
Guiding a Theorem Prover with Soft Constraints
John Slaney and Arnold Binas and David Price 1

Abstract. Attempts to use finite models to guide the search for
proofs by resolution and the like in first order logic all suffer from the
need to trade off the expense of generating and maintaining models
against the improvement in quality of guidance as investment in the
semantic aspect of the reasoning is increased. Previous attempts to
resolve this tradeoff have resulted either in poor selection of models,
or in fragility as the search becomes over-sensitive to the order of
clauses, or in extreme slowness. Here we present a fresh approach,
whereby most of the clauses for which a model is sought are treated
as soft constraints. The result is a partial model of all the clauses
rather than an exact model of only a subset of them. This allows
our system to combine the speed of maintaining just a single model
with the robustness previously requiring multiple models.We present
experimental evidence of benefits over a range of first order problem
domains.

1 THE PROBLEM: INTELLIGENT PROOF
SEARCH

First order theorem proving is the traditional core of automated rea-
soning, of importance not only for pure mathematics but alsofor its
applications to AI—to planning, for instance—and to software engi-
neering among other fields. The search spaces encountered intheo-
rem proving are typically infinite, and for reasons related to undecid-
ability there is little regularity to their structure. Proof search there-
fore relies on rules of thumb backed by little but empirical wisdom.
It is therefore somewhat surprising, and certainly disappointing, that
attempts to search intelligently for proofs continue to be less success-
ful in practice than brute force.

Over the last few years, there have been several attempts to in-
ject intelligence into the search by combining a theorem prover with
some module that turns sets of first order clauses into constraint sat-
isfaction problems and then uses a finite domain CSP solver togen-
erate models relevant to the theorem being sought. These models
somehow represent information about the meaning of the problem—
that is, they give the prover a rudimentary understanding ofthe
problem—and so may be used to guide the proof search. The general
technique is to concentrate the search on clauses which are false in
the guiding model or models. This is intuitively reasonable: the aim
is to show that the input clause set isnecessarilyfalse, so it makes
sense to seek anomalies among the consequences of those clauses
which areactually false.

Slaney, Lusk and and McCune [5] proposed the system SCOTT
which uses a model to restrict the inference rules such as resolution
by requiring in each inference that one of the parent clausesbe false

1 Australian National University and National ICT AustraliaLtd, Canberra.
Email: John.Slaney@nicta.com.au.
National ICT Australia is funded through the Australian Government’s
Backing Australia’s Abilityinitiative, in part through the Australian Re-
search Council.

in the guiding model. According to [4] that system was quite fragile,
in that small changes in the order in which clauses are processed have
large effects on its behaviour, and it was shown to be incomplete
for some inference rules only slightly more interesting than binary
resolution.

Hodgson and Slaney [4] later produced a version of SCOTT in
which robustness was secured by maintaining several modelsrather
than just one, and completeness was achieved by using the models to
guide clause selection without restricting the inference rules. That
system, however, is extremely slow because of the overheadsin-
curred in generating and maintaining many models. It did compete
several times in CASC, as reported in [4], achieving performance
marginally better than that of OTTER.

Choi and Kerber [2, 3] propose a different technique whereby
models related to the input clauses are generated in a preprocessing
phase and are then again used to guide clause selection. Their sys-
tem uses the clause graph method, and suffers from the fact that only
very small models (with domain size 2) can be generated and used
in that way. More problematically, only the input clauses are con-
sidered when the models are being generated, so that properties that
emerge only after some consequences have been deduced are likely
to be ignored.

Brown and Sutcliffe [1, 7] have developed a system
PTTP+GLiDeS in which models are generated with a proposi-
tional SAT solver and used to constrain the inferences made in
the course of proofs by linear input resolution. The system shows
interesting efficiency gains over PTTP on some non-Horn problems,
but cannot improve on it in the Horn case and has yet to demonstrate
general usefulness in comparison with conventional provers.

In the present paper, we present a new approach within this overall
research program. The paper is organised as follows. In section 2 we
outline the method and what makes it distinctive. Then in section 3
we examine a small example of a proof search in order to illustrate
the idea. Section 4 contains experimental results on the “hard” prob-
lems from the TPTP library, and we conclude with an indication of
planned further work.

