
Abduction over unbounded domains via ASP
Piero A. Bonatti1

Abstract. It is known that abduction can be embedded into An-
swer Set programming (ASP). This enables sophisticated answer
set solvers to be applied to abduction problems. However this ap-
proach does not scale to abduction over infinite domains, nor to un-
bounded abduction of individual existence, due to well-known un-
decidability results. The approaches to open abduction usually rely
on 3-valued semantics to overcome technical difficulties, but this ap-
proach changes the underlying semantics and prevents the applica-
tion of ASP solvers. In this paper we apply the theory of finitary
programs to prove that for an expressive and very interesting class
of domain theories, ASP-based abduction with unbounded domains
can effectively be computed. We also prove that each observable has
a finite set of finite explanations representative of all the observable’s
infinitely many explanations. Moreover, the set of representative ex-
planations can be computed with standard ASP engines.

1 INTRODUCTION

Answer Set Programming (ASP) is a declarative problem solving
framework capable of modeling commonsense reasoning, reasoning
about action and change, planning, as well as a variety of combina-
torial problems within the first two levels of the polynomial hierar-
chy. ASP has some well-engineered and optimized implementations
[16, 8], and is approaching the technological maturity needed by ap-
plications.

Abduction is one of the applications of ASP. Standard abduction
frameworks [9, 14, 18] can be embedded into ASP with the same em-
bedding into TMS used in [19]. In general, this technique does not
scale to abduction frameworks with infinite domains, due to well-
known undecidability results. The same applies toopen abduction,
that is, a form of abduction where the existence of new individu-
als can be abduced. Open abduction mechanisms that tolerate infi-
nite domains in the presence of nonmonotonic negation exist [7] but
they have to relax semantics to three-valued logic to make top-down,
resolution-like procedures complete.

In this paper we show that ASP techniques can be applied to com-
pute (two-valued) open abduction over possibly infinite domains.
Our results are based upon the theory offinitary programs[4, 2], that
is, a very expressive class of normal programs with function symbols
and recursion such that stable model reasoning is effectively com-
putable.

We prove that when the domain theory of the abduction framework
is finitary, the set of minimal explanations of any given ground ob-
servationQ is finite, as well as any such explanation, despite the fact
that the generalized stable models of the theory can be infinite. We
derive that the set of minimal explanations is decidable. Moreover,
we show how to embed open abduction into ASP, so that state-of-
the-art ASP solvers can be used to compute explanations over finitary

1 Universit̀a di Napoli Federico II, Napoli, Italy. E-mail: bonatti@na.infn.it

domain theories with unbounded, open domains.
The paper is organized as follows. In Section 2 we recall the basic

definitions concerning open abduction and finitary programs. In Sec-
tion 3 we show how any open abduction framework can be embedded
into a normal logic program under the stable model semantics. The
embedding contains function symbols, and hence in general its sta-
ble models are highly undecidable. In Section 4 we introduce finitary
open abduction frameworks and study the properties of their sets of
minimal explanations. Then, in Section 5, we refine the results of
Section 3 to show how to use ASP solvers to compute a representa-
tive set of explanations over finitary open abduction frameworks.

2 PRELIMINARIES

We assume the reader to be familiar with normal logic programs and
the stable model semantics [10]. We say that a normal logic program
is consistentif it has at least one stable model.

The following presentation of open abduction frameworks is a
syntactic variant of the approach followed in [3].

An open abduction frameworkis a triple〈T, A, Sk 〉, whereT is
a normal logic program (the domain theory),A is a set ofabducible
predicates, andSk is an infinite denumerable set of (Skolem) con-
stants, representing individuals whose existence can be abduced. The
members ofSk do not occur inT .

For each open abduction framework〈T, A, Sk 〉, let
Abducibles(T, A, Sk) be the set of all ground atomsp(t1, . . . , tn)
such thatp ∈ A and eachti is a term freely generated by the function
and constant symbols occurring inT andSk. Abducibles(T, A, Sk)
will be called the set ofopen abduciblesof the open abduction
framework〈T, A, Sk 〉.

