
An Effective Branch-and-Bound Algorithm to Solve the
k-Longest Common Subsequence Problem

Gaofeng Huang 1 and Andrew Lim 1

Abstract. In this paper, we study the Longest Common Subse-
quence problem of multiple sequences. Because the problem is NP-
hard, we devise an effective Branch-and-Bound algorithm to solve
the problem. Results of extensive computational experiments show
our method to be effective not only on randomly generated bench-
mark instances2, but also on real-world protein sequence instances.

Keywords: Search, Branch-and-Bound, Bioinformatics, real-world
protein sequence

1 Introduction

Finding the Longest Common Subsequence(LCS) between
DNA/Protein sequences is one of the basic problems in mod-
ern computational molecular biology[14]. The LCS problem is
Related to the “Edit Distance” and “Sequence Alignment”[1].
LCS is more than a classical problem in combinatorial pattern
matching[15]; it has many other practical applications such as Web
Usage Mining[2], Music Understanding[4], File Comparison[13],
etc.

Since 1974, much attention has been focused on the problem
of find the LCS of 2 sequences with length m and n. Wagner
and Fischer[17] first presented a dynamic programming approach,
which takes O(mn) time and space. Hirschberg[7] later presented
a more efficient implementation which only uses linear space.
Many improvements have been proposed. At present the best re-
sult is provided by Masek and Paterson [11]. Their algorithm takes
O(mn/ log n) time. An extensive survey can be found in [12].

Unfortunately, the LCS problem of k sequences is NP-hard (see
Maier[10]) even with fixed number of alphabets. A direct extension
of the dynamic programming[5] takes O(nk) time and O(nk−1)
space to solve LCS problem for k sequences of length n. Therefore,
even for small values of k, it is not practical since the length of se-
quence n is usually very large. It is noted in [3] that at least 16Gbyte
of memory is required to solve the instances with 5 sequences where
each sequence has a length of 400 characters.

Consequently, several heuristic and approximation algorithms
were developed. Among these, the Long Run(LR) algorithm devel-
oped by Jiang and Li[8] is the first method that guarantees constant
performance ratio, while the Expansion Algorithm(EA) proposed by
Bonizzoni et al.[3, 16] claimed to outperform LR and is regarded as
the current best result. Although these algorithms may deal with in-

1 Department of Industrial Engineering & Engineering Management, Hong
Kong University of Science & Technology, Clear Water Bay, Kowloon,
Hong Kong EMAIL : {gfhuang, iealim}@ust.hk

2 The authors would like to express special thanks to Gianluca Della Vedova
for providing the benchmark instances.

stances of 20 sequences each with length 500, these approximation
algorithms do not provide the optimal solution.

The purpose of this paper is to present an exact algorithm based on
the Branch-and-Bound technique to solve LCS problems with mul-
tiple sequences. Although the Branch-and-Bound method is an ex-
ponential time algorithm, our implementation is extremely efficient
through the use of a well-developed upper bound. The effectiveness
and efficiency of our method is verified using standard benchmarks.

The rest of this paper is organized as follows. Section 2 briefly de-
scribes the problem formulation, while the details of the implementa-
tion of our Branch-and-Bound algorithm are presented in Section 3.
In Section 4, the computational results of our experiments are given
in detail. Finally, we present our conclusions in Section 5.

2 Problem Description

A sequence x = x1x2...xn over finite alphabet Σ may be any com-
bination of n characters from Σ. That is, xi ∈ Σ and x ∈ Σ∗. The
length of x, can be denoted as |x|.

Given a sequence x, we call another sequence y = y1y2...ym a
subsequence of x, if there exists an embedding I = (i1, i2, ..., im)
so that 1 ≤ i1 < i2 < ... < im ≤ |x| and xik = yk,∀k =
1, 2, ..., m. Let s(x) = {y|y is a subsequence of x}.

It is noticeable that one subsequence of x may have several embed-
dings in x. For example, AAG is a subsequence of AAAGCG, which
has 6 embeddings: (1, 2, 4), (1, 2, 6), (1, 3, 4), (1, 3, 6), (2, 3, 4),
(2, 3, 6).