2 A FRESH APPROACH

We follow [4, 5] in basing our system on the pre-existing theorem
prover OTTER [8]. This is no longer the fastest theorem prover in
its class, but is still a high performance system which is well known,
widely used, well maintained and stable. Like Choi and Kerber [2]
we also follow [4, 5] in using FINDER [11] as the constraint solver.2

While not comparable with the state of the art in CSP, FINDER
is suitable for generating small models quickly, accepts first order

2 It might have been neater to use MACE, following the example of [7], but
MACE does not appear to exist in a version that supports soft constraints
by solving MAX-SAT problems.

clauses as input and comes with functions designed for linking it to
external software in just this way. For our system, we used a version
of FINDER which allows constraints to be soft, treating the problem
as essentially a weighted MAX-CSP. The details are not so important
to the theorem-proving application: for our purposes, it isenough that
it accepts as input a set of first order clauses each marked either as
hard or as soft and returns a model of the hard clauses satisfying as
many as possible of theinstancesof the soft ones interpreted over a
given finite domain. We use this model to guide OTTER’s search.

2.1 The given clause algorithm

The core of OTTER, as of most other high performance first order
theorem provers,3 is the given clause algorithm. For this, the clauses
are partitioned into an active set (theusable listin OTTER parlance)
and a passive set orset of support. The main part of the algorithm is
a loop executed indefinitely until either the set of support is empty or
the goal (usually the empty clause) is deduced:

ProcedureGivenClauseLoop
While the set of support is not empty do

Select given clauseg from the set of support
Move g to the usable list
For each immediate consequencec of the usable list
that hasg as a parent do

If c is the goal then
Returnsuccess

If c passes the filters then
Add c to the set of support

Returnfailure
EndGivenClauseLoop

Not specified here are the steps of back subsumption and back de-
modulation, whereby the existing clauses are rewritten using new
clauses. This may be done eagerly before the new clausec is kept
in the set of support, or lazily when it is selected as the given clause.
OTTER is eager; Waldmeister, for example, is lazy. Also unspecified
are the criteria for given clause selection, the choice of rules defining
“immediate consequence” and the filters used to remove unwanted
clauses. Details of the rules and filters will not be given here, except
to note that some filters such as subsumption preserve the complete-
ness of the method when rules such as resolution are used, while
others such as deleting all clauses above a certain length limit lead to
incompleteness.

2.2 Semantic guidance

OTTER’s default criterion for selection of the next given clause is
to choose one of those with the smallest number of constituent sym-
bols (function symbols and variables), breaking ties by choosing the
oldest—i.e. the one which was placed in the set of support first. This
criterion is tempered by the “pick-given ratio” which stipulates that
everyk-th clause is chosen to be simply the oldest, without regard to
its length, so that in effect a breadth-first search is interleaved with
the best-first one.

Clearly, the criteria for given clause selection make no reference to
the meaning of the clause or its likely rôle in any proof. In the hope of
improving the quality of selection, and therefore the efficiency of the
search, we augment the criterion with a semantic component.For this

3 For example, Vampire [9], Gandalf [14], SPASS [15], Waldmeister [6] and
E [10] all use variants of the given clause algorithm. See theCASC results
[12] for a rough but revealing comparison of the best systems.

purpose, letM be a model—that is, an interpretation of the language
of the problem in which each clause in the language is either true (for
all assignments of values to its variables) or false (for at least one
assignment). Our suggestion is to choose most of the given clauses
from among those false in the guiding model. That is, by default we
choose the oldest of the shortest of the false clauses. Because some
true clauses may also be required for a successful proof, choosing
only false clauses would lead to incompleteness,4 so every so often
we follow OTTER’s clause selection without regard to the semantics.
The ratio of semantic to non-semantic clause selections is controlled
by another magic number, the “semantic-given ratio” which is input
as a parameter like the pick-given ratio.

Semantically guided choice requires a decision as to whether a
clause is “true” or “false”, which is given by testing against a (small)
finite model. Sophisticated model checking is not required,as the
model is very small (we rarely use a domain of more than three or
four elements) and the first order clauses occurring in feasible proof
searches are typically rather short, so crude enumeration of valua-
tions of the constituent variables suffices.

The more interesting question is how to determine the guiding
model. For this, first note some vocabulary. Letc be a first order
clause containing variablesx1, . . . , xn and letM be a model with a
finite domain which may as well consist of the integers{1, . . . , k}.
In addition to the function symbols, constants and the like in the first
order language in question, let there be special constants1, . . . , k

whose interpretation is fixed in the obvious way. Now among the
ground instances ofc, of which there will normally be infinitely
many, there are those in which only the constants1, . . . , k are substi-
tuted for the variables. We call thesedomain-groundedinstances and
obviously there are only finitely many of them (kn in fact). Trivially,
c is equivalent in the modelM to the conjunction of its domain-
grounded instances.

