same action inx1 andx2.

Let k andh be fixed constants, wherek will be the bound for the
treewidth, andh the bound for the number of global constraints. Fig-
ure 5 shows the nondeterministic algorithmDecideNashExistencek
that decides whether there exists a pure Nash equilibrium for a con-
strained gameG that satisfies all the aggregation constraints (and may
be also used for computing such an equilibrium), if the treewidth of
the game is at mostk. Otherwise, i.e., if the treewidth is greater than
k or there is no equilibrium satisfying the constraints, it returns false.

For simplicity, we assume in this algorithm that every constraintc
is an equality constraint, i.e.,op(c) is =. However, it is very easy to
modify the algorithm in order to remove this simplifying assumption.

Roughly,DecideNashExistencek is based on a recursive Boolean
functionfindNashk that at the generic step, receives as its inputs a
combined strategyx for a set of playersPx, a set of playersPcomp

and a valuevalc for each constraintc of the game. Intuitively, we
want to extend the strategyx to all players inPcomp, in such a way
that the evaluation of each constraintc in this extension equals the
assigned valuevalc.

The key point for tractability here is the fact that we just look at
local equilibrium properties – see Condition C2 above. This is only
feasible if we can arrange players in a tree-like structure such that,
at each step, we need a limited amount of information about play-
ers choices. In our case, we exploit a possible tree-decomposition
of the dependency graph of the game, having widthk at most. Note
that such a decomposition is not fixed a-priori. Rather it is implicitly
computed by the algorithm when we guess, at each step, the new set
of playersS we are going to deal with.

The proof of soundness and correctedness of this algorithm is quite
involved, and will be omitted in this extended abstract, for space rea-
sons. Moreover, we claim that, if the constraints are smooth and the
number of global constraints is bounded byh, this algorithm may

be implemented on a logspace alternating Turing machine (ATM)M
with a polynomially-bounded proof-tree (see [18], for formal defi-
nition and further information on these issues). Thus, by exploiting
a well known characterization of LOGCFL in terms of logspace al-
ternating Turing machines with a polynomially bounded proof tree
[18], we get the following tractability result, evidencing also that the
algorithm is highly-parallelizable (recall that LOGCFL⊆ NC2).

Theorem 7 For acyclic and bounded treewidth weakly constrained
games, deciding whether there exists a pure Nash equilibrium is
LOGCFL-complete.

Finally, let us observe that the algorithm in Figure 5 can be used for
computing a Nash equilibrium as well, by exploiting the information
in the proof tree of the ATMM , as described in [7]. In fact, a Nash
equilibrium can be obtained by exploiting the strategies encoded in
the configurations ofM .

Let us now conclude with the study of tractable classes of opti-
mization games. In principle,DecideNashExistencek can be used
for computing the Nash equilibrium optimizing a functionf , after
several instantiations with the constraint[f = h′], for all possible
values ofh′ within the range off . Actually, in the case no constraints
are imposed on the game, we can also define a more direct and ef-
ficient approach, which does not need a bound on the range of the
optimization function.

Theorem 8 Computing a Nash equilibrium which optimizes a given
(possibly non-smooth) aggregation objective function is feasible in
polynomial time for bounded treewidth games.
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