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Abstract.  Linear constraints occur naturally in many reasoning The language. LetV = {Xi,..., X,} be a finite set of real-
problems and the information that they represent is often uncertairvalued variabled.We are interested in linear constraints Bnof
There is a difficulty in applying many Al uncertainty formalisms to the forma; X; + - -+ + an X, > ao. Formally we define a (linear)
this situation, as their representation of the underlying logic, eitheconstrainta to be a real-valued function of?, ..., n}, wherea(s)

as a mutually exclusive and exhaustive set of possibilities, or with as usually writtena,. Let £ be the set of all such (linear) constraints.
propositional or a predicate logic, is inappropriate (or at least unhelpbefine a modek to be a real-valued function on the dét ..., n}.

ful). To overcome this, we express reasoning with linear constraints;(z), written z;, is interpreted as a value of the variatie. Let M

as a logic, and develop the formalisms based on this different unbe the set of all models. We say that modesatisfiesa, written
derlying logic. We focus in particular on a possibilistic logic repre- x |= q, if and only ifa1z1 + - - - + anxn > ao.

sentation of uncertain linear constraints, a lattice-valued possibilistic We are interested in three special constraints ® and_L. These
logic, and a Dempster-Shafer representation. are defined as follows: for eaghc {1,...,n}, T(i) = T°(@) =

1(i) = 0,andT(0) = —1, T°(0) = 0 and L (0) = 1. ThusT can

be considered as the constraint —1, T® as0 > 0 and_L as0 > 1.

T and T° are satisfied by every mode] and_L is satisfied by none.
Many reasoning problems involve linear constraints restricting theConstraints can be added, and multiplied by real valued scalars: for
possible values of real-valued variables; in particular temporal angonstraintsa, b and real number, constrainta + b is defined by
spatial problems can involve linear constraints representing relationta + b): = a; + b; for all ¢, andra is defined by(ra); = ra; for all
ships between temporal variables and between spatial variables. SugH-inear equations can be represented in the language:+ - - - +
constraints can often represent information that is uncertain. Many..%» = ao is equivalent to a pair of constrainfa, —a}.

formalisms for representing and reasoning with uncertain informa- We could also easily extend the language to include strict con-
tion have been developed. The underlying logical information is typ-straints of the formuz1 + - - - + an2n > ao.

ically expressed as a finite set of possibilities, or with a propositional

calculus, or sometimes a predicate calculus. One can sometimes coiGonsistency and semantic consequenceSuppose we have a set
vert linear constraints to a discrete (e.g., propositional) form, butd of constraints on unknowr. We say, in the usual way, that

this can make the representation very cumbersome, and the impaosatisfiesA if and only if x satisfies every member of, i.e.,z = a

tant metric information will tend to be hidden. Therefore it is prefer- for all a € A. Let [A] be the set of: that satisfyA. A is said to be
able to represent linear constraints directly, and extend the unceconsistent if it has a model, i.e., [if{] is non-empty; otherwise it is
tainty theories to reason with these. We approach this problem bgaid to be inconsistent. We would like to be able to talk about what
expressing linear constraints in a logic (section 2) and generalisingonstraint$ necessarily follow from those iA. Formally we define
uncertainty formalisms by defining them over this logic. These aresemantic consequence relatipnby A = B if and only if every
illustrated in terms of a simple example. We consider possibilisticelement of B is satisfied by every model 4f i.e.,[A] C [B]. Set of
logic in section 3, a lattice-valued possibilistic logic and generalisectonstraintsA4 is inconsistent if and only ifi = {_L}, sinceL has no
assumption-based reasoning systems in section 4, and Dempstenodel. By its construction, semantic consequejaces a reflexive,
Shafer theory in section 5. transitive and hence monotonic consequence relation. However, it is
not compact; for example, it* is the constraint; > k thenA =

{a* : k=1,2...} is inconsistent, but every finite subset dfis
consistent.