Example: let c be the clause¬P (f(g(x))) ∨ P (f(x)) and let
the domain ofM be {1, 2, 3}. Then whilec has infinitely many
ground instances¬P (f(g(g(g(a)))))∨ P (f(g(g(a)))) etc, it has
only three domain-grounded instances relative to the domain of
M , viz. ¬P (f(g(1))) ∨ P (f(1)), ¬P (f(g(2))) ∨ P (f(2)) and
¬P (f(g(3))) ∨ P (f(3)).

The CSP corresponding to a set of clauses is obtained by firstflat-
tening the clauses by introducing extra variables and setting them
equal to the subformulae. We say that a term isflat if it contains
no nested function symbols—i.e. if the only terms inside a function
symbol are variables—and that an atomic formula is flat if either
it contains no function symbols at all or else it is an equation be-
tween a variable and a flat term. A literal is flat if the atom in it is
flat, and a clause if every literal in it is flat. Then every clause has
a flat equivalent. Now for the CSP, the domain variables correspond
to the domain-grounded instances of flat terms and flat atoms.Each
domain-grounded instance of the flattened clause then states a con-
straint or a relation (usually non-binary) between domain variables
of the CSP.

Example: Let c andM be as above. Then the result of flattening
c is v1 6= g(x) ∨ v2 6= f(v1) ∨ v3 6= f(x) ∨ ¬P (v2) ∨ P (v3).
Any domain-grounded instance of this flattened clause, suchas
3 6= g(1) ∨ 2 6= f(3) ∨ 3 6= f(1) ∨ ¬P (2) ∨ P (3), constrains the
possible values for a 5-tuple of the CSP domain variables.

4 —unless we were to use full semantic resolution with the dynamic model,
of course. We allow the prover to use ordinary rules such as binary reso-
lution, hyperresolution, paramodulation, etc. With these, true given clauses
are sometimes needed for completeness.

At any stage in the proof search, let the clauses in the usablelist
be partitioned into “hard” and “soft”. By anapproximate modelof
the usable list we mean any model of the hard clauses. By thebad-
nessof an approximate modelM we mean the number of domain-
grounded instances (relative toM) of the flattenings of soft clauses
which are false inM .5 M is an optimal model over a given domain
if its badness is minimal among models over that domain. Thatis,
we model the usable list as a MAX-CSP with mixed hard and soft
constraints—we can view it as a weighted MAX-CSP with the hard
constraints having infinite weight—where each constraint is given
by a domain-grounded instance of one of the flattened clauses. Note
that each clause in the language is either (absolutely) truein M or
(absolutely) false inM despite the appeal to matters of degree in the
generation and evaluation ofM .

The hard clauses are those initially in the usable list; the soft ones
are those which have been in the set of support. There are two rea-
sons for requiring some of the constraints to be hard. Firstly, it is
much more efficient to search for models of soft constraints within a
tightly constrained search space than in a totally unconstrained one.
Secondly, the clauses initially in the usable list are special in that they
cannot interact with each other to produce consequences since they
never get chosen as the given clause. They define the backgrouond
theory of the proof search, and in many cases also define in effect
the goal. Hence by requiring them to be true in the guiding model,
we constrain that model to cohere with the implicit semantics of the
search. At any rate, it seems empirically to be the case that making
them into hard constraints tends to avoid useless models such as those
which make the entire set of support true and so give no guidance.

We model only the usable list, not the set of support. This greatly
reduces the number of clauses which have to be modelled. Eachgiven
clause, if it is true in the current model, is simply added to the usable
list. If it is false, a new model is sought which should be better than
the current one taking the new clause into account along withthe rest
of the usable ones.6 This is the core difference between our system
and previous semantically guided provers. Our single approximate
model is chosen to capture as much as possible of all the usable
clauses, whereas their exact models each capture just an aspect of
the problem, since clauses which are false in an exact model con-
tribute nothing to it. Another difference is that we allow the model to
change in whatever way helps to make more domain-grounded clause
instances true. In [2] the models never change once the search starts.
In [4] and [5] the models do change, but subject to the condition that
clauses labelled as true by one model must continue to be labelled as
true by later ones. We see no need for such a condition, and indeed
consider it harmful since it “locks in” a bad choice made early in
the search whereas our system has the option of undoing any choice
of model once its badness becomes apparent. We do, however, have
to re-test the clauses in the set of support after each model update.
At some point (after a time limit or after a number of given clauses
specified as a parameter with a somewhat arbitrary default value of
250) the generation of models is disabled because it is expensive and
the returns diminish rapidly after a while.