An open generalized stable modelof an open abduction frame-
work 〈T, A, Sk 〉 is a stable model ofT ∪ E, for someE ⊆
Abducibles(T, A, Sk).

An open explanationof a closed sentenceQ (called observa-
tion) w.r.t. an open abduction framework〈T, A, Sk 〉 is a setE ⊆
Abducibles(T, A, Sk) such that there exists a stable modelM of
T ∪ E that satisfiesQ.

Next we introduce the preliminary definitions needed to define
finitary programs.

The (atom) dependency graphof a programP is a labelled di-
rected graph denoted byDG(P ), whose vertices are the ground
atoms ofP ’s language. Moreover, (i) there exists an edge labelled
’+’ (called positive edge) fromB to A iff for some rule R ∈
Ground(P ), A ∈ head(R) andB ∈ body(R); (ii) there exists an
edge labelled ’−’ (called negative edge) fromB to A iff for some
ruleR ∈ Ground(P ), A ∈ head(R) and¬B ∈ body(R).

An atomA depends positively (resp. negatively) onB if there is
a directed path fromB to A in the dependency graph with an even
(resp. odd) number of negative edges. Moreover, each atom depends
positively on itself. IfA depends positively (resp. negatively) onB



we write A ≥+ B (resp.A ≥− B). We write A ≥ B if either
A ≥+ B or A ≥− B. If both A ≥+ B andA ≥− B hold then we
write A ≥± B.

By odd-cyclewe mean a cycle in the dependency graph with an
odd number of negative edges. A ground atom isodd-cyclicif it oc-
curs in an odd-cycle.

In the context of normal logic programs, asplitting setfor a pro-
gramP [15] is a set of atomsU containing all the atoms occurring in
the body of any ruler ∈ Ground(P ) whose head is inU . The set of
rulesr ∈ Ground(P ) whose head is inU—called the “bottom” ofP
w.r.t. U—will be denoted bybU (P ). By eU (P, I) we denote the fol-
lowing partial evaluation ofP w.r.t. I ∩U : remove fromGround(P )
each ruleA← L1, . . . , Ln such that someLi containing an atom of
U is false inI, and remove from the remaining rules all theLi con-
taining a member ofU . The following is a specialization to normal
programs of a result in [15].

Theorem 1 (Splitting theorem) Let U be a splitting set for a nor-
mal logic programP . An interpretationM is a stable model ofP iff
M = J ∪ I, where

1. I is a stable model ofbU (P ), and
2. J is a stable model ofeU (Ground(P ) \ bU (P ), I).

The next definitions and results, taken from [4, 2], characterize
finitary programs.

Definition 2 [Finitary programs] We say a programP is finitary if
the following conditions hold:

1. Each ground atomA in DG(P ) depends on finitely many ground
atomsB. In other words, the cardinality of{B | A ≥ B}must be
finite for all ground atomsA.

2. There are finitely many odd-cyclic atoms inDG(P ).

Two examples of finitary programs can be found in figures 1 and 2.
Many further examples of interesting finitary programs, showing that
the above definition is compatible with a rather free use of function
symbols and recursion, can be found in [4, 2]. Most finitary pro-
grams satisfy the first condition because the size of some arguments
does not increase across recursive calls (this is also the case for the
programs in figures 1 and 2). Typically, condition 2 is satisfied either
becauseDG(P ) has only cycles with an even number of negative
edges (figures 1 and 2), or because there exists a single odd-cycle
defining a symbolf which is always false, by means of rules like
p← f,¬p, wherep occurs only within this rule.

The consequences of finitary programs can be computed by using
only a finite fragment of their (potentially infinite) domain.

