
Robust Solutions for Constraint Satisfaction and
Optimization

Emmanuel Hebrard and Brahim Hnich and Toby Walsh
���

Abstract. Super solutions are a mechanism to provide robustness
to constraint programs [10]. They are solutions in which, if a small
number of variables lose their values, we are guaranteed to be able
to repair the solution with only a few changes. We extend the su-
per solution framework along several dimensions to make it more
useful practically. We present the first algorithm for finding super
solutions in which the repair can, if needed, change variables that
have not broken. We also extend the framework and algorithms to
permit a wide range of practical restrictions on the breaks and re-
pairs (for example, repairs might have to be later in time). We also
show how to deal with symmetry when finding super solutions. Sym-
metry is a frequent problem in constraint solving. Experimental re-
sults suggest that it is even more important to tackle symmetry when
looking for super solutions. Finally, we present results on job shop
scheduling problems which demonstrate the tradeoff between solu-
tion robustness and makespan. For example, we are able to return
solutions which are significantly more robust with no sacrifice in the
makespan.

1 Introduction

Many decision and optimization problems contain uncertainty and
thus, the user may require robust solutions. A solution is usually seen
as robust if future changes are unlikely to affect it. It is difficult, how-
ever, to characterize such robustness whilst taking no assumption on
the likelihood of the changes themselves. We consider here a slightly
different definition of the notion of robustness, where the effect of
certain changes on the solution can be bounded a priori. For exam-
ple, when, in a scheduling problem, a machine breaks down or an
activity is delayed, we would like to be able to repair it with a few
local changes. Super solutions are a mechanism to guarantee such
solution robustness within constraint programming [10]. An

�����	��

-

super solution is one in which if
�

variables lose their values, the so-
lution can be repaired by assigning these variables with

�
new values

and at most
�

other variables. Considering only value removal might
appear restrictive, however, no-good addition may be approximated
by removing one value of the no-good. Alternatively, in the hidden
representation, adding a no-good is equivalent to removing the corre-
sponding value. On the other hand, we are not interested in ‘positive’
changes which can only add solutions. In [10], the authors explored
in depth the simplest case, namely finding

�������

-super solutions.

In this paper, we extend this framework along a number of impor-
tant dimensions to make it more useful and practical. First, we pro-

�
Cork Constraint Computation Centre, University College Cork, and Depart-
ment of Information Science, Uppsala University (B. Hnich and T. Walsh).
email: � e.hebrard,b.hnich,tw � @4c.ucc.ie�
All supported by Science Foundation Ireland and an ILOG grant.

pose a novel search algorithm for finding (1,
�
)-super solutions. Sec-

ond, we extend the super solution framework and this algorithm to
deal with a wide range of practical restrictions on breaks and repairs.
For instance, if values represent time, we might insist that all re-
pairs use larger values. We might also identify only certain variables
as brittle, or certain values as robust, etc. Third, as problems may
not have any

����	��

-super solution, we propose a branch and bound

algorithm to find the most robust solution closest to a
�������

-super
solution. Fourth, we study how to deal with symmetry while seeking
super solutions. Finally, we present results on job shop scheduling
problems which demonstrate the tradeoff between solution robust-
ness and makespan.

2 Background

A constraint satisfaction problem (CSP) is a set of variables, each
with a finite domain of values, and a set of constraints. A constraint
is a relation defining the allowed values for these variables. A solu-
tion to a constraint satisfaction problem is an assignment of values to
variables that satisfies all the constraints.