Figure 1. one subsequence with more embeddings

A A G

GCGAAA

A A G

GCGAAA

654321 654321

The k-LCS problem LCS(X) can be described as:

Instance : a set X including k sequences x(1), x(2), ...x(k)

Solution : a Longest Common Subsequence y

Objective : LCS(X) = max |y|, subject to y ∈ s(x(i)),
∀i = 1, 2, ..., k

Obviously, k-LCS is more general, while the 2-LCS problem is its
well-known, polynomial-time solvable, special case.

3 Branch-and-Bound Algorithm

As stated earlier, a direct extension of dynamic programming is not
practical since it takes O(nk) time and O(nk−1) space. At the same
time, the existing heuristic and approximation algorithms, such as LR
and EA, cannot provide any optimality guarantee. In this section, we
shall present an Branch-and-Bound algorithm that consists of a well-
developed upper bound, the elimination conditions, and the depth-
first search strategy.

3.1 Upper Bound

In [3, 16], Bonizzoni et al. used the length of the shortest sequence
in X as a trivial upper bound of the length of k-LCS. However, this
upper bound is rather loose, for example:

Example 1 Look at sequence ATTAAAATTAAAT and CGCGC-
CGCGCGCCG, the shorter one has 13 characters. The length of
LCS is 0, as there is no common character at all.

Based to this consideration, we derive our first upper bound:

UBc =
∑
σ∈Σ

k

min
i=1

(#number of character σ in sequence x(i))

UBc reflects the total number of Common Characters among all k
sequences, for example:

Example 2 Look at sequence AACCACGCG, ACCCCGCCAC-
CAA and GCCACCAAGC. There are 3 “A”, 4 “C” and 1 “G”
in common among all 3 sequences. Hence, UBc = 3 + 4 + 1 = 8.

This upper bound has a nice mathematical property:

Lemma 1 The UBc upper bound has |Σ| guaranteed performance
ratio, that is, UBc

LCS
≤ |Σ|.

Proof: A trivial lower bound can be defined as:

LBc = max
σ∈Σ

k

min
i=1

(#number of character σ in sequence x(i))

Which means the common subsequence only contains one kind of
symbol σ from the alphabet Σ.

Therefore,
UBc

LBc
=

∑
σ∈Σ

mink
i=1(# of σ in x(i))

maxσ∈Σ mink
i=1(# of σ in x(i))

≤
∑

σ∈Σ
maxσ∈Σ mink

i=1(# of σ in x(i))

maxσ∈Σ mink
i=1(# of σ in x(i))

=
|Σ| × LBc

LBc
= |Σ|

A constant ratio is given by: LBc
LCS

≥ LBc
UBc

≥ 1
|Σ|

Although LBc is trivial, it has the same guaranteed performance
ratio as the approximation algorithm LR[8] and EA[3, 16].

Finally, UBc
LCS

≤ UBc
LBc

≤ |Σ| ��
The UBc is still loose in practice. For example,

Example 3 For the sequences AACCCTTTTGGGGG and
GGGGGTTTTCCCAA, LBc = max(2, 3, 4, 5) = 5,
UBc = 2 + 3 + 4 + 5 = 14, while the optimal LCS, which
is GGGGG, has a length of 5.

Indeed there exist some instances where UBc
LCS

= |Σ|(see Exam-
ple 4).

Example 4 (Special Instance)
Sequence x(1) : σ1σ1σ1...σ1︸ ︷︷ ︸

p

σ2σ2σ2...σ2︸ ︷︷ ︸
p

...... σ|Σ|σ|Σ|σ|Σ|...σ|Σ|︸ ︷︷ ︸
p

Sequence x(2) : σ|Σ|σ|Σ|σ|Σ|...σ|Σ|︸ ︷︷ ︸
p

...... σ2σ2σ2...σ2︸ ︷︷ ︸
p

σ1σ1σ1...σ1︸ ︷︷ ︸
p

UBc = p× |Σ|
LCS = p

UBc

LCS
= |Σ|

All of these examples motivated us to develop more practical up-
per bounds. In Example 2, because LCS of the first two sequences
AACCACGCG and ACCCCGCCACCAA is ACCCCG, no matter
what the third sequence is, the LCS of all 3 sequences is not more
than 6. Due to this consideration, we get the following lemmas:

Lemma 2 ∀X ′ ⊂ X , LCS(X ′) ≥ LCS(X)

Proof: Suppose the LCS of sequence set X is y∗, according to the
definition, ∀x ∈ X , y∗ ∈ s(x).

