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Abstract. Linear constraints occur naturally in many reasoning
problems and the information that they represent is often uncertain.
There is a difficulty in applying many AI uncertainty formalisms to
this situation, as their representation of the underlying logic, either
as a mutually exclusive and exhaustive set of possibilities, or with a
propositional or a predicate logic, is inappropriate (or at least unhelp-
ful). To overcome this, we express reasoning with linear constraints
as a logic, and develop the formalisms based on this different un-
derlying logic. We focus in particular on a possibilistic logic repre-
sentation of uncertain linear constraints, a lattice-valued possibilistic
logic, and a Dempster-Shafer representation.

1 Introduction

Many reasoning problems involve linear constraints restricting the
possible values of real-valued variables; in particular temporal and
spatial problems can involve linear constraints representing relation-
ships between temporal variables and between spatial variables. Such
constraints can often represent information that is uncertain. Many
formalisms for representing and reasoning with uncertain informa-
tion have been developed. The underlying logical information is typ-
ically expressed as a finite set of possibilities, or with a propositional
calculus, or sometimes a predicate calculus. One can sometimes con-
vert linear constraints to a discrete (e.g., propositional) form, but
this can make the representation very cumbersome, and the impor-
tant metric information will tend to be hidden. Therefore it is prefer-
able to represent linear constraints directly, and extend the uncer-
tainty theories to reason with these. We approach this problem by
expressing linear constraints in a logic (section 2) and generalising
uncertainty formalisms by defining them over this logic. These are
illustrated in terms of a simple example. We consider possibilistic
logic in section 3, a lattice-valued possibilistic logic and generalised
assumption-based reasoning systems in section 4, and Dempster-
Shafer theory in section 5.

2 A LOGIC OF LINEAR CONSTRAINTS

In this section we describe a logical representation of linear≥ con-
straints, with a semantics and a proof theory that is sound and com-
plete for finite sets of constraints. We consider linear constraints of
the following form:a1x1 + · · · + anxn ≥ a0, wherea0, ..., an are
known real numbers, andx1, ..., xn are unknown real numbers, of-
ten representing some physical quantities that we’re interested in, but
only have partial information about. This is saying that the unknown
vectorx = (x1, . . . , xn) must be such thata1x1 + · · ·+anxn ≥ a0

holds. The language can also express constraintsa1x1 + · · · +
anxn ≤ a0 and of the forma1x1 + · · ·+ anxn = a0.
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The language. Let V = {X1, . . . , Xn} be a finite set of real-
valued variables.2 We are interested in linear constraints onV of
the forma1X1 + · · · + anXn ≥ a0. Formally we define a (linear)
constrainta to be a real-valued function on{0, . . . , n}, wherea(i)
is usually writtenai. LetL be the set of all such (linear) constraints.
Define a modelx to be a real-valued function on the set{1, . . . , n}.
x(i), writtenxi, is interpreted as a value of the variableXi. LetM
be the set of all models. We say that modelx satisfiesa, written
x |= a, if and only ifa1x1 + · · ·+ anxn ≥ a0.

We are interested in three special constraints>,>0 and⊥. These
are defined as follows: for eachi ∈ {1, . . . , n}, >(i) = >0(i) =
⊥(i) = 0, and>(0) = −1, >0(0) = 0 and⊥(0) = 1. Thus> can
be considered as the constraint0 ≥ −1,>0 as0 ≥ 0 and⊥ as0 ≥ 1.
> and>0 are satisfied by every modelx, and⊥ is satisfied by none.
Constraints can be added, and multiplied by real valued scalars: for
constraintsa, b and real numberr, constrainta + b is defined by
(a+ b)i = ai + bi for all i, andra is defined by(ra)i = rai for all
i. Linear equations can be represented in the language:a1x1 + · · ·+
anxn = a0 is equivalent to a pair of constraints{a,−a}.

We could also easily extend the language to include strict con-
straints of the forma1x1 + · · ·+ anxn > a0.