In [10], the authors introduced to constraint programming the no-
tion of (

����
)-super solutions. Super solutions are a generalization of

both fault tolerant solutions [17] and super models [9]. A solution
is an (

�����
)-super solution iff it is a solution and the loss of the val-

ues of at most
�

variables can be repaired by assigning other values
to these variables, and modifying the assignment of at most

�
other

variables. The alternative value taken by a variable after it breaks
is chosen from the other values in its domain. The break set is the
set of variable that may break, and the repair set is the set of vari-
ables that can be used as repair. In general, deciding if a CSP has an��������

-super solution is NP-complete for any fixed
�

[10]. Not much
is known about tractable classes. On binary CSPs with Boolean vari-
ables, finding

�����	��

-super solutions is polynomial for

�����
and NP-

hard otherwise [13]. Unfortunately, as the following result shows, the
relationship between the tractability of finding solutions and that of
finding super solutions is not simple.

Theorem 1 There exist classes of CSPs for which SOLUBILITY is
polynomial but

�����	��

-SUPER SOLUBILITY is NP-hard.

Proof Suppose we modify a CSP by adding an extra value to each
variable, and relaxing the constraints to permit variables to take this
new value. The new CSP has all the solutions of the old, plus the
solution that assigns the new value to each variable. As it always has
at least one solution, SOLUBILITY is polynomial. However,

�������

-

SUPER SOLUBILITY is NP-hard as it requires finding the super solu-
tions of the original CSP. �

Theorem 2 There exist classes of CSPs for which SOLUBILITY is
NP-complete but

�����	��

-SUPER SOLUBILITY is polynomial.

Proof Suppose we add to any CSP a variable with a singleton do-
main and no constraints on it. SOLUBILITY is still NP-complete.
However, any break involving this variable is unrepairable. Such a
problem has no

�����	��

-super solution for any

�
or

�
. Thus

�����	��

-

SUPER SOLUBILITY is trivially polynomial. �

3 Finding (�����)-super solutions

In [10], the authors only studied how to find
�������

-super solutions.
Unfortunately,

�������

-super solutions will often not exist. Breaking a

variable may necessarily require other variables to change. It is more
practical to look for

����	��

-super solutions. We present therefore the

first algorithm to find
����	��

-super solutions. Extending this algorithm
to find

�����	��

-super solutions is straightforward, but requires space

that is exponential in
�

. The main idea is to extend an existing CSP
algorithm with additional data structures for the repairs as well as
procedures to ensure that any solution is also a

�������

-super solution.

In this case, repair-MAC extends the well known Maintaining Arc
Consistency algorithm (MAC) [7, 8].

Algorithm 1: repair-MAC(���	��
 �� ���� �	�
)

Data : ����������������� �"!
Result : # : a super solution and $: the set of repair solutions#&%(' /* set of pairs)+* , -/.0* ,�12 */;�3, 4657%(' /* ordered set of variables */;
foreach 8�9:� do

foreach ;�9<� do$>=@? ;BAC%(D�E+F�G+�HGI; J�J ;
backtrack(�K�L#M�N�3,�4656�"$/�"!O�NP);

Procedure backtrack(� �RQ � � �TSBU �V �����W
) : Boolean

if �X���3, 465 then return True;
choose 8<9Y�XZ[�3, 45 ;�3, 4656? F@A\%(8 ;
foreach *H9��HGI8�J do

1 save � and $;#[%]#�^Y�)I8�. * 2L� ;
2 if AC(�) _a`C;�9��3,�4656� repairable(�b�L#��L�3, 4656�"$ = �LP��!) then

if backtrack(�K�L#M�N�3, 4656�6$/�6!O�Ncd*Bcfehg) then return True;

3 restore � and $;#[%]#:Zi��)+8�.0* 2L� ;

�3, 4656? F@A\%(F\E+cjc ;
return False;

Procedure repairable(� �Q � � �TS�U �V�k �Ol �	�
) :Boolean

if c\�nm #�m then return True;;o%(�p, 4656? cqA ;
1 for *r%($ = ? ;BA to D<,08�s+t�s+uGd��G+; JNJ do
2 if 8[v��; or #b? 8�Awv��* then$>=@? ;BAC%(* ;

if check-repair GI�b�L#��N�3, 4656�6$ = �Nc��"!"J then
if repairable(�K��#��L�3, 4656�6$>=@�Lc�ehg0�"!) then return True;