Definition 3 [Kernel atoms, Relevant universe and subprogram] A
kernel atomfor a normal programP and a ground formulaQ is either
an odd-cyclic atom or an atom occurring inQ (note that kernel atoms
are ground by definition). The set of kernel atoms forP andQ is
denoted byK (P, Q).

The relevant universefor P andQ, denoted byU (P, Q), is the
set of all ground atomsB such that some kernel atom forP andQ
depends onB. In symbols:

U (P, Q) = {B | for someA ∈ K (P, Q), A ≥ B} .

The relevant subprogramfor a ground formulaQ (w.r.t program
P ), denoted byR(P, Q), is the set of all rules inGround(P ) whose

head belongs toU (P, Q):

R(P, Q) = {R | R ∈ Ground(P ) andhead(R) ∈ U (P, Q)} .

If P is finitary, then bothU (P, Q) andR(P, Q) are finite and com-
putable. Moreover,R(P, Q) is all that is needed for query answering:

Lemma 4 For all finitary normal programsP and all ground for-
mulaeQ, R(P, Q) has a stable modelMQ iff P has a stable model
M such thatM ∩U (P, Q) = MQ.

Theorem 5 For all finitary normal programsP and all ground for-
mulaeQ,

1. P credulously entailsQ iff R(P, Q) does.
2. P skeptically entailsQ iff R(P, Q) does.

SinceR(P, Q) is finite, it follows that all the above reasoning tasks
are decidable. Moreover, ifQ is a quantifier-free nonground for-
mula, then credulous and skeptical entailment are semi-decidable and
Turing-equivalent.

In the rest of the paper we shall use other technical properties of
relevant universes and subprograms:U (P, Q) is a splitting set for
P andR(P, Q) = bU (P,Q)(P ). Moreover, ifP is finitary, then the
partially evaluated top parteU (P,Q)(Ground(P ) \ bU (P,Q)(P ), I) is
consistent.

3 EMBEDDING OPEN ABDUCTION INTO ASP

Open abduction can be embedded into ASP. A preliminary ap-
proach covering function-free and constant-free domain theories can
be found in [1]; here we extend that approach to arbitrary domain
theories. Moreover, [1] deals only with the complexity of checking
whether an explanation exists, while in the next sections we show
how to obtain explanations, and prove that the set of minimal expla-
nations can be finitely presented.

Each open abductive framework〈T, A, Sk 〉 can be captured by
a normal logic programΠ(T, A, Sk) defined as follows. For each
predicate symbolp ∈ A, introduce a new distinct predicate symbol
p̄. Moreover, letV , V̄ , andU be new predicate symbols distinct from
the symbols̄p, and letc ands, respectively, be a constant and a unary
function not occurring inT . Π(T, A, Sk) consists of the following
rules, for all rulesH ← Body in T , for all n-ary function symbols
f occurring inT or Sk, and for allp ∈ A:

H ← Body, U(x1), . . . , U(xn) where x1 . . . xn

are the variables of
H ← Body

U(f(x1, . . . , xn))← U(x1), . . . , U(xn)
U(x)← V (x)

V (c)← ¬V̄ (c)
V̄ (c)← ¬V (c)
V (s(X))← V (X),¬V̄ (s(X))
V̄ (s(X))← ¬V (s(X))

p(x1, . . . , xn)← ¬p̄(x1, . . . , xn), U(x1), . . . , U(xn)
p̄(x1, . . . , xn)← ¬p(x1, . . . , xn), U(x1), . . . , U(xn)

Note that the possible extensions of predicateV under the sta-
ble model semantics are the initial segments of the infinite sequence



Σ = c, s(c), s(s(c)), . . . (including the empty sequence andΣ). In-
tuitively, the extension ofV represent the subset ofSk that has been
abduced. Under this interpretation, the extension ofU models the
universe of the programT ∪ E underlying the definition of open
generalized stable models. The last two rules nondeterministically
chooseE [19, 11], whileT is taken into account by the first rule
schema in the program.