Consistency and semantic consequence.Suppose we have a set
A of constraints on unknownx. We say, in the usual way, thatx
satisfiesA if and only if x satisfies every member ofA, i.e.,x |= a
for all a ∈ A. Let [A] be the set ofx that satisfyA. A is said to be
consistent if it has a model, i.e., if[A] is non-empty; otherwise it is
said to be inconsistent. We would like to be able to talk about what
constraintsb necessarily follow from those inA. Formally we define
semantic consequence relation|= by A |= B if and only if every
elementb ofB is satisfied by every model ofA, i.e.,[A] ⊆ [B]. Set of
constraintsA is inconsistent if and only ifA |= {⊥}, since⊥ has no
model. By its construction, semantic consequence|= is a reflexive,
transitive and hence monotonic consequence relation. However, it is
not compact; for example, ifak is the constraintx1 ≥ k thenA =
{ak : k = 1, 2 . . .} is inconsistent, but every finite subset ofA is
consistent.

Syntactic consequence. Consider the proof theory generated by
the axioms> and>0 and inference rule schemas:

For any realr > 0, Froma deducera.

Froma andb deducea+ b.

For any constrainta, From⊥ deducea.

For set of constraintsA and constraintb we say in the usual way
thatb can be proved fromA, writtenA ` b, if b can be derived from

2 Each variable is assumed to have a true, but (usually) unknown, value. We
do not consider here the more complex case where some of the variables
are decision variables, as studied in e.g., Simple Temporal Problems under
Uncertainty [20].



applying iteratively the above inference rules toA and the axioms>
and>0; define alsoA ` B if A ` b for all b ∈ B.

Any such (finitary) syntactic consequence relation` is compact
by definition, so we can’t hope for full completeness, as|= is not
compact. However, we have, by well-known fundamental results for
linear programming (see e.g., chapter 1 of [19]) the following result
(see [23] for details).

Theorem 1 (Finite Completeness)For any sets of constraintsA
andB, A ` B impliesA |= B. If furthermore,A is finite then
A ` B ⇐⇒ A |= B.

In practice, one will use more developed tools for finding the con-
sequences of a set of such constraints: for general problems, linear
programming, for particular sparse systems, Fourier elimination can
be efficient, or fast algorithms for special kinds of constraints, such
as Simple Temporal Networks [2].

The expression of reasoning with linear constraints as a logic
makes it easy to generalise many (in particular non-monotonic) ex-
tensions of classical logics to linear constraints. The logic described
above is closely related to the logic of probability described in [22]
the main difference being that the latter has some additional ax-
ioms, because of models being probability functions which are non-
negative. The methods for producing non-monotonic extensions to
this logic of probability can be adapted to produce non-monotonic
logics of linear constraints. In particular, the definition of a default
logic of probability carries over immediately to a default logic of
(finite sets of) linear constraints; this involves defaults of the form
A : B /C for finite subsetsA, B, andC of L, which is intended to
represent that one should deduceC if one knowsA, given thatB is
consistent with what is known.

Flooded river example. We illustrate the techniques using an ex-
ample, which is based on a real application [14, 15] (see also [25, 9]).
An area of land surrounding a flooded river is analysed using aerial
photographs and other sources of information. It is divided up inton
parcels of land, orcompartments, which are small enough so that it
can be assumed that the water level is constant within a compartment.
Each of these compartments is either partially or completely flooded.
Let xi be the water level (in metres above sea level) of compartment
i.

We would like to deduce information about the levelsxi for var-
ious compartmentsi. The information we have is of the following
form: upper boundsof the formxi ≤ s, and lower boundsof the
form: xi ≥ r (wherer ands are given numbers) arising from obser-
vations that objects such as vines are partially submerged, and simple
linear constraints of the formxj ≥ xi (call theserules), wherej ≥ i,
based on observed flows. Both types of information are uncertain, but
the flows are less uncertain than the bounds.

This is a special kind of Simple Temporal Problem [2] (though
the variables are spatial rather than temporal) for which a simple lin-
ear time algorithm can be used involving both upstream and down-
stream propagations [15, 23], to test consistency and generate in-
ferred bounds on the variables. However, this is not so useful on its
own since the input information (owing to its uncertainty) in the ap-
plication is inconsistent.