Since X ′ ⊂ X , ∀x ∈ X ′ ⇒ x ∈ X ⇒ y∗ ∈ s(x).
That means, y∗ is also a common subsequence of sequence setX′.
Therefore, LCS(X ′) ≥ |y∗| = LCS(X). ��

Lemma 3 Let UBi = min
∀X ′⊂X ,|X ′|=i

LCS(X ′), UBi ≤ UBi−1

Proof: Suppose
UBi−1 = LCS(X ∗) (1)

We get |X ∗| = i− 1 < k ⇒ ∃x ∈ X , but x
∈ X ∗

Therefore, X ∗ ⊂ X ∗ ∪ {x}.
According to Lemma 2,

LCS(X ∗) ≥ LCS(X ∗ ∪ {x}) (2)

Since |X ∗ ∪ {x}| = i, due to the definition of UBi,

UBi ≤ LCS(X ∗ ∪ {x}). (3)

Finally, deduce from Equation (1)(2) and (3),
UBi ≤ LCS(X ∗ ∪ {x}) ≤ LCS(X ∗) = UBi−1. ��

Using these two lemmas, we develop our new upper bound.

Theorem 1 UBi is a upper bound of the k-LCS problem, that is,
UBi ≥ LCS(X)

Proof: Due to the definition of UBi,
UBk = min

∀X ′⊂X ,|X ′|=k
LCS(X ′).

Obviously, |X ′| = k ⇒ X ′ = X .
So, UBk = LCS(X).
According to Lemma 3, we get a series of structured upper bound:

UB1 ≥ UB2 ≥ UB3... ≥ UBk = LCS(X) ��
In fact, UB1 means exactly “the length of the shortest sequence

in X ” which is the loosest one used in [3, 16]. For upper bound
UBi, we need to compute the sub-problem LCS(X ′), which can be
solved in O(ni) time by applying Dynamic Programming technique.
At the same time there are totally

(
k
i

)
such subsets for |X ′| = i.

Therefore, the computation of UBi will take O(ni) ×
(

k
i

)
time.

Due to the time and space constraint, we use UB2 in our Branch-
and-Bound algorithm.

3.2 Elimination Conditions

The general idea of the Branch-and-Bound algorithm is to construct
a search tree and then apply a carefully selected criterion to deter-
mine which node to expand during the search. Therefore, elimination
conditions are useful in curtailing the enumeration tree of a branch-
and-bound scheme.

As stated earlier, one subsequence may have many embeddings in
a specific sequence. Here, given sequence y = y1y2...ym, we define
the dominant embedding I∗ = (i∗1, i

∗
2 , ..., i∗m) in sequence x as:

i∗a = min
xi=ya,i>i∗

a−1

i (4)

Thus, scanning the sequence x and y from left to right, to verify
whether y is a subsequence of x, can be done in O(n) time.

In the branch-and-bound scheme, we can maintain that each
branch π of the search tree corresponds to a partial common subse-
quence of all k sequences, that is, π = π1π2...πm can be embedded
into each of the k sequences. As shown in Figure 2, let pi denote the
last dominant embedding position in sequence x(i), a partial sub-
problem can be represented as (p1, p2, ..., pk), which means LCS of
the k shadowed parts: x

(1)

p1+1..|x(1)|, x
(2)

p2+1..|x(2)|, ..., x
(k)

pk+1..|x(k)|.
Thus, the partial state (valid branch) during search can be represented
as π//(p1, p2, ..., pk).