For the experiments reported below, we fixed the domain size to be
3, not for any interesting reason but just because models of that size

5 The number of such false instances may be greater than the number of con-
straints resulting from them, because different domain-grounded instances
may yield the same constraint. Each constraint is thereforeweighted by the
number of clause instances which are false if it fails.

6 This is not completely accurate: in the present implementation, long clauses
(generating constraints of cardinality greater than 4) arenot modelled, be-
cause FINDER has no good way of treating large constraints assoft. This
ad hocrestriction will be removed in a more mature implementation.

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160

B
ad

ne
ss

Models in chronological order

Figure 1. The badness of soft models in a search for a proof of problem
FLD049-4. “Badness” is the number of falsified constraints.

fairly often give decent guidance and are small enough to be found
quickly. We also fixed a limit of105 variable instantiations for each
model search, so that the system should not spend too much of its
time trying to improve the model. Thus the model returned at each
point is the best found within a cutoff and not necessarily the optimal
model on the domain.

3 AN EXAMPLE

Before reporting the experiments, it is useful to illustrate with an ex-
ample. The problem chosen for this is FLD049-4 from TPTP: there is
no deep reason for this choice except that it is one of the problems in
the “eligible problems” list for CASC in 2003 which both our system
SOFTIE and the underlying prover OTTER can solve in a reasonably
short time. The theorem is that in any field, for any elementsa andc

and for any nonzero elementsb andd, if ab−1 = cd−1 thenad = bc.
This fairly basic fact of field theory is made awkward to provein
FLD049-4 by being expressed in terms of ternary relationssum and
product as well as functionsadd andmultiply, the relation
of equality being axiomatised rather than written explicitly as ‘=’ to
prevent provers from using equational reasoning directly.SOFTIE
found a proof in 244 seconds after 184 given clauses of which 25 (15
input clauses and 10 derived ones) are in the proof. By way of com-
parison, OTTER takes only 1.58 seconds to find a different proof,
also of length 25, after 250 given clauses.

The reason why SOFTIE is so slow is that it re-generates the guid-
ing model after almost every selection of given clause, resulting in
145 changes of model for 184 given clauses. Of those 184 clauses,
only 27 are true in the model at the time when they are added to the
usable list. The models vary in how much of the set of support they
verify, but during most of the search about 90% of the clausesin the
set of support are marked as true, so the preference for falsegiven
clauses clearly focuses the search considerably. The cost,however, is
that the program spends almost all of its time searching for models
as opposed to making inferences.

The penultimate model (one of the best used) has these tablesfor
addition and multiplication:

+ 0 1 2

0 0 1 0
1 1 1 1
2 0 0 0

× 0 1 2

0 0 1 0
1 2 1 0
2 0 0 0

The additive and multiplicative identities are 0 and 2 respectively.

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160 180 200

C
la

us
es

 g
en

er
at

ed
 p

er
 u

sa
bl

e
cl

au
se

Given clauses in chronological order

False given clauses
True given clauses

Figure 2. Number of clauses generated by each successive given clausedur-
ing the search for a proof of TPTP problem FLD049-4.

While this structure is certainly not an accurate reflectionof addi-
tion and multiplication as taught in the Schools, it does verify all but
19 domain-grounded instances of the usable clauses, as wellas over
90% of the set of support. Hence it describes the problem pretty well.

Figure 1 shows the numbers of violated soft constraints in each
of the 145 successive models generated. It seems that the choice of
model fluctuates irregularly between two or more different cases,
which presumably represent variations on different approximate
models, one of which is much worse than the other(s). We have not
ascertained how many isomorphism classes there are among the 145
models.

Figure 2 shows the number of clauses generated at each step—
that is, as a result of adding each given clause. Interestingly, there are
two sorts of given clause: those which have many immediate conse-
quences (about 5 per usable clause) and those which have few.The
clauses marked as true in the model at the time when they are se-
lected are almost all in the latter category. Why this shouldbe we do
not know, but it hints at a genuine link between evaluation inmodels
and deductive properties.