Then it can be proved that the stable models of the above embed-
ding projectively characterize the explanations of any given query
under 〈T, A, Sk 〉. More precisely, given a stable modelM of
Π(T, A, Sk), the new atoms must be filtered away, and each new
termsk(c) must be matched with a suitable element ofF .

Let a renaming functionfor 〈T, A, Sk 〉 be an injective substitu-
tion, preserving the symbols inT andA, and mapping the new terms
occurring inΣ onto elements ofSk. Finally, letM |T,A be the set of
atoms ofM whose predicate symbol occurs inT or A (equivalently,
M |T,A is obtained by removing fromM all the atoms with one of
the new predicate symbols introduced inΠ(T, A, Sk)).

Theorem 6 If M is a stable model ofΠ(T, A, Sk) then for all re-
naming functionsρ there exists an open generalized stable modelM ′

of 〈T, A, Sk 〉 such that

1. ρ(M(V )) (the image ofρ restricted to the extension ofV in M )
equals the subset ofSk actually occurring inM ′.

2. ρ(M |T,A) = M ′.

Conversely, if M ′ is an open generalized stable model of
〈T, A, Sk 〉, then there exist a stable modelM of Π(T, A, Sk) and
a renaming functionρ such that 1 and 2 hold.

4 FINITARY ABDUCTION FRAMEWORKS

In the previous section we proved that open abduction can be embed-
ded into ASP, but we said nothing about decidability. Note that the
embedding’s domain contains at least one function symbol (s). So it
remains to be seen how to deal effectively with an infinite Herbrand
domain. For this purpose we focus our attention on finitary domain
theories.

Definition 7 An open abduction framework〈T, A, Sk 〉 is finitary
iff T is finitary.

Note that adding facts to a normal logic program does not change
its dependency graph. Then the following proposition holds.

Proposition 8 For all open abduction frameworks〈T, A, Sk 〉 and
all E ⊆ Abducibles(T, A, Sk), T ∪ E is finitary iff T is finitary.

In particular, if an open abduction framework〈T, A, Sk 〉 is finitary,
then all possible programsT ∪ E are finitary, too.

Theorem 9 For all open abduction frameworks〈T, A, Sk 〉 and all
ground observationsQ,

1. If E is an explanation ofQ w.r.t. 〈T, A, Sk 〉, then there exists an
explanationE′ ⊆ E ∩U (T, Q) of Q w.r.t. 〈R(T, Q), A, Sk 〉.

2. If 〈T, A, Sk 〉 is finitary , then every explanationE of Q w.r.t.
〈R(T, Q), A, Sk 〉 is also an explanation ofQ w.r.t. 〈T, A, Sk 〉.

Proof.(Sketch)
1) SupposeE is an explanation ofQ w.r.t. 〈T, A, Sk 〉. By defini-

tion, there exists a stable modelM of T ∪E such thatM |= Q. Re-
call thatU (T∪E, Q) is a splitting set forT∪E, andR(T∪E, Q) =

bU (T∪E,Q)(T ∪ E); thenM = I ∪ J , whereI is a stable model of
R(T ∪ E, Q) andJ ∩ U (T ∪ E, Q) = ∅. By the latter equality,
I |= Q. Next note thatU (T ∪ E, Q) = U (T, Q) ∪ E′, for some
E′ ⊆ E ∩ U (T, Q), and henceI is a generalized stable model of
〈R(T, Q), A, Sk 〉 satisfyingQ. Part 1) follows immediately.

2) SupposeE is an explanation ofQ w.r.t. 〈R(T, Q), A, Sk 〉, that
is, there exists a stable modelI of R(T, Q) ∪ E such thatI |= Q.
Since〈T, A, Sk 〉 is finitary, the upper parteU (T,Q)(Ground(T ∪
E)\bU (T∪E,Q)(T ∪E), I) is consistent, that is, it has a stable model
J . Recall thatR(T ∪ E, Q) = bU (T∪E,Q)(T ∪ E), thereforeI ∪ J
is a stable model ofT ∪E, by the splitting theorem. Moreover, since
I |= Q, E is an explanation ofQ w.r.t. 〈T, A, Sk 〉.