3 $>=@? ;BA@%(D�EIF�Gd��G+; JNJ ;
return False;

A repair solution
V�k

is associated with every variable x .
V�kMy zC{

is the value assigned to
z

in the repair solution for x while
Qoy x { is

the value assigned to x in the solution. The backtrack procedure
tries to extend the current partial assignment, and backtracks for one
of two reasons: we cannot extend the current partial assignment and
satisfy the problem constraints (classical MAC), or the current par-
tial assignment cannot be part of a

����	��

-super solution. When the

current variable breaks, if all other partial assignments satisfying the

Procedure check-repair(� �6Q � � �MS�U �V k �Rl ��
) :Boolean| E~}���P ;

1 for ET��P to c do;�%(�3, 4656? EdA ;
if 8[v��;>_�$>=@? ;BAwv��#b? ;BA then

| E~}H% | E~}/ehg ;

if
| E~}<��! then return False;

2 return consistency of the c first values in $C= ;

constraints have more than
�

different values, then this partial assign-
ment cannot be part of a super solution.

The procedure repairable searches for partial repair solutions
using backtracking, starting from the last repair found. We make sure
that the alternative value used is different from the broken value, and
the repair variable is different from the broken one (line 2). When
backtracking, the value for the current level is reset to �h� W ��� � x
	

in order to explore completely all the values at this level (line 3). In
the worst case, repairable tries � ��WK�L� �R� �L� �

repair solutions,
which is polynomial for fixed

�
. One refinement to repairable

(which does not require us to maintain domains for each repair) is
to add some forward checking into the future. This can detect ear-
lier domain wipe-outs. Finally, check-repairs checks two con-
ditions: within each partial repair solution, no more than

�
variables

(other than the broken variable) are assigned different values, and the
partial repair solution is consistent with the problem constraints.

We show that this algorithm terminates, is sound and complete.

Theorem 3 repair-MAC terminates and is sound and complete.

Proof (Sketch)
Termination: immediate as the algorithm never revisits any par-

tial assignment or repair for a particular break.
Soundness: the truth of the following is invariant. ��x���� �MS�U

,VHk
is the first (in the lexicographical order) repair solution of

Q
for

x in the problem restricted to � �MS�U
.

Completeness: MAC is complete, therefore no partial assignment
is omitted before checking for repairability. The check for repairabil-
ity starts from the last repair found for that value. However, no as-
signment before this last repair in the search tree can be extended to
the current variable since for all of them more than

�
changes were

already done. �

4 Break and repair restrictions

In practice, we may have restrictions on how the problem is likely
to break, or how we may repair it. We therefore extend the super
solution framework to deal with such restrictions.

Break and repair set restrictions: A job shop problem may have
some machines that are reliable and others that are not. If variables
represent machines, then we can limit breaks to a subset of the vari-
ables. Similarly, whilst some activities may be reallocated, others
may have to occur exactly when they are originally scheduled. If
variables represent activities and values their times, then we need to
limit repairs to a subset of the variables. It is straightforward to mod-
ify the algorithm to handle both such restrictions. For example, to
deal with repair set restrictions, we add to check-repair a test
that the

�
possible changes are within the repair set.

Alternative value restrictions: When a variable breaks, there are
often restrictions on the alternative value that it can take. For exam-
ple, when the values represent time, then an alternative value might
have to be larger than the broken value. The algorithm can easily be
modified to cope with such situations. In repairable (line 2), we
change the test

Qry x {p���� to
Qoy x {b� � , where

�
is any binary relation

on the broken and alternative values.

