
Knowledge-Based Cinematography and its Applications
Doron Friedman1 and Yishai A. Feldman2

Abstract.
Automated control of a virtual camera is useful for both linear an-

imation and interactive virtual environments. We have constructed a
knowledge-based system that allows users to experiment with vari-
ous cinematic genres and view the results in the form of animated 3D
movies. We have followed a knowledge acquisition process convert-
ing domain expert principles into declarative rules, and our system
uses non-monotonic reasoning in order to support absolute rules, de-
fault rules, and arbitrary user choices. We evaluated the tool by gen-
erating various movies and showing some of the results to a group of
expert viewers.

1 Introduction

Advanced virtual environments and artificial intelligence can be
highly synergetic. We often want the environments to be intelligent,
and to be inhabited by intelligent virtual creatures. One of the inter-
esting challenges in 3D environments, which has been mostly over-
looked, is virtual camera behavior. The camera is a critical tool for
conveying information and affecting user experience, but its behavior
is difficult to specify.

Cinematographers have been dealing with camera issues for over
a century. Cinematic expression includes many principles and con-
ventions, although naive viewers who watch TV or film are usually
not aware of them. For example, “jump cuts” are typically avoided
by mainstream filmmakers [27]. Avoiding jump cuts can be formu-
lated as follows: after a “cut” (camera stops and re-starts shooting),
the camera angle must change by at least 30 degrees. Such rules can
be captured mathematically, and can thus be simulated by software.
However, jump cuts were deliberately introduced into the cinematic
language by French filmmaker Godard. It is this complexity that we
want to capture; we want to be able to formalize rules, but also to
allow the system to override them in specific circumstances.

Automating camera behavior has applications for both off-line
generation of linear animation and real-time interactive virtual en-
vironments. For linear animation, automated camera control is an es-
sential part of any fully-automated tool for animation generation, and
may be a useful component in high-level authoring tools. For inter-
active environments, the need is even more obvious: since a real-time
director is not available, all camera-related decisions need to be done
automatically.

Our main goal in this research is to cover a significant portion
of the cinematic expression; therefore, we stress the importance of
the knowledge-acquisition phase. We have used a knowledge-based

1 Department of Computer Science, University College London,
d.friedman@cs.ucl.ac.uk. This author was partially funded by the
European Union project PRESENCIA, IST-2001-37927.

2 Efi Arazi School of Computer Science, The Interdisciplinary Center, Her-
zliya, Israel, yishai@idc.ac.il

approach, in which rules and principles were collected from text-
books [6, 25, 27] and from interviews with a domain expert.

In order to evaluate our approach we have implemented a system
called Mario.3 Our requirements from the system include flexibil-
ity, high-level knowledge specification, scalability, generality, and
tractability. Mario is able to convert screenplays, given in a high-level
formal language, into 3D animated movies. The camera behavior in
the output movie is determined by an automated reasoning process
using a cinematic knowledge base.4

We have evaluated Mario with several example scenes from sev-
eral TV genres. Each genre is reflected in a different knowledge base,
and the resulting camera behavior is different. We have performed a
preliminary evaluation of the results by showing the results to both
experienced filmmakers and naive viewers.

2 Background

A virtual camera has at least seven degrees of freedom per frame:
for position, orientation, and field of view. Movies typically include
24–30 frames per second, so the search space for solutions is very
large. Many types of considerations are involved: cognitive, aes-
thetic, and cultural. While the problem has been addressed by several
researchers, we believe most would agree that it is far from solved.

Previous research into automated camera control can be classified
into two methodologies: constraint satisfaction and idiom-based rea-
soning. Constraint-satisfaction methods [2, 9, 10, 17] typically work
at the level of a single frame. Given a set of constraints about the
objects to appear in the frame, they try to find the camera parameters
that best satisfy the constraints.

Idiom-based approaches try to capture cinematic principles and
let them dictate camera behavior. Cinematic principles may serve to
reduce the large search space induced by the many degrees of free-
dom for a camera per frame. Several works have attempted some for-
malization of cinematic principles, and the abstraction of the space
allows the use of symbolic algorithms rather than numeric methods.