The first corollary tells us that minimal explanations can be com-
puted by means of the relevant subprogramR(T, Q) (that is, a frag-
ment of the ground instantiation of the domain theoryT ).

Corollary 10 For all ground observationsQ and all finitary
〈T, A, Sk 〉, E is a minimal explanation ofQ w.r.t. 〈T, A, Sk 〉 iff
E is a minimal explanation ofQ w.r.t. 〈R(T, Q), A, Sk 〉.

The second corollary follows from the property thatR(T, Q) is
finite whenT is finitary.

Corollary 11 If 〈T, A, Sk 〉 is finitary, then for all ground observa-
tionsQ:

1. The minimal explanations ofQ are finite;
2. Q has finitely many minimal explanations;
3. The set of minimal explanations ofQ is decidable.

5 COMPUTING EXPLANATIONS WITH ASP

The above results do not tell us how to search for explanations. We
would like ASP solvers to perform such search. For this purpose, we
refine the relationships between open abduction frameworks and the
embedding into ASP.

We start by proving that if an open abductive framework is finitary,
then also the corresponding normal programΠ(T, A, Sk) is finitary.

Proposition 12 Let W be the set of ground atomsU(t), V (t) and
V̄ (t) occurring inGround(Π(T, A, Sk)).

1. W is a splitting set forΠ(T, A, Sk).
2. bW (Π(T, A, Sk)) is finitary.
3. If 〈T, A, Sk 〉 is finitary, then Ground(Π′(P, F, O)) \

bW (Π(T, A, Sk)) is finitary.

From the above proposition and [1, Lemma 2] (stating that ifbU (P )
andGround(P ) \ bU (P ) are finitary thenP is finitary) we obtain:

Theorem 13 If 〈P, F, O 〉 is a finitary open abduction framework
then its embeddingΠ(T, A, Sk) is a finitary normal program.

It turns out that the relationships between open generalized stable
models and the stable models of the ASP embedding formulated in
Theorem 6 carry over to relevant subprograms.

Then, by Theorem 9, we obtain the following result.

Theorem 14 Suppose〈T, A, Sk 〉 is finitary. Then for all mini-
mal explanationsE of Q w.r.t. 〈T, A, Sk 〉 there exist an expla-
nation E′ ⊇ E of Q w.r.t. 〈T, A, Sk 〉, a stable modelM of
R(Π(T, A, Sk), Q) and a renaming functionρ such thatE′ =
ρ(M) ∩ Abducibles(T, A, Sk).



In other words, a set of explanations covering all minimal explana-
tions of the given observablesQ can be obtained by running an ASP
solver on the finite, ground normal programR(Π(T, A, Sk), Q).
From the set of stable models generated by the solver, one can eas-
ily extract individual explanations by projecting each model onto
Abducibles(T, A, Sk). In order to generate skeptical consequences
it may be profitable to adopt skeptical methods [12, 6] (it is not
clear if the approach of [12] can handle unbounded domains spon-
taneously; [6] can).

The extended version of [4] describes an algorithm for computing
the relevant subprogram. A prototype implementation in XSB Prolog
is available on the author’s home page. A prototype finitary program
recognizer is available, too. The recognizer is described in [5].

We conclude this section with two examples of abduction frame-
works whose domain theoryT is finitary. The first domain theory
illustrated in Figure 1 is a finitary program for model-based circuit
diagnosis. Each atomout(G) models the output of gateG. The values
of circuit inputs are specifed through the same predicate. For exam-
ple the factout(y2) states that the value of inputy2 is 1. The rules
model the behavior of each gate, both under the assumption that the
gate is working properly (¬ab(G)), and under the assumption that a
fault exists (ab(G)). This formalization makes the common assump-
tion that in the absence of observable faults gates are not faulty. This
program is stratified, so there are no odd-cycles. The set of abducible
predicates isA = {ab}.