1 Introduction

2 ALOGIC OF LINEAR CONSTRAINTS

In this section we describe a logical representation of lire@on-

straints, with a semantics and a proof theory that is sound and comSyntactic consequence. Consider the proof theory generated by
plete for finite sets of constraints. We consider linear constraints ofhe axiomsT and T and inference rule schemas:

the following form:a,z1 + - - - 4+ an®n > ao, Whereao, ..., a, are  For any reak > 0, Froma deducera.

known real numbers, ant, ..., x, are unknown real numbers, of- Fom + andb deduces +0.

ten representing some physical quantities that we're interested in, b'f‘—lor any constraing, From | deducen.

only have partial information about. This is saying that the unknown ) ) .
For set of constraintsl and constrainb we say in the usual way

vectorz = (z1,...,x,) mustbe such that;z1+- - -+ anzn > ao h b df ; if be derived fi
holds. The language can also express constraints + - - + thatb can be proved fromd, written A F b, if b can be derived from
antn < ao and of the formuiz1 + - - - + anxn = ao. 2 Each variable is assumed to have a true, but (usually) unknown, value. We

do not consider here the more complex case where some of the variables
L Cork Constraint Computation Centre, Department of Computer Science, are decision variables, as studied in e.g., Simple Temporal Problems under
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applying iteratively the above inference rulesA@nd the axioms theory [5], degrees of certainty (which are called ‘necessity’) are as-
andT?; define alsaA - Bif A+ bforallb € B. sumed to be totally ordered and representable by numbéfs in,

Any such (finitary) syntactic consequence relatiois compact  with a necessity value df, for a proposition, meaning that the propo-
by definition, so we can’t hope for full completeness,kads not  sition is considered completely certain, and a valué mfeaning no
compact. However, we have, by well-known fundamental results focertainty at all. In (standard) Possibilistic Logic, the lower bound of
linear programming (see e.g., chapter 1 of [19]) the following resultthe necessity value of each of a set of propositions is given; from
(see [23] for details). these we wish to deduce the implied (lower bounds for) necessity

values of further propositions of interest.
Theorem 1 (Finite Completeness)For any sets of constraintst
and B, A - B impliesA = B. If furthermore, A is finite then  possibility distributions, measures and necessity measuresLet
AFB < AEB. Q be a (finite or infinite) set, representing a mutually exclusive and
exhaustive set of possibilities. A possibility distribution Qris de-

In practice, one will use more developed tools for finding the con-fined to be a functionr : Q — [0,1]. The associated possi-

sequences of a set of such constraints: for general problems, linegjlity measurePoss, : 22 — [0,1] is given byPoss.(X) =

programming, for particular sparse systems, Fourier elimination cagy,, {r(w) : w e X}. The associated necessity measiVe:, :

be efficient, or fast algorithms for special kinds of constraints, suchh® _, [0,1] is given byNec,(X) = 1 — Poss, (2 — X). Note

as Simple Temporal Networks [2]. _ “that we are considering unnormalised possibility distributions, pos-
The expression of reasoning with linear constraints as a logiGibjlity measures and necessity measures, i.e., waarassuming

makes it easy to generalise many (in particular non-monotonic) exthatsup ca m(w) = 1, orPoss(Q) = 1 or thatNec() = 0.

tensions of classical logics to linear constraints. The logic described

above is closely related to the logic of probability described in [22] Possibility measures and necessity measures @h A possibil-

the main difference being that the latter has some additional axzy gistribution on M induces a possibility measure and a neces-

ioms, because of models being probability functions which are nonéity measure o™, which induces values of possibility and ne-

negative. The methods for producing non-monotonic extensions tEessity forZ by the semantics. We definéec, (a) = Necx([a])

this logic of probability can be adapted to produce non-monotonicandPOSSW(a) — Possx([a]), fora € L. (Similarly we could define
logics of linear constraints. In particular, the definition of a default cx(A) = Nec, ([A]) for subsetst of £.)

logic of probability carries over immediately to a default logic of
(finite sets of) linear constraints; this involves defaults of the form
A : B/ C for finite subsetsd, B, andC of £, which is intended to
represent that one should deduceéf one knowsA, given thatB is
consistent with what is known.