Figure 2. the partial state during search

... ...

partial common subsequence : AC A

partial sub -p rob lem (p 1, p 2, ..., p k) = (5, 9, ..., 7)

GCCCCA ACC C AAC

p 2

x(2)

654321

G ACC C C CA CG

121110987 13

pk

x(k)

p 1

CACCAA GCGx(1)

Theorem 2 A branch π//(p1, p2, ..., pk) can be eliminated if there
exists a common subsequence y so that |π|+ UBi(p1, p2, ..., pk) ≤
|y|.
Proof: We have proved in Theorem 1 that UBi is a upper bound,
that is, UBi ≥ LCS. Therefore, |π| + LCS(p1, p2, ..., pk) ≤
|π|+ UBi(p1, p2, ..., pk) ≤ |y|, which means that there is no better
solution in this branch. Consequently this branch can be eliminated.

��

3.3 Implementation of Branch-and-Bound

The implementation of our Branch-and-Bound algorithm includes
two parts: precomputing and depth-first search strategy, where the
precomputing part is used to accelerate the embedding (valid branch)
checking, and upper bound computation.

During search, by adding a symbol to a branch π = π1π2 ...πm,
we get its child π′ = π1π2...πmπm+1. If the dominant embedding

of π in sequence x(j) is I(j)∗ = (i
(j)∗
1 , i

(j)∗
2 , ..., i

(j)∗
m), the dominant

embedding of π′ should be I′(j)∗ = (i
(j)∗
1 , i

(j)∗
2 , ..., i

(j)∗
m , i

(j)
m+1).

Therefore, in order to check whether π′ is a valid branch(common
subsequence), we only need to compute i

(j)
m+1. However, a direct im-

plementation of Equation(4) will take O(nk) time for a total of k
sequences.

In our algorithm, we use precomputing to reduce the time com-
plexity of each branch valid checking from O(nk) to O(k). The ba-
sic idea is that the next embedding position i

(j)
m+1 is only concerned

with three parameters: the sequence x(j), position i
(j)∗
m and symbol

πm+1(see Figure 3). Thus, by defining:

next(j)(i, σ) = min
x
(j)
i′ =σ,i′>i

i′, where j = 1...k,
i = 1...|x(j)|,
σ ∈ Σ.

(5)
we can compute i

(j)
m+1 = next(j)(i

(j)∗
m , πm+1), j = 1, 2, ...k in

O(k) time.

Figure 3. precomputing of next

GCCCCA ACC C AACx(j)

654321 121110987 13

nextx(j)(2, A) = 9
nextx(j)(2, G) = 6nextx(j)(2, C) = 3

The precomputation of next itself requires O(nk|Σ|) space and
O(n2k|Σ|) time. Moreover, it can be further reduced to O(nk|Σ|)
time using the following equation:

next(j)(i, σ) =

invalid if i ≥ |x(j)|
i + 1 if x

(j)
i+1 = σ

next(j)(i + 1, σ) if x
(j)
i+1
= σ

(6)

Another precomputing concerns the upper bound. As mention in
Section 3.1, we adopt UB2 as the upper bound in our real imple-
mentation, which takes O(n2)×

(
k
2

)
time and space. For the partial

sub-problem (p1, p2, ..., pk)(see Figure 2), UB2 can be rewritten as:

UB2(p1, p2, ..., pk) = min
i<j=1,2,...,k

2-LCS(x
(i)

pi+1..|x(i)|, x
(j)

pj+1..|x(j)|)

(7)

And a well-known Dynamic Programming approach for the 2-LCS
is:

d(i)(j)(pi, pj) =

0
if pi ≥ |x(i)|
or pj ≥ |x(j)|

d(i)(j)(pi + 1, pj + 1) + 1 if x
(i)
pi+1 = x

(j)
pj+1

max
{

d(i)(j)(pi+1,pj)

d(i)(j)(pi,pj+1)
else

(8)
where d(i)(j)(pi, pj) means the length of Longest Common Subse-

quence between sequence x
(i)

pi+1..|x(i)| and x
(j)

pj+1..|x(j)|.

Eventually, the depth-first search strategy is implemented recur-
sively as Algorithm 1.