The second domain theory, illustrated in Figure 2, can be used to
find sequences of events that explain sequences of observations by
abducing the predicatedo. Most atoms with time argumentT + 1

depend on atoms with time argumentT. So the only source of cycles
with negative edges are the rules for nondeterministic actions (pred-
icatesfails andsucceeds). However, these are not odd-cycles.

An open version of this example (where the existence of new in-
dividuals can be abduced) can produce explanations based on blocks
and actions not explicitly mentioned in the domain theory.

Note the advantages of using function symbols and recursion. In-
finite and structured domains (such as the set of all gates and time)
can be modelled directly, in a natural way. An infinite number of
problem instances can be encoded in one program, so there is no
need for external components to build a specific encoding for each
instance. More generally, all necessary pre- and post-processing can
be carried out within the same language, and in principle such auxil-
iary computations can be interleaved naturally with proper problem
solving activities. Once all instances are simultaneously encoded in
one program, one can submit queries across (and relating) multiple
instances. For further details on these topics and their impact on po-
tential optimizations and expressiveness, see [4, 2].

6 SUMMARY AND CONCLUSIONS

Two-valued open abduction over infinite domains is effectively com-
putable when the domain theory is finitary. We proved that for all
finitary open abduction frameworks and all ground observables, a
representative set of explanations (minimal explanations) is decid-
able and finitely presentable. Moreover, we showed how to use ASP
solvers to compute a set of finite explanations covering all minimal
ones. These results open the way to open abduction through ASP
techniques.

One limitation of Theorem 14 is that the explanations obtained are
not necessarily minimal. Theorem 14 guarantees only that each min-
imal explanation is contained in some of the explanations produced
with R(Π(T, A, Sk), Q). In this sense, the ASP-based approach pro-

posed here produces a representative set of explanations. It would be
interesting to see how to minimize explanations via ASP.

Finitary programs, in principle, allow a number of optimizations
[4]. Identifying suitable such techniques for open abduction is an in-
teresting subject for further research. Another interesting topic for
future research is a precise estimate of the computational complex-
ity of open abduction for finitary open abduction frameworks. Such
results would precisely determine the expressiveness of this kind of
abduction.

Acknowledgements

The work reported in this paper is partially supported by the Euro-
pean Community within the Fifth (EC) Framework Programme un-
der contract IST-FET-2001-37004 – WASP working group.

REFERENCES
[1] P. A. Bonatti. Finitary Open Logic Programs.Proc. of the ASP’03 Work-

shop, 2003.
[2] P. A. Bonatti. Reasoning with infinite stable models II: Disjunctive pro-

grams.Proc. of ICLP’02, LNCS 2401, 333-346, Springer, 2002.
[3] P. A. Bonatti. Abduction, ASP and open logic programs.Proc. of

NMR’02, Toulouse, 2002.
[4] P. A. Bonatti. Reasoning with infinite stable models.Artificial Intelli-

gence, to appear. http://people.na.infn.it/˜bonatti/pub/aij04.ps. Prelimi-
nary version inProc. of IJCAI, Morgan Kaufmann, 2001.

[5] P.A. Bonatti. Prototypes for reasoning with infinite stable models and
function symbols. InLogic Programming and Nonmonotonic Reason-
ing, 6th International Conference, LPNMR 2001, volume 2173 ofLNCS,
pages 416–419. Springer, 2001.

[6] P.A. Bonatti. Resolution for Skeptical Stable Model Semantics.Journal
of Autom. Reasoning27(4): 391-421, 2001.

[7] D. Denecker, D. De Schreye. SLDNFA: An abductive procedure for ab-
ductive logic programs.The Journal of Logic Programming, 34(2):111-
167, 1998.

[8] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A deductive sys-
tem for non-monotonic reasoning. InLogic Programming and Nonmono-
tonic Reasoning, 4th International Conference, LPNMR’97, Proceedings,
volume 1265 ofLNCS, pages 364–375. Springer, 1997.