Value and variable repair restrictions: We will often have re-
strictions on the repair allowed. We consider two common types of
restrictions. First, the value repair restriction ensures that the vari-
ables repaired have a value, before they are repaired, which is larger
than the smallest broken value, and all repair values are larger than
the smallest broken value. Such a restriction is useful when, for in-
stance, the values are times and we can only change events in the
future. Second, the variable repair restriction ensures that all

�
re-

pair variables are later in some ordering than the smallest of the
�

broken variables. Such a restriction is useful when, for instance, the
variables are in a temporal order and we can only repair future vari-
ables. Again, it is easy to modify the algorithm to enforce either of
these restrictions. For example, to add the value repair restrictions,
we modify check-repair to test � z�� V�kMy zC{���Qoy zC{

.

Robust values: Often certain values may not be brittle and so can-
not break. In addition, if certain values are chosen, they cannot be
changed. It is again easy to modify the algorithm to deal with such
robust values. For example, we modify backtrack so that it only
finds repairs for those variables in the past whose values are brittle.

None of these restrictions changes the problem’s complexity.

Theorem 4
�������

-SUPER SOLUBILITY with break or repair set re-
striction, with alternative value restrictions, with value or variable
repair restrictions, and with robust value restrictions is NP-complete
for fixed

�
.

Proof (Sketch) We show that the NP-completeness proof for the un-
restricted problem in [4] can be extended to the restricted case. Since
checking those restrictions is polynomial, we can use the same poly-
nomial witness (the super solution plus the repair values).

To prove NP-hardness, binary CSP is reduced to super CSP. The
domains of the variables are duplicated and the constraints are ex-
tended to behave equivalently on the duplicated (primed) values. This
problem is satisfiable iff the orginal is. Moreover, if there exists a so-
lution, then there exists a super solution since any set of

�
values can

be primed (or unprimed) without affecting its validity.
This property continues to hold if we restrict the breaks to any

subset of variables, we restrict the repairs to any subset of variables,
we restrict the alternative values so that the only alternative to an un-
primed value is the equivalent primed value, we order primed values
after unprimed ones and restrict the repair values to later in this order,
we put any ordering on the variables and restrict the repair variables
to later in this order, or we make certain of the values robust against
break or repair. �

Whilst
�

must be fixed,
�

need not be. Thus
����W�����

-SUPER SOL-
UBILITY with any of the break or repair restrictions is NP-complete
but

��W���� ���

-SUPER SOLUBILITY is not. If

�
is not fixed,

�����	��

-

SUPER SOLUBILITY with any of the restrictions is in PSPACE.

5 Optimization

Optimizing repairability: When
����	��

-super solutions do not ex-
ist, we might want to maximize the number of repairable variables.
For a given solution

Q
, a variable is said to be repairable iff there ex-

ists another solution
Q	�

which assigns the variable a different value,
and

Q
�
differs in at most

��� �
variables from

Q
. This gives a robust

solution closest to a
����	��

-super solution. In a similar way to [10],
we can adapt the repair-MAC algorithm to solve this optimization
problem using a branch & bound scheme. The size of the break set
less the number of breaks that cannot be extended is an upper bound

on the number of repairable variables. We can adapt this algorithm
to return the solution which can be repaired with minimum perturba-
tion by keeping an upper bound on the maximum repair size. Other
metrics are also possible like the average repair size.

Robustness and optimality: The optimal solution may not be a����	��

-super solution. As in [10], we can either seek the most robust

solution or the
����	��

-super solution with the best (but sub-optimal)
objective function. More generally, an optimization problem turns
into a multi-criterion optimization problem, where we optimize the
number of repairable variables and the objective function.

6 Symmetry

Many real world problems contain symmetry [4]. For example, in a
job shop scheduling problem, some of the machines may be identical.
Similarly, some of the jobs may be identical. Such symmetry may
increase the search space, as we can permute machines and jobs that
are symmetric. Initial results suggest that dealing with symmetry is
even more important when searching for super solutions than when
searching for solutions. However, symmetry breaking methods need
to be modified when looking for super solutions.