The first to attempt some automatic cinematography were Karp
and Feiner [19]; their ESPLANADE system used planning with com-
municative goals. Butz [5] proposed that the rules of cinematic ex-
pression are analogous to grammar in natural language, and this was
the basis for his CATHI system. Christianson et al. [7] defined DCCL
(Declarative Camera Control Language) and attempted a more sys-
tematic analysis of cinematography. They describe several cinematic
principles and show how they can be formalized in a declarative lan-
guage. They encode 16 idioms, at a level of abstraction similar to the
way they would be described in a film textbook.

3 The system is named after one of the main characters in the telenovela that
was selected as the first test case.

4 To view example animation files created by Mario follow the instructions
on: http://www.cs.ucl.ac.uk/staff/d.friedman/kbc.html.



Real-time camera behavior was addressed by several projects, The
Virtual Cinematographer [18] formulates some idioms as finite-state
machines, which may then be used to make real-time decisions in 3D
chat environments on the Web. Bares et al. investigated user mod-
elling [1] and task sensitive camera behavior [3]. Tomlinson, Blum-
berg, and Nain [26] used a behavior-based approach; the camera is
modelled as an autonomous agent, and its behavior is based on a
reactive behavior system, with sensors, emotions, motivations, and
action-selection mechanisms.

Automated camera control has also been investigated in contexts
other than virtual environments. Gleicher and Masanz [16] and Liu et
al. [20] describe systems for automated video recording and editing.
Nam and Thalmann [23] deal with an automatic camera in the con-
text of a virtual theater, where human participants’ bodies are tracked
and projected into the animated scene. Bowers [4] describes Inhab-
ited Television, which combines collaborative virtual environments
(CVE) and broadcast TV; this is another innovative application that
requires automated camera control.

Constraint-based approaches are more flexible and can be used to
cover a wide range of situations. Idiom-based methods, on the other
hand, have the advantages of an artificial intelligence approach, such
as abstraction and exploitation of domain knowledge.

Our approach is knowledge-based, and is thus more similar to
the idiom-based approaches. However, we claim that idioms are the
wrong granularity, being too coarse to formalize cinematic knowl-
edge. Using idioms, one needs to code a specific idiom for every
possible situation. This method results in a repetitive and predictable
output, which impedes user engagement. For the same reasons, us-
ing idioms does not scale to more complex situations. Our approach
looks at a lower level of facts, which together comprise idioms. An-
other problem with idiom-based approaches is that they assume that
an editing algorithm is known. We believe this view is too optimistic
for a domain as complex as cinematography, and have thus opted for
a declarative knowledge representation approach.

3 Zooming In on Mario

3.1 Architecture and Representation

The inputs to Mario are a screenplay and a floor plan. The screen-
play is given in a formal language. The reasoning engine applies
cinematic principles, taken from the cinematic knowledge base, to
the inputs. The output is a list of the camera parameter values, ac-
cording to the knowledge base. The reasoning engine also produces
a log of its reasoning process. The system can create a synthetic 3D
movie corresponding to the screenplay and the camera decisions, if
3D models and animations for the objects and actions mentioned in
the screenplay are available.

We represent a scene as a collection of actions placed on a time
line, with some geometric information attached. We split the time
line into a list of intervals. For every beginning or ending of an action
we insert an interval boundary on the time line. This allows us to
avoid a continuous time line, and use a discrete representation in the
form of a list of time intervals; the advantages will become clear
below.

We translated the domain expert’s principles into formal rules. Ini-
tially, we used an ad-hoc reasoning algorithm, based on constraint
propagation. However, during the evaluation of this system, the need
for truth maintenance, and specifically the need for dependency-
directed backtracking [21], became evident.

We have thus decided to rewrite Mario based on an existing
system, implemented in Common Lisp, called Cake [24]. Cake

is a multi-layered reasoning system developed at MIT’s Artificial
Intelligence Laboratory in the late 1980s. Cake’s architecture in-
cludes seven layers; the bottom six layers provide the following
generic knowledge representation and automated reasoning facili-
ties: truth maintenance (TMS) [8, 21], equality, pattern-directed in-
vocation [11], types, algebra, and frames [22]. In addition to the
generic reasoning layers, Cake also has a top layer calledPlan Calcu-
lus, which includes generic facilities to implement a specialized for-
malism for software development. We have replaced this layer with
Mario, which is a specialized layer for reasoning about cinematogra-
phy.