We are interested in statements of the fdiec(a) > «, which
we abbreviate to the paii, o), wherea € £ anda € [0,1]. We
assume a set of such paiswhich can be thought of as an imprecise
specification of a necessity measure. Our information is intended to
constrain an unknown possibility distributiean: M — [0,1]. Pos-
sibility distribution 7 is said to satisfy a paifa, «) if and only its
Flooded river example. We illustrate the techniques using an ex- associated necessity measiVec, satisfiesNec,(a) > a. This is
ample, which is based on a real application [14, 15] (see also [25, 9]}he case if and only ifr(z) < 1 — « for all 2 such thatr = a. We
An area of land surrounding a flooded river is analysed using aerialrite in this case that = (a, ). We say thatr satisfies setd of
photographs and other sources of information. It is divided uprinto  such pairs if and only i satisfies each of the pairs.ih. We say that
parcels of land, ocompartmentswhich are small enough so thatit A entails pair(b, 3), written A |= (b, 8), if and only if = = (b, 8)
can be assumed that the water level is constant within a compartmerbr all 7 such thatr = A.
Each of these compartments is either partially or completely flooded. For set of pairs.A and 3 € [0,1] define A to be
Let z; be the water level (in metres above sea level) of compartmen{q : (a,a) € A, a > 3}. We have the following key result for pos-
i. sibilistic logic of linear constraints, which connects entailment in the
We would like to deduce information about the levelsfor var-  possibilistic logic with entailment in the linear constraints logic.
ious compartments. The information we have is of the following
form: upper boundf the formz; < s, andlower boundsof the X
form: z; > r (wherer ands are given numbers) arising from obser- °F ‘2" 7 < B Ay b Letd” = SUP*{V P Ay ’f,b}' ThenA =
vations that objects such as vines are partially submerged, and simpqen b%), gnd ifA = (b, _ﬁ) thepﬁ < b%, so thatb” is the strongest
linear constraints of the form; > x; (call theseules), wherej > 4, “ecessf't}’ value deducible, given for b.
based on observed flows. Both types of information are uncertain, but For finite A we haved = (b, 5) <= As = b.
the flows are less uncertain than the bounds. Hence, by finite completeness (Theorem 1), we have that fiite
This is a special kind of Simple Temporal Problem [2] (though entails(b, 3) if and only Az | b.
the variables are spatial rather than temporal) for which a simple lin- The sets of pairsA can be used to represent a possibilistic linear
ear time algorithm can be used involving both upstream and downeonstraints knowledge base. If we are interested in finding informa-
stream propagations [15, 23], to test consistency and generate ifion about the certainty (necessity) degree tfien we can use, for
ferred bounds on the variables. However, this is not so useful on itexample, a binary search oV, 1] to find increasingly large values
own since the input information (owing to its uncertainty) in the ap- 3 with Ap = band henced = (b, 8). Each value of3 involves the

Theorem 2 For set of pairsA, we haveAd = (b, 3) if and only if

plication is inconsistent. checking of an inference in the linear constraints language (so com-
putational efficiency of the procedure is closely tied to the efficiency
3 POSSIBILISTIC LINEAR CONSTRAINTS of deduction in the class of linear constraints used). Of particular in-

terest is if we can fingg > L* with A = (b, 3), as this indicates
In this section it is shown how Possibilistic Logic [7] (Dubois et al., positive support fob. This can be also used for a possibilistic ap-
94) can be extended to deal with linear constraints. In possibilityproach to belief revision.



Possibilistic constraints for the flooded river example for all z € M such thatz }£ A, (r(x))* = a. ForA C P and

. . . . EB, (3) € P this gives the semantic consequence relation:
We can assign necessity values to the various bounds and rules in the

floodi bl d similarly. f h .- I b A = (B, p) if and only if 7 satisfies(B, ) for all = such that
ooding problem (and similar y, for other Smpe Temporal Prob- w satisfies (every pair inA. Theorem 2 cannot be generalised to the
lems [2]). Our inputs then consist of a sétof pairs(a, «) wherea

s al bound h ivaafanda is eith | | lattice case, because of the potentially more complex structure of the
Is a lower bound on the necessity@fanda is either arule, a lower lattice (in particular it being generally only partially ordered). But we
bound or an upper bound.

o . . _can still define a sound and complete proof theory.

For any« appearing in some pair we could compute, using the lin-
ear propagation algorithm, the bounds on each compartmentdgvel Proof theory.
implied from A,,. All these bounds then have necessity value at leastOM (4,0)
a. Applying this approach for each will then give us the (maxi- = )
mum) necessity value for each inferred bound. From{(A, @) : i € I} deduce(A, V., i) .

An alternative approach is to adapt the propagation algorithm fof oM {(A:, i) = @ € I} deduce({J,c; Ai, \je; i) -
the constraints to also propagate the necessities. The propagation ofDefine the set of syntactic consequencéa) of A C P to be the
the bounds is based on inferences of the foRmem lower bound  the intersection of all sefs C P (which is the unique smallest Sef
x; > r and rulexz; > =z; deducelower boundz; > r. Simi- such thaf” O A andT is closed under the inference rules (i.eI'if
larly, for the possibilistic constraints, we can chain a lower boundcontains an instance of the left hand side of an inference rule then it
pair (z; > r,«) and a rule paifz; > x;,3) to get a lower bound contains the corresponding instance of the right hand side). We then
pair (z; > =, min(c, 3)). This approach generalises easily to the define the syntactic consequence relatioby A + (B, §) if and
lattice-valued possibilistic logic and assumption-based reasoning apnly if (B,3) € C(A). This leads to the following completeness
proaches described in the next section. result.