We identify three classes of symmetries: the class of all CSP
symmetries, the class of symmetries generally seen in CSPs, and
the class of symmetries that preserve super solutions. Given a CSP
� � ��
 �6� �"���

, we denote the set containing all possible sets of
pairs ��x � ��� where xX�
 and ��� � � x
 , � the set containing only
proper assignments in , ��� the set containing only consistent ele-
ments of � , and

Q
the set of solutions, i.e., the subset of ��� which

elements are of size �
�� . An automorphism is a bijective mapping
from a set to itself.

Definition A symmetry is an automorphism � on that preserves
solutions, i.e., ��� Q�� � � �
 � Q

. � is the set of all such symme-
tries.

In general, such symmetries do not preserve super solutions. We
can identify two classes of symmetry that do.

Definition A decomposable symmetry is an automorphism � on
which preserves consistency, i.e., if ������� � � � �
 ����� , that also
distributes over set union, i.e., ��x �z ��� � � � x! z
 �"� � x
 #� ��z
 .$

is the set of all such symmetries.

An example of a decomposable symmetry is the % ��& rotational
symmetry of a row-wise representation of the

W
-queens problem. An

even more restricted and useful class of symmetry that captures vari-
able and value symmetries [11] is the following.

Definition A strong decomposable symmetry is an automorphism '
over , which preserves both consistency, i.e., if x��(��� then ' � x
 �
��� and validity, i.e., if x �(� then ' � x
 �(� , that also distributes over
set union.) is the set of all such symmetries.

It is easy to see that)+* $ *,� . We prove that if � is a decom-
posable symmetry and � is a super solution then � � �
 is also a super
solution.

Theorem 5 Given a CSP with a decomposable symmetry � , then �
maps any

��� ����

-super solution onto an

�����	��

-super solution, and any

assignment that is not an
�������

-super solution onto another assign-
ment that is not an

��� ����

-super solution.

Proof (Sketch) Suppose
Q

is an
�����	��

-supersolution, - is the set of
all possible breaks of size at most

�
,
V/.

is the repair solution asso-
ciated with each break �o��- . By definition, � �NQ
 is also a solution.

We now show that � � -
 is the set of all possible breaks of � �NQ
 . As
� is bijective, the size of - is equal to the size of � � -
 . We also have
that, for each �o� - , � � Q

. Since, � is decomposable, we also have
that � � �
 � � �NQ
 for each � � �
 � � � -
 . Thus, � � -
 is the set of
all possible breaks (of size at most

�
) of � �NQ
 . The image of each

repair solution, � ��V .
 , differs from � �NQ
 in at most
� � �

positions.
Hence we have a repair solution for � �NQ
 for each possible break in
� � -
 . Hence, � �NQ
 is an

��� ���

-super solution. �

Symmetry breaking tools which eliminate symmetric solutions
have to be modified when we look for super solutions. We high-
light the subtleties through a simple example. Consider a CSP with
two variables � ��� � � ��� �@� , and the following allowed tuples:
� � � � � ��� ��� � ��� � ��� � � . This problem has 3 solutions, but only one�������

-super solution, � � � � � . Now � and
�

are symmetric. We can
break this symmetry either during search or statically. We might add
an ordering constraint between � and

�
like � ���

. By doing
so, we eliminate the solution � � ��� � because it is symmetric to � ��� � � .
However, we also lose a repair solution, � � ��� � , which is crucial for
proving that � � � � � is a

������

-super solution. Thus, by breaking the

symmetry in a super CSP, we may loose some super solutions. One
simple solution to the above problem is to ignore symmetry breaking
techniques when checking for the consistency of the repair solutions.