We refer to the camera parameters in a single frame as aviewpoint.
Viewpoints are generally associated with seven numeric parameters.
Our approach is different, and relies on the fact that only a restricted
set of combinations of these parameters makes sense in the cinematic
domain. Thus, the geometric space is abstracted to include a finite
number of possible viewpoints, based on the physical arrangement
of the scene and on several cinematic attributes.

Viewpoints are implemented in Mario as frames. To describe a
viewpoint it is often enough to refer to the target objects or actors,
the angle in which they are displayed, and the frame (image) compo-
sition. Thus, our formalization includes three slots used most often,
and additional slots that may be used to specify less conventional
viewpoints. The three major slots are:

• Target: an actor or an object appearing in the scene;
• Shot type: close up (CU), medium shot (MS), or long shot (LS);

and
• Profile angle: front-L, front-R, 3/4L, 3/4R, back.

Shot types and profile angles are cinematic concepts. A frontal
shot means that the camera faces the actor. Actors gazing directly at
the camera cause an unnatural impression for the viewer, so the actors
are trained to look a little to the left or to the right of the camera. The
result is front-L and front-R, which refer to the case where the camera
is oriented 30 degrees from the target’s gaze vector, either to the left
or to the right, respectively. By3

4
profile angle we refer to3

4
of a

right angle (or 67.5 degrees), either to the left or to the right of the
target gaze vector.

Using discrete values makes it possible to apply symbolic reason-
ing, allowing the computation to be simpler and more efficient. To
support less conventional frame compositions, viewpoints have three
additional slots: pitch, tilt, and zoom.

Recall that the timeline is divided into intervals. Every interval
has two viewpoints, one at the beginning of the interval and the
other at the end; these viewpoints are accessed byfirst-vp and
last-vp , respectively. The formalization allows introducing addi-
tional viewpoints in the middle of intervals, but this was not utilized
so far.

3.2 Cinematic Rules

For the sake of the explanation, we will use a small scene fragment
from the Latin telenovelaDulce Anna. The rules and their formaliza-
tion will be simplified; more details appear in the first author’s Ph.D.
thesis [12]. Assume that only the following rules in our knowledge
base affect the situation:

1. If an actor is speaking, she is displayed in a frontal (30-degree)
medium shot.

2. If an actor is walking, she is displayed in a long shot, from a3
4

angle.



3. Cameras don’t cross theline of interestwith a cut. In our sim-
ple example, the line of interest is the line that connects the two-
dimensional positions of the two actors.

4. There are no jump cuts; specifically the angle between two con-
secutive shots is at least 60 degrees.5

The way we formalize the first rule is as follows: Mario checks
whether actora is speaking in an intervalI . If so, it adds the follow-
ing axioms into Cake:

(= (target (first-vp I)) a)
(= (target (last-vp I)) a)
premise: (= (shot (first-vp I)) MS)
(= (shot (first-vp I)) (shot (last-vp I)))
(or (= (profile-angle (first-vp I)) front-L)

(= (profile-angle (first-vp I)) front-R))
(= (profile-angle (first-vp I))

(profile-angle (last-vp I)))

Note that these axioms are not quantified. They may appear many
times in a scene, once for each interval in which an actor is speaking.
Also note that one formula in the rule definition above is marked to
be a premise; this is an example of a retractable formula.

The second rule is similar. In this case the profile-angle is a re-
tractable premise.

Next we want to formulate the rule that states that the camera does
not cross the line of interest with a cut. Note that it is impossible to
detect that the line is crossed before the slot values of the viewpoints
are determined. The way to handle this with Cake is by using pattern-
directed invocation.

As a first step, we install an axiom for every candidate cut point.
Recall that only interval edges are candidates for cuts. For every in-
tervalI followed by an intervalJ , we install the following axiom:

(same-side (last-vp I) (first-vp J))

We install a demon that is triggered whenever the pattern for the
same-side function appears in a term. This demon installs the fol-
lowing axiom:

(iff (same-side v1 v2)
(= (line-side (shot v1) (target v1)

(profile-angle v1))
(line-side (shot v2) (target v2)

(profile-angle v2))))

Next, line-side needs is assigned meaning, by another demon.
It tests that all viewpoint values are initialized, and if so it computes
the side of the line of interest on which the viewpoint position is. The
geometric computation is thus carried out only when it is needed, and
geometry can be kept out of the symbolic non-monotonic reasoning.