3 POSSIBILISTIC LINEAR CONSTRAINTS

In this section it is shown how Possibilistic Logic [7] (Dubois et al.,
94) can be extended to deal with linear constraints. In possibility

theory [5], degrees of certainty (which are called ‘necessity’) are as-
sumed to be totally ordered and representable by numbers in[ 0, 1 ],
with a necessity value of1, for a proposition, meaning that the propo-
sition is considered completely certain, and a value of0 meaning no
certainty at all. In (standard) Possibilistic Logic, the lower bound of
the necessity value of each of a set of propositions is given; from
these we wish to deduce the implied (lower bounds for) necessity
values of further propositions of interest.

Possibility distributions, measures and necessity measures.Let
Ω be a (finite or infinite) set, representing a mutually exclusive and
exhaustive set of possibilities. A possibility distribution onΩ is de-
fined to be a functionπ : Ω → [ 0, 1 ]. The associated possi-
bility measurePossπ : 2Ω → [ 0, 1 ] is given byPossπ(X) =
sup {π(ω) : ω ∈ X}. The associated necessity measureNecπ :
2Ω → [ 0, 1 ] is given byNecπ(X) = 1 − Possπ(Ω − X). Note
that we are considering unnormalised possibility distributions, pos-
sibility measures and necessity measures, i.e., we arenot assuming
thatsupω∈Ω π(ω) = 1, or Poss(Ω) = 1 or thatNec(∅) = 0.

Possibility measures and necessity measures onL. A possibil-
ity distribution onM induces a possibility measure and a neces-
sity measure on2M, which induces values of possibility and ne-
cessity forL by the semantics. We defineNecπ(a) = Necπ([a])
andPossπ(a) = Possπ([a]), for a ∈ L. (Similarly we could define
Necπ(A) = Necπ([A]) for subsetsA of L.)

We are interested in statements of the formNec(a) ≥ α, which
we abbreviate to the pair(a, α), wherea ∈ L andα ∈ [ 0, 1 ]. We
assume a set of such pairsA which can be thought of as an imprecise
specification of a necessity measure. Our information is intended to
constrain an unknown possibility distributionπ : M→ [ 0, 1 ]. Pos-
sibility distributionπ is said to satisfy a pair(a, α) if and only its
associated necessity measureNecπ satisfiesNecπ(a) ≥ α. This is
the case if and only ifπ(x) ≤ 1 − α for all x such thatx 6|= a. We
write in this case thatπ |= (a, α). We say thatπ satisfies setA of
such pairs if and only ifπ satisfies each of the pairs inA. We say that
A entails pair(b, β), writtenA |= (b, β), if and only if π |= (b, β)
for all π such thatπ |= A.

For set of pairsA and β ∈ [ 0, 1 ] define Aβ to be
{a : (a, α) ∈ A, α ≥ β}. We have the following key result for pos-
sibilistic logic of linear constraints, which connects entailment in the
possibilistic logic with entailment in the linear constraints logic.

Theorem 2 For set of pairsA, we haveA |= (b, β) if and only if
for all γ < β, Aγ |= b. Let b∗ = sup {γ : Aγ |= b}. ThenA |=
(b, b∗), and ifA |= (b, β) thenβ ≤ b∗, so thatb∗ is the strongest
necessity value deducible, givenA, for b.

For finiteA we haveA |= (b, β) ⇐⇒ Aβ |= b.

Hence, by finite completeness (Theorem 1), we have that finiteA
entails(b, β) if and onlyAβ ` b.

The sets of pairsA can be used to represent a possibilistic linear
constraints knowledge base. If we are interested in finding informa-
tion about the certainty (necessity) degree ofb then we can use, for
example, a binary search over[ 0, 1 ] to find increasingly large values
β with Aβ |= b and henceA |= (b, β). Each value ofβ involves the
checking of an inference in the linear constraints language (so com-
putational efficiency of the procedure is closely tied to the efficiency
of deduction in the class of linear constraints used). Of particular in-
terest is if we can findβ > ⊥∗ with A |= (b, β), as this indicates
positive support forb. This can be also used for a possibilistic ap-
proach to belief revision.