4 Experimental Results

In this section, we conduct elaborate experiments to demonstrate the
effectiveness of our Branch-and-Bound algorithm. All the codes are

Algorithm 1 DepthFirstSearch (π1π2...πt//(p1, p2, ..., pk))

1: for πt+1 = σ ∈ Σ do
2: ∀j, nextpj = next(j)(pj , σ)
3: if ∀j, nextpj
= invalid {check of valid branch} then
4: UB2 ← min

i<j=1,2,...,k
d(i)(j)(nextpi, nextpj)

5: if (t+1+UB2) > currentBest {elimination condition}
then

6: Depth-First-Search(π1π2...πtπt+1//(nextp1, nextp2,
..., nextpk))

7: end if
8: if t + 1 > currentBest {update currentBest} then
9: currentBest← t + 1

10: currentLCS ← π1π2...πtπt+1

11: end if
12: end if
13: end for

implemented in C/C++ and run on a PentiumIII 800Mhz PC with
128M memory.

4.1 Random instances

All the random benchmark instances used in [3, 16](87700 instances
in total) are tested in our experiments. These instances are generated
through the following two random types:

Type A Random instances: There are 82000 instances of this
type, while each instance consists of exactly k = 4 sequences with a
length n that varies from 50 to 100. All the sequences are randomly
generated according to the uniform distribution. And the alphabet
size will be either 4(likeDNA) or 20(likeProtein).

Experiment results of our algorithm are described in Table 1. On
average, our Branch-and-Bound will give the optimal solution within
10 seconds.

Table 1. Results of random type A (82000 instances)

#number of
 instances k nmax nmin

Avg.
UB2

Avg.
k-LCS

Avg.
Time(sec)

8000 50 33.41 26.31 0.07
8000 60 37.61 28.99 0.26
8000 50 34.41 27.40 0.12
8000 60 38.85 30.23 0.43
3000 80 42.83 31.41 1.53
3000 90 46.17 33.53 3.76
3000 95 47.85 34.67 6.25

alphabet size = 4 (DNA) {41000 instances in total}

4

70

75

100

#number of
 instances k nmax nmin

Avg.
UB2

Avg.
k-LCS

Avg.
Time(sec)

8000 50 13.36 6.38 0.004
8000 60 15.16 7.17 0.004
8000 50 13.95 6.74 0.004
8000 60 15.80 7.49 0.005
3000 80 14.20 6.12 0.004
3000 90 15.46 6.66 0.005
3000 95 16.12 6.88 0.005

alphabet size = 20 (Protein) {41000 instances in total}

70

75

100

4

Type B Random instances: Another 5700 instances have k =
5, 10 or 20 sequences each with up to n = 500 lengths. In every
instance, all the sequences are generated by simulating an evolution
process on a same random sequence base(S) according to the Jukes-
Cantor model[9].

Table 2. Results of random type B (5700 instances)

#number of
 instances k nmax nmin

Avg.
UB2

Avg.
k-LCS

Avg.
Time(sec)

300 400 99.72 98.17 0.02
300 450 270.56 269.89 0.05
400 480 405.16 405.01 0.11
300 400 97.92 95.22 0.20
300 450 262.60 260.85 0.21
400 480 402.53 402.12 0.42
300 400 96.83 93.87 1.30
300 450 257.75 255.10 1.22
400 480 400.28 399.48 1.51

5

10

20

500

alphabet size = 4 (DNA) {3000 instances in total}

#number of
 instances k nmax nmin

Avg.
UB2

Avg.
k-LCS

Avg.
Time(sec)

300 400 100.53 99.01 0.02
300 450 270.50 269.79 0.07
300 480 406.95 406.90 0.17
300 400 97.98 95.21 0.23
300 450 262.36 260.58 0.24
300 480 403.43 403.27 0.54
300 400 96.73 93.83 1.01
300 450 257.07 254.40 1.03
300 480 401.35 400.93 1.76

alphabet size = 20 (Protein) {2700 instances in total}

5

50010

20

Although with larger k and n, the experiment results of our al-
gorithm (see Table 2) indicate that these instances are even easier
than random type A, since our upperbound UB2 is quite close to the
optimal solution k − LCS.

It’s meaningless to directly compare the result of an exact algo-
rithm with heuristic algorithms. However, for all of these random in-
stances, it is evident that our algorithm dominates heuristic algorithm
EA and LR, since the solutions can be obtained and guaranteed to be
optimal in only a few seconds.