7 Application

To demonstrate the practicality of this extended framework and to
explore the tradeoff between robustness and optimality, we ran ex-
periments on a larger number of job shop scheduling problems. Each
problem consists of

W
jobs and � machines. Each job is a sequence

of � activities, where each activity has a duration for its execution
on one of the � machines. The objective is to schedule the activi-
ties such that their order is respected, no machine is required by two
activities that overlap, and the makespan ��� is minimized. Unfortu-
nately, machines break down, requiring that the remaining activities
be re-scheduled. We show that we can find robust solutions that are
less sensitive to such changes.

We formulate the job shop scheduling problem as a CSP, with one
variable for each activity, and a domain size equal to the makespan
��� minus its duration. To find the minimal makespan, we start with
��� equal to a lower bound and increase it till a solution exists. The
lower bound is the larger of the length of the longest job, or the
largest schedule for a single machine without slack. A schedule for a
single machine without slack is simply the sum of all activities that
must be executed on that machine plus the sum of the durations of ac-
tivities that must execute before the first or after the last. We generate
random job shop scheduling instances with the generator described
in [14]. An instance has three parameters �
	 � � � ���� k � where 	 is the
number of jobs, � the number of machine, and

���� k
the maximum

duration of an activity. The actual duration of any activity is a ran-
dom number between

�
and

� �� k
. We also consider the following

extra restrictions:

� break set: this is either all activities associated with only one ma-
chine or with all the machines. In Tables 1 and 2, we use “1” and
“all” to refer to these two cases.� alternative and repair value: the alternative value � for the bro-
ken value � should satisfy � � ��� � where � is the expected
duration for repairing a machine. In Tables 1 and 2, we put 2 or 4
opposite the entry alternative to denote the value of � . Similarly,
we restrict repair values to be larger.

� repair set: this is either all activities or only the activities associ-
ated with one job. In Tables 1 and 2, we use “1” and “all” to these
two cases.

break set 1 all
alternative 2 4 2 4)��������gRPB2 1.10 1.30 1.20 1.55)���������� PB2 1.05 1.16 1.11 1.31)��������gRPB2 1.09 1.30 1.16 1.57)���������� PB2 1.04 1.16 1.9 1.31
repair set 1 all 1 all 1 all 1 all)��������gRPB2 1.08 1.06 1.17 1.14 1.23 1.17 1.43 1.33)���������� PB2 1.04 1.03 1.08 1.07 1.12 1.19 1.24 1.19)��������gRPB2 1.08 1.06 1.15 1.12 1.25 1.17 1.49 1.35)���������� PB2 1.04 1.03 1.08 1.07 1.13 1.09 1.26 1.21

Table 1. Optimal makespan of super solutions/optimal makespan of
solutions, upper table: � ������� , lower table: � ������� .

Optimal robust solutions: In Table 1, we report the percentage in-
crease in the optimal makespan for

������

-super solutions with the

different restrictions and for four different instance sizes. Each
result represents the mean of 25 instances. We find

�������

-super

solutions in the first four rows, and
���� ��

-super solutions in the
next four rows. We observe that we have to sacrifice optimality
to achieve robustness. Nevertheless, the increase in the makespan
does not appear to be correlated with the problem size, but rather
with the choice of parameters. In particular, the alternative value
restrictions have the biggest influence.

Most robust optimal solutions: If the user wants to keep the op-
timal makespan, we still can optimize robustness using the����	��

-super Branch&Bound algorithm. Table 2 shows we
can increase the number of repairable variables in an optimal so-
lution by between 50% to 250% without increasing the makespan.
The main factor influencing this factor appears to be the size of the
break set. In Figure 1 we show how much more search is required
in order to increase the solution robustness of an optimal solu-
tion. The

�
axis gives the fraction of repairable variable among

all those subject to a break whilst � axis gives the increase in the
runtime. We can see that a gain of about 50% in repairability can
be obtained in a negligible increase of runtime.

break-set 1 all
break size 2 4 2 4
repair-set 1 all 1 all 1 all 1 allG~g0�NPBJ 2.44 2.4 1.56 1.48G~g0�6gOJ 2.66 2 2.4 1.85 1.81 1.91 2.03 3.41G~g0����J 2.66 2.06 2.4 3.6 1.83 2.56 2.48 -

Table 2. Ratio of repairable variables in the most robust optimal solution
compared to number of repairable variables in the first optimal solution

returned by MAC for 5 machines and 4 jobs problems.