4 EXPERIMENTS

We have attempted to evaluate SOFTIE experimentally by running it
on problems from the TPTP library [13]. This is not as simple as it
may seem, because SOFTIE is very new and has no settled default
values as yet for parameters like the semantic-given ratio.The ter-
mination condition for model searches is no better than a guess, as
is the limit of 250 given clauses before model generation stops. The
interaction of the semantic component with the settings of OTTER,
from the choice of inference rules to the way of constructingthe ini-
tial usable list, is also uninvestigated. Therefore the results of running
SOFTIE with some parameters or other on a large problem set have
to be seen as very rough.7

To bring the task within bounds, we concentrated on the ‘hard’
problems (i.e. neither trivial nor impossible) which are the ‘eligible’
problems for CASC [12]. Running the prover repeatedly over the
whole set of eligible problems takes too long to be feasible,so Fig-
ure 3 shows timings for just two syntactic classes: those problems
consisting of Horn clauses with and without equality. Theseare the
two sections in which OTTER performs best.

7 [4] reports similar frustration with the attempt to create an autonomous
mode for SCOTT-5.

 0.01

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100 120

T
im

e
in

 s
ec

on
ds

Solutions in order of difficulty

OTTER
SOFTIE

Figure 3. Times taken to find proofs, with and without semantic guidance,
for Horn problems (the HNE and HEQ sections) of the CASC ’eligible’ prob-
lems. The solved problems and the order of in which they come is different
for the two lines, so that they are both monotone increasing.Cutoff is 900
seconds. A ‘timeout’ data point at 900 seconds has been addedin each case.

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70

T
im

e
in

 s
ec

on
ds

Solutions in order of difficulty

OTTER
SOFTIE

Figure 4. UEQ: Time taken to find a proof. These are the ‘unit equality’
problems in the CASC ‘eligible problems’ list.

Here we give results for runs of the prover with the followingset-
tings:

• A time limit of 15 minutes (cpu time) per problem.
• A weight limit of 50 symbols per clause.
• ‘Ratio’ settings such that of every 5 given clauses, 3 are chosen

to be the oldest of the shortest of thefalseclauses, 1 is the oldest
of the shortestclauses without regard to semantics, and 1 is the
oldestwithout regard to semantics or weight.

• A maximum of 450 seconds (50% of the time limit) to be spent in
generating models.

• Otherwise the default “auto” settings that come with OTTER.

We have no confidence that these settings are in general ideal—in
fact, we are sure they can be improved—but they give reasonable
results in a good proportion of cases and are fairly simple.

As is evident from Figure 3 there is a time cost associated with
model generation and testing. However, note that overall the number
of proofs obtained within one minute is roughly similar withor with-
out he investment in semantics, but that SOFTIE begins to dominate
OTTER from about that point on. This suggests that semantic guid-
ance in the style of SOFTIE pays its way more often as the problems
become harder.

Performance is by no means even across problem categories.
TPTP problems may be classified syntactically according to whether
they contain equality, whether all the clauses are Horn and so forth,
or semantically according to whether they are problems of geometry,
group theory, planning, etc. Briefly, we find that soft semantic guid-
ance as we have implemented it does better with equational reasoning
than with pure first order logic. This was a surprise, as we developed
it with rules such as resolution in mind, rather than term rewriting.
Semantically, it suits some algebraic domains, notably group theory,
better than it does other domainis. This may be because the model
generator can efficiently find structures similar to groups,and there-
fore give high quality guidance, whereas it is too slow in modelling
theories with large numbers of different predicates and function sym-
bols, functions with many argument places and so forth.

In one syntactically defined problem class, the unit equality prob-
lems, SOFTIE clearly dominates OTTER. These problems require
equational reasoning and many have an algebraic flavour. Just why
semantic guidance should be more effective for these problems than
for others is unclear, but the results shown in Figure 4 are strik-
ing. SOFTIE solves 68 of these 138 problems within the time limit,
against OTTER’s 36, and it is clear that if the time limit werein-
creased the difference between the two provers would widen.As it
is, the extra time spent finding models has an adverse effect on over-
all time only for problems which are solved in under ten seconds
anyway.

5 CONCLUSION

We have presented a model-guided theorem prover using a MAX-
CSP solver to generate models in which all of the usable clauses
have as many true instances as possible. The guiding model isre-
vised whenever a given clause is chosen which is false in the cur-
rent model. This makes the theory determined by the model non-
monotonic, as changing the model to minimise the violation of in-
stances of the usable clauses may cause some currently true clauses
to become false. We are not aware of any previous system for guiding
a theorem prover which has this feature.