If the viewpoint is indeed determined, then the system installs the
following axiom:

(= (line-side shot target profile) side-x)

whereside-x is either one side of the line of interest or the other.
The last rule in our example is the rule that requires at least a

60-degree angle difference between consecutive shots. The formal-
ization of this rule in Cake is similar to the way we implemented
the line-of-interest rule. Using pattern directed invocation, we make

5 While cinematographers often cite 30 degrees as the right number, in te-
lenovela, being more conservative, differences smaller than 60 degrees are
rare.

sure that if interval edges become cuts their viewpoints have a large
enough angle difference.

Next we turn to describe the reasoning process. We will illustrate
the process with a very simple example, in which the actions do not
overlap:

0 3 Mother walk-to point-1
3 6 Mother speak "So, have you eaten the

sandwich that I have prepared for you?"
6 8 Mario speak "I wasn’t hungry."

Even in this simple example, we can see an interaction between
the rules, which yields an editing solution that may not have been
anticipated by the domain expert.

The rules require the first interval, in which Mother walks, to be
displayed in long shot from a3

4
angle. In the next interval Mother

speaks, so a frontal medium shot is expected. Then Mario speaks, so
a frontal medium shot of Mario is required.

This, however, is impossible. For the second and third intervals,
the line of interest should not be crossed, so the reasoning process
makes sure that Mother and Mario would be shown from the same
side of the line, one of them in front-left and the other in front-right.
This results in a “jump-cut” between the first and the second inter-
vals, i.e., a violation of the rule that requires at least a 60 degree dif-
ference between consecutive shots. The reason is that the difference
between a3

4
angle and a frontal shot (30 degrees) is 37.5 degrees,

which is less than 60 degrees.
Now the system needs to resolve this conflict, and it is able to do

so, since some of the constraints were formulated as premises. In this
example, the rules required a simple shot, i.e., that both viewpoints
for the same interval will be equal. There is only way to satisfy all
constraints, which is by unifying the two intervals into one shot, in
which all viewpoints will display a long shot of Mother from a front-
L profile angle. This is a new kind of shot, a frontal long shot, that
was not explicitly mentioned in any of the rules, and was not antic-
ipated by the domain expert. This demonstrates a type of emergent
behavior, which is highly desirable in entertainment and artistic set-
tings: the user specified rules with one scenario in mind, and the rules
interacted in a meaningful way, to generate an unexpected result for a
new scenario. If the rules were formulated correctly, this would form
a legal solution.

Cake provides different kinds of premises, with different behav-
iors. In our implementation of Mario, we have used two of the
premise types provided by Cake:defaultsandassumptions, and have
added a third mechanism into Cake, which we callpreferences.

The differences between these different types of premises are as
follows. Defaults are assumed true, and they are the first to be re-
tracted in the case of a contradiction. If, during the reasoning process,
the reason for retracting a default is by itself retracted, the default
would automatically pop back and be assumed true. For example, we
would probably use a default to specify that a shot is a simple shot
in a telenovela.Assumptionsare assumed true, but unlike defaults,
they do not get retracted or popped back automatically by Cake. We
typically use assumptions to represent arbitrary choices that result
from or clauses.

During the development of Mario, it turned out that these two
mechanisms, defaults and assumptions, were not enough. We have
introducedpreferences: these are similar to defaults in that they are
automatically popped-back if the reason for their discarding is re-
tracted. However, unlike defaults, they are the last to be retracted.

The algorithm that we implemented ion top of Cake, for resolv-
ing contradictions, is described in the first author’s Ph.D. thesis [12],



where we also show that is terminates, although it is exponential.

4 Results

We have run Mario and evaluated the results for over a hundred
scenes. Most of the scenes only involved two actors, and a few in-
cluded three actors. Due to a limitation in animation generation, most
of our examples only included a restricted set of actions: walking,
speaking, jumping, and running.

The largest example we analyzed was the complete telenovela
scene, which included 41 actions over 45 intervals, resulting in an
animation sequence of 2 minutes and 20 seconds.