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 1 1.2 1.4 1.6 1.8 2

re
p

a
ir
a

b
ili

ty

runtime increase

repairability ratio

(a) � ������� -repairability, (3 ma-
chines are likely to break).

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 1 2 3 4 5 6 7 8 9 10

re
p

a
ir
a

b
ili

ty

runtime increase

repairability ratio

(b) � ��� � � -repairability, (1 ma-
chine is likely to break).

Figure 1. Search effort needed to improve robustness on a jobshop
problem with 7 jobs and 6 machines.

Breaking symmetry: We also ran experiments to determine the
importance of breaking symmetry when looking for super solutions.
We modified the generator so it could duplicate jobs. Duplicated
jobs are equal in all respects. The corresponding activities (vari-
ables) can therefore be lexicographically ordered to break such sym-
metry. Note, however, that this ordering constraint is ignored in
check-repair. We considered instances both with 3 symmet-
ric jobs. Each of the 5 samples has 25 instances, with parameters
��� � � ��� � , ��� � � ��� � , ��� � � ��� � , ��� � � ��� � and � � � � ��� � respectively. The
break set is restricted to activities associated with two machines. In
addition to the alternative value being greater than the broken value,
two units of time are required to repair a machine. Finally, the re-
pair set contains activities associated with two machines. Figure 2
presents the search effort saved by breaking symmetry. The figures
show that breaking symmetry can reduce the search effort signifi-
cantly. We note that the savings are more significant when looking
for super solutions than when looking for solutions.

 0.1

 1

 10

 100

 1000

 10000

 100000

3x2 3x3 4x3 4x4 5x4

n
o
d
e
s

problems

Without Symmetry Breaking
With Symmetry Breaking

(a) Optimal Solution

 100

 1000

 10000

 100000

 1e+06

 1e+07

3x2 3x3 4x3 4x4 5x4

n
o
d
e
s

problems

Without Symmetry Breaking
With Symmetry Breaking

(b) � ������� -super solution

 100

 1000

 10000

 100000

 1e+06

3x2 3x3 4x3 4x4 5x4

n
o

d
e

s

problems

Without Symmetry Breaking
With Symmetry Breaking

(c) � ��� � � -super solution

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

3x2 3x3 4x3 4x4 5x4

n
o

d
e

s

problems

Without Symmetry Breaking
With Symmetry Breaking

(d) most robust optimal solu-
tion

Figure 2. The effect of symmetry breaking on search effort, for increasing
problem size.

8 Related and future work

There have been a number of other mechanisms to deal with uncer-
tainty and robustness in constraint solving. Robustness has been con-
sidered as a property of algorithms, as well as of solutions See, for
example, dynamic CSPs [1], partial CSPs [6], dynamic and partial
CSPs [12], mixed CSPs [2, 3], stochastic CSPs [16], and branch-
ing CSPs [5] as well as [15] for a comprehensive bibliography on
this topic. In dynamic CSPs, for instance, we attempt to reuse pre-
vious search effort. However, the solutions returned are not robust
in any sense. In stochastic CSPs, on the other hand, we find solu-
tions which are robust to possible changes. However, unlike here,
stochastic CSPs assume we have information about the probability
of particular changes.

An important direction for future work is to identify ways to im-
prove the efficiency of the repair-MAC algorithm. For example,
can we exploit the fact that a repair solution is often a repair for mul-
tiple breaks? This is similar to the notion of multidirectionality when

looking for supports in a AC algorithm. Moreover, if we look at the
constraint graph, a repair variable must be within a short distance of
a break. How do we best exploit this fact?