The output of such an approach would be a set of upper bounds and
lower bounds for each compartment variable, where each of theskheorem 3 (Soundness and Completeness of Paired System)
bounds has an associated necessity grade, and stronger bounds 4ré= (B, ) if and only if A = (B, 3), whereA U {(B, 3)} C P.
associated with smaller necessity values. The strongest bounds with . i
necessity values greater thari can therefore be considered as con- _AS usual, soundness is easy to confirm. We sketch how com-
straining the ‘best guesses’ for the water levels in the compartment®/eteness is proved. Lab&l as{(A;, ;) : @ € I}, and define, for
The weaker bounds, with higher necessity values, give us informat € M, Io = {i € I : @ = A;}. Define modeira by, fora € M,
tion we can be more confident in. (ra(z))” = Vielz a;. It can be easily shown thata satisfies
A. Suppos@\ = (B, ); thenwa satisfies(B, ), which leads to
/\z[#B ViGII o = .
4 LATTICE-VALUED POSSIBILISTIC LOGIC LetSp = {0 CT: U, A = B}. Applying the third infer-
Many results on possibilistic logic can be generalised to a situatioifNCe rule, then the first inference rule, then the second one leads
where the values of necessity are in a distributive lattice [6, 7]. Lef0: C(A) contains the paif(B,\/ g A, @:). The distribu-
K = (K,0,1,\,\/) be a completely distributive lattice [4], with tivity property can be used to show th . \/._, o: equals
greatest lower bound operatigh and least upper bound operation \/UESB /\ZEU a;, which implies tha€ (A) containg B, 3) using the
\/ on subsets of satisfying infinite distributive properties. The as- first inference rule. Sa\ (B, B) as required.
sociated partial order on K is given in the usual wayy < g if
and only ifa A 8 (i.e., A {a, 8}) = a.

Define the languag® to consist of all pair§ A, o) whereA C £
is a set of linear constraintsanda € K is a lattice element. Set
of linear constraints is interpreted as meaning that the true watifie
the vector of real valued variables satisfies each constraifit irhe
values in the latticdC might be interpreted as truth values (or, alter-
natively, degrees of preference). The interpretatiofAfa) is then
the truth \(alue .Of E satisf.ies "is at Ieagta. Extending standarq gut finite, set of pairg\’ = {(A%,a) : « € K}, where A* is the
possibilistic logic, we define the semantics is terms of generahseunion of A overall(4,a) € A
possibility distributions. The definition in the standard case is equiv- ’ ’
alenttor = (A4, «) ifand only if 1 — w(z) > « for all z such that
z = A. However, we do not generally have an operation correspondAssumption-based reasoning
ing to 1 — (-) within the lattice. To solve this problem we define a
complementary scale for the possibility values.

Let K — K™ be abijection betweeR and some sek™, with o™
being the image ofy, and definga*)* = . Modelsw are defined
to be functions fromM to K*. We sayr satisfies(A, «) if for all

deduce(B, 3) for all (B, ) such thatA = B and

WhenA is finite the proof theory can be written in a simpler way,
with the second and third inference rules being replaced by:

From (A, o) and (A, 3) deduce(A, a V 3).

From (A, «) and (B, §) deducg AU B, a A B).

Also the definition of syntactic consequence simplifies to the usual
kind of definition: A + (B, 8) if and only if (B, 3) can be proved
(in a finite number of steps) fromh using the inference rules. If
distributive latticelC is finite then we can rewritA as the equivalent,

The above soundness and completeness results can be applied to give

similar results for argumentation systems which may be viewed as

generalised versions of Assumption-Based Truth Maintenance Sys-

tems [10]. For example, consider a system of péits¢) where A

is a set of linear constraints, apds a formula in some propositional

3 The results in this section (in particular, theorems 3 and 4, as well as The'—anguageR; ¢ is intended to represent conditions under which con-
orem 2 in the last section) do not depend at all on the internal structure o$traintsA are known to hold. To express relationships between these

the language or of the set of modeld.(; the same results hold given arbi-  conditions, it can be useful also to allow an additional set of formulae
trary setsC and M with arbitrary relationr= C M x £ used to define the TCR