Possibilistic constraints for the flooded river example

We can assign necessity values to the various bounds and rules in the
flooding problem (and similarly, for other Simple Temporal Prob-
lems [2]). Our inputs then consist of a setA of pairs(a, α) whereα
is a lower bound on the necessity ofa, anda is either a rule, a lower
bound or an upper bound.

For anyα appearing in some pair we could compute, using the lin-
ear propagation algorithm, the bounds on each compartment levelxi

implied fromAα. All these bounds then have necessity value at least
α. Applying this approach for eachα will then give us the (maxi-
mum) necessity value for each inferred bound.

An alternative approach is to adapt the propagation algorithm for
the constraints to also propagate the necessities. The propagation of
the bounds is based on inferences of the form:From lower bound
xi ≥ r and rule xj ≥ xi deducelower boundxj ≥ r. Simi-
larly, for the possibilistic constraints, we can chain a lower bound
pair (xi ≥ r, α) and a rule pair(xj ≥ xi, β) to get a lower bound
pair (xj ≥ r,min(α, β)). This approach generalises easily to the
lattice-valued possibilistic logic and assumption-based reasoning ap-
proaches described in the next section.

The output of such an approach would be a set of upper bounds and
lower bounds for each compartment variable, where each of these
bounds has an associated necessity grade, and stronger bounds are
associated with smaller necessity values. The strongest bounds with
necessity values greater than⊥∗ can therefore be considered as con-
straining the ‘best guesses’ for the water levels in the compartments.
The weaker bounds, with higher necessity values, give us informa-
tion we can be more confident in.

4 LATTICE-VALUED POSSIBILISTIC LOGIC

Many results on possibilistic logic can be generalised to a situation
where the values of necessity are in a distributive lattice [6, 7]. Let
K = (K, 0, 1,

∧
,
∨

) be a completely distributive lattice [4], with
greatest lower bound operation

∧
and least upper bound operation∨

on subsets ofK satisfying infinite distributive properties. The as-
sociated partial order� onK is given in the usual way:α � β if
and only ifα ∧ β (i.e.,

∧
{α, β}) = α.

Define the languageP to consist of all pairs(A,α) whereA ⊆ L
is a set of linear constraints,3 andα ∈ K is a lattice element. SetA
of linear constraints is interpreted as meaning that the true valuex of
the vector of real valued variables satisfies each constraint inA. The
values in the latticeK might be interpreted as truth values (or, alter-
natively, degrees of preference). The interpretation of(A,α) is then
the truth value of “x satisfiesA” is at leastα. Extending standard
possibilistic logic, we define the semantics is terms of generalised
possibility distributions. The definition in the standard case is equiv-
alent toπ |= (A,α) if and only if 1 − π(x) ≥ α for all x such that
x 6|= A. However, we do not generally have an operation correspond-
ing to 1 − (·) within the lattice. To solve this problem we define a
complementary scale for the possibility values.

LetK 7→ K∗ be a bijection betweenK and some setK∗, withα∗

being the image ofα, and define(α∗)∗ = α. Modelsπ are defined
to be functions fromM to K∗. We sayπ satisfies(A,α) if for all

3 The results in this section (in particular, theorems 3 and 4, as well as The-
orem 2 in the last section) do not depend at all on the internal structure of
the languageL or of the set of modelsM; the same results hold given arbi-
trary setsL andM with arbitrary relation|=⊆M×L used to define the
semantic entailment relation between subsets ofL. In particular the results
hold if the languageL of linear constraints is extended with disjunctions
and/or conjunctions and/or negations.

for all x ∈ M such thatx 6|= A, (π(x))∗ � α. For ∆ ⊆ P and
(B, β) ∈ P this gives the semantic consequence relation:

∆ |= (B, β) if and only if π satisfies(B, β) for all π such that
π satisfies (every pair in)∆. Theorem 2 cannot be generalised to the
lattice case, because of the potentially more complex structure of the
lattice (in particular it being generally only partially ordered). But we
can still define a sound and complete proof theory.

Proof theory.
From (A,α) deduce(B, β) for all (B, β) such thatA |= B and
β � α.
From{(A,αi) : i ∈ I} deduce(A,

∨
i∈I

αi) .
From{(Ai, αi) : i ∈ I} deduce(

⋃
i∈I

Ai,
∧

i∈I
αi) .