9 Conclusion

We have extended the super solution framework in several important
dimensions to make it more useful and practical. An

�����	��

-super so-

lution is one in which if
�

variables lose their values, the solution
can be repaired by assigning these variables with

�
new values and at

most
�

other variables. We have presented the first algorithms for
finding

������

-super solutions, as well as the most robust solution

closest to a
�������

-super solution. We then extended the framework
and algorithms to permit a wide range of practical restrictions on
the breaks and repairs. In particular, we can place restrictions on the
break set, the repair set, the alternative value used after a break, and
the values and variables used in repairs. We also showed how to deal
with symmetry when finding super solutions. Experimental results
suggest that it is even more important to tackle symmetry when look-
ing for super solutions than when looking for solutions. We also pre-
sented results on job shop scheduling problems which demonstrate
the tradeoff between solution robustness and makespan. We saw that
with a little extra effort, we are able to return solutions which are
significantly more robust with no sacrifice in the makespan.

REFERENCES
[1] A. Dechter and R. Dechter, ‘Belief maintenance in dynamic constraint

networks’, in Proceedings AAAI’88, pp. 37–42, (1988).
[2] H. Fargier and J. Lang, ‘Uncertainty in constraint satisfaction prob-

lems: a probalistic approach’, in Proceedings ECSQARU’93, pp. 97–
104, (1993).

[3] H. Fargier, J. Lang, and T. Schiex, ‘Mixed constraint satisfaction: A
framework for decision problems under incomplete knowledge’, in Pro-
ceedings AAAI’96, pp. 175–180, (1996).

[4] P. Flener, A. M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and
T. Walsh, ‘Breaking row and column symmetries in matrix models’, in
Proceedings CP’02, pp. 462–476, (2002).

[5] D. W. Fowler and K. N. Brown, ‘Branching constraint satisfaction prob-
lems for solutions robust under likely changes’, in Proceedings CP’00,
pp. 500–504, (2000).

[6] E. C. Freuder, ‘Partial Constraint Satisfaction’, in Proceedings IJ-
CAI’89, pp. 278–283, (1989).

[7] J. Gaschnig, ‘A constraint satisfaction method for inference making’,
in Proceedings of the 12th Annual Allerton Conference on Circuit and
System Theory.(1974).

[8] J. Gaschnig, ‘Performance measurement and analysis of certain search
algorithms’, Technical report CMU-CS-79-124, Carnegie-Mellon Uni-
versity, (1979). PhD thesis.

[9] M. Ginsberg, A. Parkes, and A. Roy, ‘Supermodels and robustness’, in
Proceedings AAAI’98, pp. 334–339, (1998).

[10] E. Hebrard, B. Hnich, and T. Walsh, ‘Super solutions in constraint pro-
gramming’, in Proceedings CPAIOR’04, pp. 157–172, (2004).

[11] P. Meseguer and C. Torras, ‘Solving strategies for highly symmetric
CSPs’, in Proceedings IJCAI’99, pp. 400–405, (1999).

[12] I. Miguel, Dynamic Flexible Constraint Satisfaction and Its Application
to AI Planning, Ph.D. dissertation, University of Edinburgh, 2001.

[13] A. Roy and C. Wilson, ‘Supermodels and closed sets’, Electronic Col-
loquium on Computational Complexity (ECCC), (2000).

[14] E. D. Taillard, ‘Benchmarks for basic scheduling problems’, European
Journal of Operational Research, (1993).

[15] G. Verfaillie and N. Jussien, ‘Dynamic constraint solving’. Tutorial -
online notes available http://www.emn.fr/jussien/CP03tutorial.

[16] T. Walsh, ‘Stochastic constraint programming’, in Proceedings
ECAI’02, (2002).

[17] R. Weigel and C. Bliek, ‘On reformulation of constraint satisfaction
problems’, in Proceedings ECAI’98, pp. 254–258, (1998).