The telenovela example was tested with a variety of rule sets. The
version of the knowledge base that produced the best results, accord-
ing to our domain expert, includes eight rules, each including several
independent formulae. During the processing of the full scene, the
TMS was loaded with over 10,000 terms.

Running the whole telenovela scene, which includes 41 actions
and 45 intervals, takes approximately 10 seconds on a PC with 2GHz
Pentium 4 processor, 1MB of RAM, running GNU Common Lisp.
This acceptable for an off-line tool, which may be used interactively
through iterative refinement of results.

4.1 Additional Genres

In additional to Latin telenovela, we have analyzed scenes from ad-
ditional genres, mainly a more dramatic genre (based on the TV
science-fiction seriesThe X-Files). This introduced new challenges;
mainly, it includes a much richer set of situations and locations com-
pared to telenovela. As we have refined the knowledge base and in-
troduced new rules, we frequently confronted the problem of con-
tradiction between rules. It is possible to keep the problem under-
constrained by using preferences and defaults rather than axioms,
but the result might be an arbitrary choice made by Mario to prefer
one rule over the other.

Figure 1. If a character is perceived to be threatening, a rule can specify
that the character be displayed from a low angle.

Conflicting defaults is a well-known problem in non-monotonic
reasoning [15], but there does not seem to be a general solution.
We have examined a domain-dependent solution to the problem of
contradicting defaults: classifying rules into categories of high-level
goals. The goals we have identified are: spatial orientation, convey-
ing the information explicit in the script, conveying the information

that may be implicitly deduced by a viewer from the script, aesthetic
considerations, and parsimony: using the minimum number of shots
and cameras. In cases of conflicts, the system can try to satisfy all
the goals, rather than choose preferences arbitrarily. The goals com-
ponent has not been implemented.

The formalization may help the filmmaker organize the cinematic
knowledge in her mind. This is useful not only for gaining new in-
sight into cinematic expression. By abstracting and formalizing the
domain space, the filmmaker may become aware of new options.

We can illustrate this by examining two examples of movies cre-
ated by Mario, by using simple and deliberate violation of rules. In
the first, we asked Mario to prefer complex shots rather than simple
shots, by requiring, for every interval, that the first viewpoint will
be different from the last. Note that our method is fully determin-
istic, which means that even if there are arbitrary choices, we ex-
pect a high degree of consistency. In the case described above, Mario
preferred modifying the profile angle from3

4
to frontal, and also pre-

ferred zooming in. The result was of a very consistent style including
a lot of camera rotations, which several viewers called “the Matrix”
style.

An additional small modification produced a completely differ-
ent style. Instead of requiring, for each interval, that the first view-
point will be different from the last one, we required that for each
interval,all slots of the first viewpoint be different from the corre-
sponding slots in the last viewpoint. We expected a very dynamic
camera behavior, but watching the resulting movie was still surpris-
ing. The consequence of the new rules was that in almost all of the
shots, the camera rotated between the two actors. This turned out to
be a very consistent style, called by some viewers “the Ping Pong
style.” Some film students mentioned that this style reminded them
of the Dogma 95 cinematic genre, which is characterized by unstable
and rapidly changing camera positions. Filmmaker Yigal Burstein re-
marked that this style reminded him of an experimental film by film-
maker Michael Snow.6 The point of this camera behavior in Snow’s
experimental film was to use repetitive camera rotations to accen-
tuate a sudden dramatic event. Thus, we see that, on the one hand,
experimenting with the rules can lead to surprising effects. But on
the other hand, we note that we are far from a tool that would delib-
erately select such a style to emphasize an event, as done by Snow.

4.2 Empirical Evaluation

We have conducted an informal evaluation of Mario.The main idea
was to conduct a kind of a “Turing test,” that is, to see if viewers,
and especially filmmakers, could tell the difference between Mario’s
editing and expert human editing. We have presented five versions
of the telenovela scene in 3D animation, one of which was manually
prepared by our domain expert. The audience was comprised of two
groups: one including graduate film students and lecturers, and the
other only included subjects with no background in film.