While the system is still very new, and much work remains to be
done to remove the causes of abnormal termination of searches, and
then to fine-tune the many settings and details of the algorithm for
clause selection, we believe that SOFTIE already shows morethan
preliminary promise. It is complete, unlike the system described in
[5], appears to be more generally applicable and more powerful than
those in either [1] or [3], and faster than that in [4]. One interesting
line of future work is to learn the features of problems whichare
correlated with the best ways of applying the model, thus allowing
SOFTIE to adapt itself to different problem classes withoutrequiring
the intervention of a user.

More serious limitations on the current system arise from those of
the components OTTER and FINDER. OTTER is extremely slow on
some classes of problems in TPTP: on many problems in the PEQ
section, for instance, it gets stuck for hours in the processing of one
given clause, and on most problems containing clauses with many
literals it is slow compared with more modern provers.Future work
therefore includes trying semantic guidance of faster provers. The
most annoying limitation of FINDER, for present purposes, is that it
cannot treat constraints of cardinality greater than about4 as soft be-
cause “grounding out” longer clauses is too inefficient. More future
work includes overcoming this difficulty by incorporating amore so-
phisticated algorithm for handling soft constraints.

Meanwhile, our investigations have already uncovered somenew

questions about automatic first order proof search. What determines
the two types of given clause shown clearly in Figure 2, for example?
Is this a general phenomenon, or one local to specific problemtypes?
Is it really related to semantics, or is the correletion withtrue and
false clauses an accident of the particular case? More to thepoint
of the present paper, we could wish for a theoretically compelling
reason why semantic guidance works at all, and also, while positive
effects are detectable, why they are not more dramatic. We have no
answers to offer at present: in keeping with the field of theorem prov-
ing, our work has been strongly empirical in character. However, the
questions have at least been opened.

ACKNOWLEDGEMENTS

We wish to thank the previous participants in the SCOTT project:
Bill McCune, Ewing Lusk, Tim Surendonk and especially Kahlil
Hodgson to whom we are indebted in many ways that may not all
be obvious. Finally, we are grateful to National ICT Australia for its
generous support of this project during 2003.

REFERENCES
[1] M. Brown and G. Sutcliffe, ‘PTTP+GLiDeS – semantically guided

PTTP’, in Proceedings of the 17th Conference on Automated Deduc-
tion (CADE), pp. 411–416, (2000).

[2] S. Choi, ‘Towards semantic goal-directed forward reasoning in resolu-
tion’, in Proceedings of the 10th International Conference on Artificial
Intelligence: Methods, Systems and Applications (AIMSA), pp. 243–
252, (2002).

[3] S. Choi and M. Kerber, ‘Semantic selection for resolution in clause
graphs’, inProceedings of the Australian Joint Conference on AI, pp.
83–94, (2002).

[4] K. Hodgson and J. Slaney, ‘TPTP, CASC and the developmentof a
semantically guided theorm prover’,AI Communications, 15, 135–146,
(2002).

[5] E. Lusk J. Slaney and W. McCune, ‘SCOTT: Semantically constrained
otter’, in Proceedings of the 12th Conference on Automated Deduction
(CADE), pp. 764–768, (1994).

[6] B. Löchner and T. Hillenbrand, ‘A phytography of WALDMEISTER’,
AI Communications, 15, 127–133, (2002).

[7] M.Brown and G. Sutcliffe, ‘PTTP+GLiDeS – guiding lineardeductions
with semantics’, inProceedings of the Australian Joint Conference on
AI, pp. 244–254, (1999).

[8] W. McCune. Otter 3.3 reference manual.
http://www-unix.mcs.anl.gov/AR/otter/.

[9] A. Riazanov and A. Voronkov, ‘The design and implementation of
VAMPIRE’, AI Communications, 15, 91–110, (2002).

[10] S. Schulz, ‘E: A brainiac theorem prover’,AI Communications, 15,
111–126, (2002).

[11] J. Slaney, ‘FINDER: Finite Domain Enumerator’, inProceedings of
the 12th Conference on Automated Deduction (CADE), pp. 798–801,
(1994).

[12] G. Sutcliffe and C. Suttner. CASC: CADE Automated Systems Com-
petition. http://www.tptp.org/CASC.

[13] G. Sutcliffe and C. Suttner. TPTP: Thousands of Problems for Theorem
Provers.http://www.tptp.org.

[14] T. Tammet, ‘Gandalf’,Journal of Automated Reasoning, 18, 199–204,
(1997).

[15] C. Weidenbach, ‘SPASS–vewrsion 0.49’,Journal of Automated Rea-
soning, 18, 247–252, (1997).