[9] K. Eshghi, R.A. Kowalski. Abduction compared with negation as failure.
In Proc. of the 6th Int.l Conf. on Logic Programming, MIT Press, 1989.

[10] M. Gelfond, V. Lifschitz. The stable model semantics for logic program-
ming. InProc. of the 5th ICLP, pp.1070-1080, MIT Press, 1988.

[11] K. Inoue. Extended Logic Programs with Default Assumptions. InProc.
of the Int.l Conf. on Logic Programming(ICLP’91), 490-504, MIT Press,
1991.

[12] K. Inoue, C. Sakama. A fixpoint characterization of abductive logic pro-
grams.Journal of Logic Programming27(2):107-136, 1996.

[13] A.C. Kakas, R.A. Kowalski, F. Toni. Abductive Logic Programming.
Journal of Logic and Computation, 2(6):719-770, 1992.

[14] A.C. Kakas, P. Mancarella. Generalized Stable Models: a semantics for
abduction.Proc. of ECAI’90, pp.385-391, 1990.

[15] V. Lifschitz, H. Turner. Splitting a logic program. InProc. ICLP’94,
pp.23-37, MIT Press, 1994.

[16] I. Niemel̈a, P. Simons. Smodels - an implementation of the stable model
and well-founded semantics for normal LP. In J. Dix, U. Furbach, A.
Nerode (eds.),Logic Programming and Nonmonotonic Reasoning: 4th in-
ternational conference, LPNMR’97, LNAI 1265, Springer Verlag, Berlin,
1997.

[17] D. Poole. A logical framework for default reasoning.Artificial Intelli-
gence, 36(1):27-47, 1988.

[18] K. Satoh, N. Iwayama. A query evaluation method for abductive logic
programming. InProc. of the Joint Int.l Conf. and Symposium on Logic
Programming(JICSLP’92), 671-685, MIT Press, 1992.

[19] K. Satoh, N. Iwayama. Computing abduction by using the TMS. InProc.
of the Int.l Conf. on Logic Programming(ICLP’91), 505-518, MIT Press,
1991.

[20] M. Shanahan. Prediction is deduction but explanation is abduction. In
Proc. of IJCAI’89, 1055-ff, 1989.



out(and(X, Y))← out(X), out(Y),¬ab(and(X, Y))
out(and(X, Y))← ab(and(X, Y)),¬out(X)
out(and(X, Y))← ab(and(X, Y)),¬out(Y)

out(or(X, Y))← out(X),¬ab(or(X, Y))
out(or(X, Y))← out(Y),¬ab(or(X, Y))
out(or(X, Y))← ab(or(X, Y)),¬out(X),¬out(Y)

out(not(X))← ¬out(X),¬ab(not(X))
out(not(X))← ab(not(X)), out(X)

out(y2) /* other inputs implicitly negated */

Figure 1. Model based diagnosis

/* Frame axiom */

holds(P, T + 1)← holds(P, T),¬ab(P, T + 1)

/* Sample deterministic action */

holds(on top(A, B), T + 1)←
do(put on(A, B), T), /* action */

holds(is clear(B), T), /* preconds */

holds(in hand(A), T)

/* Sample nondeterministic action */

holds(in hand(B), T + 1)←
do(grasp(B), T), /* action */

holds(is clear(B), T), /* preconds */

¬fails(grasp(B), T)

holds(on table(B), T + 1)←
do(grasp(B), T), /* action */

holds(is clear(B), T), /* preconds */

fails(grasp(B), T)

ab(on top(B, C), T + 1)←
do(grasp(B), T), /* action */

holds(is clear(B), T) /* preconds */

fails(grasp(B), T)← ¬succeeds(grasp(B), T)
succeeds(grasp(B), T)← ¬fails(grasp(B), T)

Figure 2. Reasoning about actions