The complete details appear in the first author’s Ph.D. thesis [12].
The following points can be made about the results. First, only 8 out
of 22 (36%) of the viewers recognized who made all three movies
correctly. Due to the limitations of the experiment, we only see this as
a first indication that Mario’s result are comparable to human expert;
this needs to be further investigated.

We also asked the viewers to rate the movies. We note that in both
groups the rating for the human-made version was highest. It seems
that the question whether the movie was edited by human or machine

6 This film from 1968 was given no name, and is usually referred to as “Back
and Forth.”



is misleading, whereas viewers do sense a difference, and judge that
the human version is better. It is interesting to note that Liu et al. [20]
also found similar results for their automated video editing system;
people could not pass the “Turing test” successfully, but consistently
preferred the human version.

5 Discussion and Future Work

There is a growing interest in virtual environments that display an
emergence of complex phenomena. Emergent behavior is typically
achieved by using evolutionary methods such as genetic algorithms.
We could not use such methods in our study for two major reasons.
First, they conflict with our interest in explicit knowledge formaliza-
tion. Second, they require an extensive data set that is not available
in our case. We have demonstrated how a form of emergent behav-
ior, being a property of any complex system, can be achieved using
a knowledge-based approach.

Mario is now able to deal with a large number of cinematic con-
cepts, and is able to perform high-quality decision making about
camera behavior. However, cinematic expression is a wide, possibly
infinite domain. Mario does not deal with frame composition or oc-
clusions. In the future, we would also like to deal with multiple types
of scenes and locations, and with the manipulation of time. Other
techniques seem in place, specifically user modelling and machine
learning.

While our goal was to come up with a generic method for auto-
mated camera control, we have only looked at TV and film genres.
We expect our method to extend to other domains, but this needs to
be investigated. We have started to apply “automated cinematogra-
phy” in the context of manufacturing simulations. It now seems that
the method could be very similar to the one described in this paper,
with the main differences being the “cinematic language” used in
manufacturing simulations: occlusion plays a much more important
role, special views, such as wire frame and cross-section cuts, are
occasionally used, and events often take place in parallel.

A major challenge is how to extend the cinematic model to in-
teractive environments. In the scope of this research, the main effort
was the knowledge formalization, and finding the best computational
technique. In the case of non-linear environments, the principles have
yet to be invented (discovered?). Cinematic concepts are transformed
into new concepts in interactive settings; for example, in some set-
tings camera motion transforms into navigation, and transitions are
transformed into teleporting. Using our system, artists will be able to
explore the cinematic principles appropriate for such genres.

We have examined a novel application of automatic camera for
the automated generation of movie summaries from session in in-
teractive virtual environments [14]; such an application poses two
challenges: the first is to automatically decide what is worthwhile
showing, and the second is how to show it, which is based on the
research discussed here.

While camera control is one of the differentiators of film and TV
from other media, it is by no means the only component of the cin-
ematic expression. Our approach could be extended to support other
components, with the goal of automated filmmaking [13].

We conclude by noting that recent advances in computer graph-
ics, together with the growth of available processing power, stress
the need for automation in animation generation, and allow the gen-
eration of more sophisticated virtual environments. It may be worth-
while to revisit old artificial intelligence techniques, as well as new
ones, and see how they can allow us to achieve these goals.

REFERENCES
[1] W. H. Bares and J. C. Lester, ‘Cinematographic user models for auto-

mated realtime camera control in dynamic 3D environments’, inUM97:
User Modeling: Proc. Sixth Int’l Conf., eds., A. Jameson, C. Paris, and
C. Tasso, pp. 215–226, Sardinia, Italy, (1997).

[2] W. H. Bares and J. C. Lester, ‘Intelligent multi-shot 3D visualization
interfaces’,Knowledge-Based Systems, 12(8), 403–412, (1999).

[3] W. H. Bares, L. S. Zettlemoyer, D.W. Rodriguez, and J.C. Lester, ‘Task-
sensitive cinematography interfaces for interactive 3D learning environ-
ments’, inIUI-98: Proc. 1998 Int’l Conf. Intelligent User Interfaces, pp.
81–88, San Francisco, California, (1998).

[4] J. Bowers, ‘Crossing the line: a field study of inhabited television’,Be-
havior & Information Technology, 20(2), 127–140, (2001).