4.2 Real-world instances

In real-world, DNA/Protein sequences are neither uniformly dis-
tributed nor strictly Jukes-Cantor model fitted. Therefore, it will be
challenging to test our algorithm on real-world data.

We try our algorithm on protein families from “Blocks Database”
(http://blocks.fhcrc.org/), where a “block” contains
of multiply aligned ungapped segments which correspond to the
most highly conserved regions of proteins[6]. For example, “block”
BL00355 contains “HMG14 and HMG17 proteins”. To retrieve the
protein sequence data of block BL00355, you can access the URL:
http://blocks.fhcrc.org/blocks-bin/getblock.sh
?BL00355. Under the link “Block Map” , 12 typical real protein
sequences are included, such as, HG14 HUMAN, HG14 MOUSE,
HG17 HUMAN, HG17 PIG, HG17 RAT etc.

50 instances are selected from the database, where the number of
sequences k varies from 8 to 75. Experiment results for these 50 real
protein families are shown in Table 3. It is evident that the upper-
bound UB2 that we proposed is much tighter than UB1, which is
used in [3, 16].

Compared with BB1(Branch-and-Bound by using UB1), as you
can see, our algorithm BB2 works well for these real-world data.
And even for the hard instances (such as BL00264 and BL00053),
our algorithm can give the optimal solution in few minutes.

Table 3. Results for 50 instances from real-world protein families,
(“>10mins” means the algorithm does not terminate in 10 minutes)

BB1 BB2
BL01181 8 70 55 26 15 0.03 0.01
BL00234 8 248 70 28 21 70.12 0.1
BL00634 9 270 85 42 26 >10mins 23.25
BL00051 10 52 49 23 15 0.01 0
BL01108 10 194 111 45 24 >10mins 12.41
BL00361 10 241 101 43 22 >10mins 19.32
BL00256 11 110 61 26 14 0.56 0.04
BL00257 11 330 82 34 20 16.92 0.14
BL01167 11 238 116 50 26 >10mins 33.86
BL01143 12 97 66 30 16 1.84 0.11
BL00355 12 104 69 45 37 >10mins 2.32
BL00282 13 472 81 32 17 23.52 0.12
BL01169 14 256 100 40 19 22.24 1.59
BL00582 15 67 49 21 11 0.04 0.01
BL00045 15 100 90 40 25 >10mins 0.43
BL01048 15 215 95 36 15 10.8 0.98
BL00025 15 1840 78 38 27 >10mins 1.1
BL00936 16 159 59 26 15 0.32 0.04
BL00831 16 371 82 48 27 >10mins 1.79
BL00258 16 141 89 39 22 468.96 3.28
BL00056 16 237 109 46 20 >10mins 10.19
BL01015 17 131 113 51 25 >10mins 29.62
BL00286 18 63 28 14 11 0.01 0.01
BL00285 18 119 68 27 13 0.28 0.07
BL00732 20 162 75 32 14 0.88 0.15
BL00362 20 286 88 40 20 305.6 5.76
BL00057 22 170 64 27 13 0.56 0.1
BL00264 22 168 125 68 39 >10mins 576.57
BL00269 24 100 93 39 21 7.64 0.37
BL00784 25 51 42 16 10 0.01 0.03
BL00579 25 200 63 23 10 0.01 0.09
BL00259 25 234 58 28 18 3.92 0.26
BL00937 25 129 111 43 17 30.24 5.34
BL00783 25 250 137 49 18 >10mins 77.72
BL00828 26 45 37 17 10 0.01 0.02
BL00475 28 322 82 32 18 119.44 6.73
BL00268 30 64 31 11 7 0.01 0.05
BL00360 32 278 103 43 18 33.4 1.34
BL00646 35 184 114 45 18 94.04 7.58
BL00265 38 131 36 12 6 0.01 0.1
BL00053 40 152 129 45 16 >10mins 199.91
BL00527 41 115 50 21 8 0.01 0.25
BL00352 41 798 65 26 14 0.88 0.33
BL00050 43 263 84 26 9 0.2 0.61
BL00049 43 141 119 43 18 >10mins 66.62
BL00280 44 1416 55 22 11 0.23 0.13
BL00323 45 212 78 31 13 0.56 0.56
BL00048 47 68 46 26 22 0.24 0.14
BL00054 48 173 116 40 15 20.6 15.27
BL00260 67 206 27 10 3 0.01 0.05
BL00055 75 188 67 23 11 2.36 0.16