Define the set of syntactic consequencesC(∆) of ∆ ⊆ P to be the
the intersection of all setsΓ ⊆ P (which is the unique smallest setΓ)
such thatΓ ⊇ ∆ andΓ is closed under the inference rules (i.e., ifΓ
contains an instance of the left hand side of an inference rule then it
contains the corresponding instance of the right hand side). We then
define the syntactic consequence relation` by ∆ ` (B, β) if and
only if (B, β) ∈ C(∆). This leads to the following completeness
result.

Theorem 3 (Soundness and Completeness of Paired System)
∆ |= (B, β) if and only if∆ ` (B, β), where∆ ∪ {(B, β)} ⊆ P.

As usual, soundness is easy to confirm. We sketch how com-
pleteness is proved. Label∆ as{(Ai, αi) : i ∈ I}, and define, for
x ∈M, Ix = {i ∈ I : x 6|= Ai}. Define modelπ∆ by, forx ∈M,
(π∆(x))∗ =

∨
i∈Ix

αi. It can be easily shown thatπ∆ satisfies
∆. Suppose∆ |= (B, β); thenπ∆ satisfies(B, β), which leads to∧

x6|=B

∨
i∈Ix

αi � β.

Let SB = {σ ⊆ I :
⋃

i∈σ
Ai |= B}. Applying the third infer-

ence rule, then the first inference rule, then the second one leads
to: C(∆) contains the pair

(
B,

∨
σ∈SB

∧
i∈σ

αi

)
. The distribu-

tivity property can be used to show that
∧

x6|=B

∨
i∈Ix

αi equals∨
σ∈SB

∧
i∈σ

αi, which implies thatC(∆) contains(B, β) using the
first inference rule. So∆ ` (B, β) as required.

When∆ is finite the proof theory can be written in a simpler way,
with the second and third inference rules being replaced by:

From (A,α) and(A, β) deduce(A,α ∨ β).
From (A,α) and(B, β) deduce(A ∪B,α ∧ β).
Also the definition of syntactic consequence simplifies to the usual

kind of definition:∆ ` (B, β) if and only if (B, β) can be proved
(in a finite number of steps) from∆ using the inference rules. If
distributive latticeK is finite then we can rewrite∆ as the equivalent,
but finite, set of pairs∆′ = {(Aα, α) : α ∈ K}, whereAα is the
union ofA over all(A,α) ∈ ∆.

Assumption-based reasoning

The above soundness and completeness results can be applied to give
similar results for argumentation systems which may be viewed as
generalised versions of Assumption-Based Truth Maintenance Sys-
tems [10]. For example, consider a system of pairs(A,φ) whereA
is a set of linear constraints, andφ is a formula in some propositional
languageR; φ is intended to represent conditions under which con-
straintsA are known to hold. To express relationships between these
conditions, it can be useful also to allow an additional set of formulae
T ⊆ R.

Let Ω be the set ofR-valuations satisfyingT . Models are defined
to be pairs(x, ω) for x ∈ M andω ∈ Ω. Pair(x, ω) represents a



possible assignment to both the real-valued variables and the proposi-
tional variables.(A,φ) restricts possible models(x, ω). Pair(A,φ)
represents that, if conditionφ holds, then all ofA hold; so we say
(x, ω) satisfies(A,φ) if [ω satisfiesφ impliesx |= A]. Therefore
(A,φ) can be thought of as an implication:if φ holds thenA holds.
As usual we extend this to a semantic consequence relation on pairs,
∆ |= (A,φ) if (A,φ) is satisfied by all(x, ω) satisfying every ele-
ment of∆.

Define syntactic entailment̀ using the following proof theory:

From (A,φ) deduce(B,ψ) for all (B,ψ) in P such thatA |= B
andT ∪ {ψ} |= φ.

From (A,φ) and(A,ψ) deduce(A,φ ∨ ψ).

From (A,φ) and(B,ψ) deduce(A ∪B,φ ∧ ψ).

Theorem 4 With the above proof theory, finite∆ syntactically en-
tails (B,ψ) if and only if∆ semantically entails(B,ψ).