[5] A. Butz, ‘Anymation with CATHI’, in IAAI-97 Proc. of Innovative Ap-
plications of Artificial Intelligence, pp. 957–962, Providence, Rhode
Island, (1997).

[6] H. Callev,Cinematic Expression, Optimus, 1996. In Hebrew.
[7] D. Christianson, S. Anderson, L. He, D. Salesin, D. Weld, and M. Co-

hen, ‘Declarative camera control for automatic cinematography’, in
Proc. Thirteenth National Conf. Artificial Intelligence, pp. 148–155,
Menlo Park, CA, (1996). AAAI Press.

[8] J. Doyle, ‘Truth maintenance systems’,Artificial Intelligence, 12(3),
231–272, (1979).

[9] S. M. Drucker and D. Zeltzer, ‘Intelligent camera control in a virtual
environment’, inGraphics Interface, (1994).

[10] S. M. Drucker and D. Zeltzer, ‘Camdroid: A system for intelligent cam-
era control’, inSIGGRAPH Symp. Interactive 3D Graphics, (1995).

[11] Y. A. Feldman and C. Rich, ‘Pattern-directed invocation with changing
equations’,J. Automated Reasoning, 7, 403–433, (1991).

[12] D. Friedman,Knowledge-Based Cinematography and Its Application
to Animation, Ph.D. thesis, Tel Aviv University, October 2003.

[13] D. Friedman and Y. Feldman, ‘Knowledge-based formalization of cin-
ematic expression and its application to animation’, inProc. EURO-
GRAPHICS 2002, pp. 163–168, Saarbrucken, Germany, (2002).

[14] D. Friedman, Y. Feldman, A. Shamir, and T. Dagan, ‘Automated cre-
ation of movie summaries in interactive virtual environments’, inProc.
IEEE VR 2004, pp. 191–198, Chicago, IL, (2004).

[15] Readings in Non-Monotonic Reasoning, ed., M. L. Ginsberg, Morgan
Kaufmann, 1987.

[16] M. Gleicher and J. Masanz, ‘Towards virtual videography’, inProc.
ACM Multimedia, pp. 375–378, (2000).

[17] N. Halper and P. Olivier, ‘CAMPLAN: A camera planning agent’,
in AAAI 2000 Spring Symp. Smart Graphics, pp. 92–100, Stanford,
(2000). AAAI Press.

[18] L. He, M. F. Cohen, and D. H. Salesin, ‘The virtual cinematographer: A
paradigm for automatic real-time camera control and directing’,Com-
puter Graphics, 30, 217–224, (1996).

[19] P. Karp and S. Fiener, ‘Automated presentation planning of animation
using task decomposition with heuristic reasoning’, inProc. of Graph-
ics Interface ’93, pp. 118–127, Toronto, Canada, (1993). Canadian In-
formation Processing Society.

[20] Q. Liu, Y. Rui, A. Gupta, and J. J. Cadiz, ‘Automating camera man-
agement for lecture room environments’, inSIGCHI’01, Seattle, WA,
(2001).

[21] D. McAllester, ‘Truth maintenance’, inProc. Eighth National Conf. Ar-
tificial Intelligence, pp. 1109–1116, Menlo, California, (1990). AAAI
Press.

[22] M. Minsky, ‘A framework for representing knowledge’, inReadings in
Knowledge Representation. Morgan Kaufmann, (1985).

[23] Y. Nam and D. Thalmann, ‘CAIAS: Camera agent based on intelligent
action spotting for real-time participatory animation in virtual stage’, in
Proc. VSMM ’99, Dundee, Scotland, (1999).

[24] C. Rich and Y. A. Feldman, ‘Seven layers of knowledge representation
and reasoning in support of software development’,IEEE Trans. Soft-
ware Eng, 18(6), 451–469, (1992).

[25] R. Thompson,Grammar of the Edit, Focal Press, 1993.
[26] B. Tomlinson, B. Blumberg, and D. Nain, ‘Expressive autonomous cin-

ematography for interactive virtual environments’, inProc. Fourth Int’l
Conf. Autonomous Agents, pp. 317–324, Barcelona, Spain, (June 2000).

[27] T. Yaron,Editing Movies, Israeli Ministry of Culture, 1995. In Hebrew.