nmaxkBLOCK ID Time(sec)LCSUB2UB1

5 Conclusion

Unlike the approximation/heuristic algorithm proposed in previous
research, an exact Branch-and-Bound algorithm is developed in this
paper, where the key idea is to construct a better upperbound by using
Dynamic Programming.

For those random instances, experiment results show that our
Branch-and-Bound algorithm dominates heuristic algorithms(EA,
LR) since the optimal solutions can be obtained only in several sec-
onds. Moreover, our algorithm works well for real-world protein
families.

REFERENCES
[1] A. Apostolico, ‘String editing and longest common subsequence’, in

Handbook of Formal Languages, 2 Linear Modeling: Background and
Application, pp. 361–398. Springer-Verlag, Berlin, (1997).

[2] A. Banerjee and J. Ghosh, ‘Clickstream clustering using weighted
longest common subsequences’, in Proceedings of the Web Mining
Workshop at the 1st SIAM Conference on Data Mining, pp. 361–398.
Chicago, (April 1997).

[3] Paola Bonizzoni, Gianluca Della Vedova, and Giancarlo Mauri, ‘Ex-
perimenting an approximation algorithm for the lcs’, Discrete Applied
Mathematics, 110(1), 13–24, (2001).

[4] Dannenberg, ‘Recent work in real-time music understanding by com-
puter’, in Proceedings of the Intl Symposium on Music, Language,
Speech and Brain, (1991).

[5] K. Hakata and H. Imai, ‘The longest common subsequence problem for
small alphabet size between many strings’, in Proc. 3rd International
Symposium on Algorithms and Computaion(ISAAC), volume 650, pp.
469–478. Springer Verlag, (1992).

[6] J. G. Henikoff, E. A. Greene, S. Pietrokovski, and S. Henikoff, ‘In-
creased coverage of protein families with the blocks database servers’,
Nucl. Acids Res., 28, 228–230, (2000).

[7] D. S. Hirschberg, ‘A linear space algorithm for computing maximal
common subsequences’, Communications of the ACM, 18(6), 341–343,
(1975).

[8] T. Jiang and M. Li, ‘On the approximation of shortest common super-
sequences and longest common subsequences’, SIAM Journal on Com-
puting,, 24(5), 1122–1139, (1995).

[9] W. H. Li, ‘Molecular evolution’, Sinauer Assoc., (1997).
[10] D. Maier, ‘The complexity of some problems on subsequences and su-

persequences’, Journal of the ACM, 25, 322–336, (1978).
[11] W. J. Mask and M. S. Paterson, ‘A faster algorithm computing string

edit distances’, Journal of Computer and System Sciences, 20(1), 18–
31, (1980).

[12] Michael S. Paterson and Vlado Dancik, ‘Longest common subse-
quences’, Mathematical Foundations of Computer Science, 127–142,
(1994).

[13] I. Simon, ‘Sequence comparison: some theory and some practice’,
Electronic Dictionaries and Automata in Computational Linguistics,
377, 79–92, (1987).

[14] T. Smith and M. Waterman, ‘Identification of common molecular sub-
sequences’, Journal of Molecular Biology, 147, 195–197, (1981).

[15] Zdenek Tronicek, ‘Problems related to subsequences and superse-
quences’, SPIRE/CRIWG, 199–205, (1999).

[16] Gianluca Della Vedova, Multiple Sequence Alignment and Phylogenetic
Reconstruction: Theory and Methods in Biological Data Analysis, Ph.D
thesis, 2000.

[17] R. A. Wagner and M. J. Fischer, ‘The string-to-string correction prob-
lem’, Journal of the ACM, 21(1), 168–173, (1974).