Given ∆ one can associate with aB ⊆ L a formulaφB in R
which expresses precisely the conditions under whichB can be de-
duced; that is,∆ |= (B,φ) if and only if T ∪ {φ} |= φB . If one had
a probability measure onR, satisfyingPr(T ) = 1, then this can be
used to generate the probability thatB can be proved, i.e.,Pr(φB),
which can be considered as a degree of belief inB.

An important special case is where∆ can be written as
{(Ai, pi) : i = 1, . . . ,m}where eachpi is a propositional variable,
andT = ∅. This is an assumption-based system. If eachpi is inde-
pendent and has a chanceri of holding, this generates a probability
measure onR and hence degrees of belief. This situation is also a
special case of the generalised Dempster-Shafer theory described in
the next section (cf., work on probabilistic argumentation systems
[8, 1]).

5 DEMPSTER-SHAFER ON LINEAR
CONSTRAINTS

This section shows how Dempster-Shafer theory can be extended to
reason with linear constraints. See also [11] for a related approach to
Dempster-Shafer for spatial and temporal reasoning.

The formalism of (Shafer, 76) [17] was derived from that of Arthur
Dempster [3]; Dempster’s framework is more convenient for our pur-
poses, and we describe a slight variant of it. Define a source triple
overL to be a triple(Ω,P,Γ) whereΩ is a set, P is a strictly positive
probability function (i.e., probability density function or probability
mass function) onΩ andΓ is a function fromΩ to F , whereF is
the set of finite consistent subsets ofL. One interpretation of source
triples is that we’re interested inL, but we have Bayesian beliefs
aboutΩ, and a logical connection between the two, expressed byΓ.
The interpretation ofΓ is that if the proposition represented byω is
true, then the proposition represented byΓ(ω) is also true.

We can associate with a source tripleS = (Ω,P,Γ) a gener-
alised belief function BelS : L → [ 0, 1 ] giving degrees of belief
in elements in the languageL. This is given as follows: fora ∈ L,
BelS(a) = P({ω ∈ Ω : Γ(ω) |= a}) (assuming that this set is mea-
surable), which we abbreviate to P(Γ(ω) |= a); the belief ina is the
probability thata is implied. We can also define Bel for finite subsets
A of L in a similar fashion: BelS(A) = P(Γ(ω) |= A). Belief func-
tions are intended as representations of subjective degrees of belief,
as described in (Shafer 76; 81) [17, 18].

Dempster’s rule of combination. Suppose we have a number of
source triples(Ωi,Pi,Γi), for i = 1, . . . , k, each representing a sep-
arate piece of uncertain information. The combined effect of these,

given the appropriate independence assumptions, is calculated us-
ing Dempster’s rule. The combination(Ω,PDS,Γ) of these source
triples overL is defined as follows:

Let Ω× = Ω1 × · · · × Ωk. For ω ∈ Ω×, ω(i) is defined
to be its ith component, so thatω = (ω(1), . . . , ω(k)). Define
Γ′: Ω× → F by Γ′(ω) =

⋃k

i=1
Γi(ω(i)) and probability function

P′ onΩ× by P′(ω) =
∏k

i=1
Pi(ω(i)), for ω ∈ Ω×. Let Ω be the set

{ω ∈ Ω× : [Γ′(ω)] 6= ∅}, let Γ beΓ′ restricted toΩ, and let proba-
bility function PDS onΩ be P′ conditioned byΩ, so that forω ∈ Ω,
PDS(ω) = P′(ω)/P′(Ω) (given that P′(Ω) 6= 0).

The combined measure of belief Bel is the belief function asso-
ciated with the combined source triple, and is thus given, for fi-
nite A ⊆ L, by Bel(A) = PDS(Γ(ω) |= A), which equals
PDS(Γ(ω) ` A) sinceΓ(ω) is a finite subset ofL. Alternatively,
we could map each source triple to its corresponding source triple
overM, combine the source triples and generate function Bel0 over
M. We then have Bel(A) = Bel0([A]).

Computing combined belief. It is possible to adapt various of
the standard approaches (see e.g., [21]) for computing combined be-
lief to the uncertain linear constraints scenarios. In particular, various
Monte-Carlo algorithms can be adapted to give arbitrarily close ap-
proximations of values of belief.