semantic entailment relation between subset§.df particular the results = . L )
hold if the languageC. of linear constraints is extended with disjunctions L€t (2 be the set oR-valuations satisfying". Models are defined

and/or conjunctions and/or negations. to be pairs(z, w) for x € M andw € Q. Pair(z,w) represents a




possible assignment to both the real-valued variables and the propogjiven the appropriate independence assumptions, is calculated us-

tional variables(A, ¢) restricts possible mode(s;, w). Pair (A, ¢)
represents that, if conditiop holds, then all ofA hold; so we say
(z,w) satisfies(A, ¢) if [w satisfiesp impliesz = A]. Therefore
(A, ¢) can be thought of as an implicatioifi:p holds thenA holds

ing Dempster’s rule. The combinatidf?, Pps,I") of these source
triples over. is defined as follows:

Let Q% QX o X Q. Forw € 9%, w(i) is defined
to be itsith component, so that = (w(1),...,w(k)). Define

As usual we extend this to a semantic consequence relation on pairs): Q% — F by I'V(w) = Ule TI';(w(i)) and probability function

A E (A, 9) If (A, ¢) is satisfied by al(z, w) satisfying every ele-
ment of A.

Define syntactic entailmeift using the following proof theory:
From (A, ¢) deduce(B, ) for all (B,v) in P such thatd = B
andT U {¢} = ¢.

From (A, ¢) and (A, ¢) deduce(A, ¢ V ).
From (A4, ¢) and (B, ¢) deduceg(A U B, ¢ A ).

Theorem 4 With the above proof theory, finitA syntactically en-
tails (B, v) if and only if A semantically entail§ B, ).

Given A one can associate with& C £ a formula¢ps in R
which expresses precisely the conditions under wiiicban be de-
duced; thatisA = (B, ¢) ifand only if T U {¢} = ¢ 5. If one had
a probability measure oR, satisfyingPr(7") = 1, then this can be
used to generate the probability thatcan be proved, i.ePr(¢z),
which can be considered as a degree of beligin

An important special case is wherA can be written as
{(As,ps) : i =1,...,m} where eaclp; is a propositional variable,
andT = (. This is an assumption-based system. If eacls inde-
pendent and has a changeof holding, this generates a probability
measure ork and hence degrees of belief. This situation is also

special case of the generalised Dempster-Shafer theory described
the next section (cf., work on probabilistic argumentation systemé

[8, 1]).

5 DEMPSTER-SHAFER ON LINEAR
CONSTRAINTS

P onQ* by P(w) = Hle P;(w(i)), forw € Q. Let2 be the set
{w e Q* : [I(w)] # 0}, letT" beI” restricted ta2, and let proba-
bility function Pps on 2 be P conditioned by, so that forw € Q,
Pps(w) = P (w)/P(2) (given that P(2) £ 0).

The combined measure of belief Bel is the belief function asso-
ciated with the combined source triple, and is thus given, for fi-
nite A C L, by Bel(lA) = Pps(I'(w) | A), which equals
Pps(I'(w) F A) sinceI'(w) is a finite subset of.. Alternatively,
we could map each source triple to its corresponding source triple
over M, combine the source triples and generate function Beér

M. We then have BéM) = Bely ([A]).

Computing combined belief. It is possible to adapt various of
the standard approaches (see e.g., [21]) for computing combined be-
lief to the uncertain linear constraints scenarios. In particular, various
Monte-Carlo algorithms can be adapted to give arbitrarily close ap-
proximations of values of belief.

Since, for finiteA C £, Bel(4) = Pps(I'(w) F A), to calculate
Bel(A) we can repeat a large number of trials of a Monte-Carlo al-

agorithm where for each trial, we pick with chancePps(w) and say

that the trial succeeds If(w) + A, and fails otherwise. BEH) is
en estimated by the proportion of the trials that succeed. The most
straight-forward way is to pick with chancePps(w) by repeatedly
(if necessary) pickings € Q* with chance Rw) until we get anv
in Q. Pickingw with chance Rw) is easy: foreach=1,..., k, we
pick w; € Q; with chance P(w;) and letw = (w1, ...,wx).
If the conflict is bounded, this algorithm has low complexity, pro-

This section shows how Dempster-Shafer theory can be extended grtional to the complexity of proof in the logic [21], but with a high
reason with linear constraints. See also [11] for a related approach gPnstant factor because of needing a large number of trials to achieve

Dempster-Shafer for spatial and temporal reasoning.