Since, for finiteA ⊆ L, Bel(A) = PDS(Γ(ω) ` A), to calculate
Bel(A) we can repeat a large number of trials of a Monte-Carlo al-
gorithm where for each trial, we pickω with chancePDS(ω) and say
that the trial succeeds ifΓ(ω) ` A, and fails otherwise. Bel(A) is
then estimated by the proportion of the trials that succeed. The most
straight-forward way is to pickω with chancePDS(ω) by repeatedly
(if necessary) pickingω ∈ Ω× with chance P′(ω) until we get anω
in Ω. Pickingω with chance P′(ω) is easy: for eachi = 1, . . . , k, we
pick ωi ∈ Ωi with chance Pi(ωi) and letω = (ω1, . . . , ωk).

If the conflict is bounded, this algorithm has low complexity, pro-
portional to the complexity of proof in the logic [21], but with a high
constant factor because of needing a large number of trials to achieve
a good estimate of values of belief. If the conflict is very high, we
would be better off using more complex Monte-Carlo algorithms,
such as a Markov Chain Monte Carlo algorithm [13, 21].

Dempster-Shafer for the flooded river example

An uncertain rulexj ≥ xi with reliability p ∈ [ 0, 1 ], might
be represented as a source triple({ω, ω′},P,Γ), with P(ω) = p,
P(ω′) = 1 − p andΓ(ω) being{xj ≥ xi}, andΓ(ω′) = {>} (or
alternatively the empty set of constraints). This corresponds to asim-
ple support function[17]. Given just this source triple, we can deduce
the rulexj ≥ xi with chancep (and with chance1 − p we deduce
nothing).

Suppose, for example, our information makes us absolutely certain
that the level of compartment1 is at least75, and strongly suggests it
is at least95, with two more tentative lower bounds of110 and120.
We might use source triple(Ω1,P1,Γ1) whereΩ1 = {1, 2, 3, 4},
P1(1) = 0.1, P1(2) = 0.1, P1(3) = 0.4, and P1(4) = 0.4; Γ1(1) is
the constraintx1 ≥ 120, Γ1(2) = (x1 ≥ 110), Γ1(3) = (x1 ≥ 95),
andΓ1(4) = (x1 ≥ 75). This source triple can be thought of as a
constraintx1 ≥ l1 wherel1 is a random variable, taking values120,
110, 95 and75 with chances0.1, 0.1, 0.4 and0.4, respectively.

In this way we can model the uncertain upper and lower bounds
for the compartments. Given that the appropriate independence as-



sumptions are satisfied,4 then we can use Dempster’s rule to combine
the information. We can then compute the combined beliefs in con-
straints of interest (or use a Monte-Carlo algorithm to approximate
them). For example, if we find that Bel({x6 ≥ 120, x6 ≤ 130}) =
0.7 then it means that with chance0.7 we can deduce that the level
of compartment 6 is in the interval[120, 130]; the value0.7 can
be viewed as a kind of lower probability forx6 ∈ [120, 130]. We
can find which compartments have tightly constrained bounds, and
for which our information is poorer. At the same time we can find
smaller intervals containingxi, associated with a smaller degree of
belief, but which more tightly constrain the variable and enable us to
make an educated guess at the water level.

6 DISCUSSION

This paper shows how a number of the most important uncertainty
formalisms can be extended to deal with uncertain linear constraints.
The formalisms we discuss are possibilistic logic, a generalised
form of possibilistic logic which encompasses a general form of
assumption-based reasoning, and Dempster-Shafer theory. Our ap-
proach, based on a logical representation of linear constraints, can
also be easily applied to other uncertainty formalisms, such as some
non-monotonic logics and belief revision formalisms [24].

To simplify the presentation, we presented a rather basic language
of linear constraints in section 2. Allowing, for example, disjunc-
tions of linear constraints (see e.g., [2, 12]) is important for many
applications, for example, job shop scheduling. The formalisms for
reasoning with uncertain linear constraints described in this paper
generalise immediately to more complex logical languages such as
these (see, in particular, footnote 3).
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