a good estimate of values of belief. If the conflict is very high, we

The formalism of (Shafer, 76) [17] was derived from that of Arthur would be better off using more complex Monte-Carlo algorithms,
Dempster [3]; Dempster’s framework is more convenient for our pur-such as a Markov Chain Monte Carlo algorithm [13, 21].
poses, and we describe a slight variant of it. Define a source triple

over L to be a triple(Q2, P, T") where( is a set, P is a strictly positive
probability function (i.e., probability density function or probability
mass function) orf2 andT is a function fromQ2 to F, whereF is
the set of finite consistent subsets@fOne interpretation of source
triples is that we're interested i, but we have Bayesian beliefs
about(2, and a logical connection between the two, expressed. by
The interpretation of" is that if the proposition represented byis
true, then the proposition representedltiy) is also true.

We can associate with a source trigle = (Q2,P,T") a gener-
alised belief function Bel : £ — [0, 1] giving degrees of belief
in elements in the languag@ This is given as follows: fou € £,
Bels(a) = P{w € © : T'(w) = a}) (assuming that this set is mea-
surable), which we abbreviate t¢IRw) |= a); the belief ina is the

Dempster-Shafer for the flooded river example

An uncertain rulex; > x; with reliability p € [0,1], might
be represented as a source tripfes,w’}, P, T), with P(w) = p,
P(w') = 1 — p andT'(w) being{z; > =z;}, andT'(v') = {T} (or
alternatively the empty set of constraints). This correspondsitm-a
ple support functiofil 7]. Given just this source triple, we can deduce
the rulez; > x; with chancep (and with chancd — p we deduce
nothing).

Suppose, for example, our information makes us absolutely certain
that the level of compartmedtis at least5, and strongly suggests it
is at leas®5, with two more tentative lower bounds 10 and120.

probability thata is implied. We can also define Bel for finite subsets We might use source triplg;, P, I';) whereQ; = {1,2,3,4},

A of £ in a similar fashion: BeJ(A4) = P(I'(w) = A). Belief func-

Pi(1) = 0.1, Py (2) = 0.1, P,(3) = 0.4, and R(4) = 0.4; T, (1) is

tions are intended as representations of subjective degrees of belighe constraint; > 120, ' (2) = (z1 > 110),I'1(3) = (z1 > 95),

as described in (Shafer 76; 81) [17, 18].

andI'y(4) = (z1 > 75). This source triple can be thought of as a
constraintz; > [1 wherel; is a random variable, taking valu&g0,

Dempster’s rule of combination. Suppose we have a number of 110, 95 and75 with chance$.1, 0.1, 0.4 and0.4, respectively.

source tripleg2;, P;, T';), fori = 1,..., k, each representing a sep-

In this way we can model the uncertain upper and lower bounds

arate piece of uncertain information. The combined effect of thesefor the compartments. Given that the appropriate independence as-



sumptions are satisfiétthen we can use Dempster’s rule to combine (8]
the information. We can then compute the combined beliefs in con-
straints of interest (or use a Monte-Carlo algorithm to approximate
them). For example, if we find that Béls > 120, z¢ < 130}) =
0.7 then it means that with chan€e7 we can deduce that the level
of compartment 6 is in the intervdl 20, 130]; the value0.7 can
be viewed as a kind of lower probability fars € [120,130]. We
can find which compartments have tightly constrained bounds, and]
for which our information is poorer. At the same time we can find
smaller intervals containing;, associated with a smaller degree of [12]
belief, but which more tightly constrain the variable and enable us to
make an educated guess at the water level. [13]

(9]
[10]

6 DISCUSSION

This paper shows how a number of the most important uncertaint£/14]
formalisms can be extended to deal with uncertain linear constraints.
The formalisms we discuss are possibilistic logic, a generalised
form of possibilistic logic which encompasses a general form of15]
assumption-based reasoning, and Dempster-Shafer theory. Our ap-
proach, based on a logical representation of linear constraints, ca{g)
also be easily applied to other uncertainty formalisms, such as some
non-monotonic logics and belief revision formalisms [24]. [17]

To simplify the presentation, we presented a rather basic Iangua%]
of linear constraints in section 2. Allowing, for example, disjunc- [19
tions of linear constraints (see e.g., [2, 12]) is important for many
applications, for example, job shop scheduling. The formalisms fof20]
reasoning with uncertain linear constraints described in this paper
generalise immediately to more complex logical languages such "ﬁl]
these (see, in particular, footnote 3).
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