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Abstract. It is known that abduction can be embedded into An- domain theories with unbounded, open domains.

swer Set programming (ASP). This enables sophisticated answer The paper is organized as follows. In Section 2 we recall the basic
set solvers to be applied to abduction problems. However this apdefinitions concerning open abduction and finitary programs. In Sec-
proach does not scale to abduction over infinite domains, nor to urtion 3 we show how any open abduction framework can be embedded
bounded abduction of individual existence, due to well-known un-into a normal logic program under the stable model semantics. The
decidability results. The approaches to open abduction usually relgmbedding contains function symbols, and hence in general its sta-
on 3-valued semantics to overcome technical difficulties, but this apble models are highly undecidable. In Section 4 we introduce finitary

proach changes the underlying semantics and prevents the applicapen abduction frameworks and study the properties of their sets of
tion of ASP solvers. In this paper we apply the theory of finitary minimal explanations. Then, in Section 5, we refine the results of

programs to prove that for an expressive and very interesting clasSection 3 to show how to use ASP solvers to compute a representa-
of domain theories, ASP-based abduction with unbounded domainsve set of explanations over finitary open abduction frameworks.

can effectively be computed. We also prove that each observable has

a finite set of finite explanations representative of all the observable’s PRELIMINARIES

infinitely many explanations. Moreover, the set of representative ex-

planations can be computed with standard ASP engines. We assume the reader to be familiar with normal logic programs and
the stable model semantics [10]. We say that a normal logic program

is consistentf it has at least one stable model.
1 INTRODUCTION The following presentation of open abduction frameworks is a

Answer Set Programming (ASP) is a declarative problem solvingSyntactic variant of the approach followed in [3]. ,
framework capable of modeling commonsense reasoning, reasoningAN 0pen abduction framewoiik a triple (7', A, Sk ), whereT' is
about action and change, planning, as well as a variety of combing "ormal logic program (the domain theory)is a set ofabducible
torial problems within the first two levels of the polynomial hierar- PredicatesandSk is an infinite denumerable set of (Skolem) con-
chy. ASP has some well-engineered and optimized implementation%tamS' representing |nd|V|du_a|s whose existence can be abduced. The
[16, 8], and is approaching the technological maturity needed by aghembers o5k do not occur inf".
plications. For each open abduction framework T, A,Sk), let
Abduction is one of the applications of ASP. Standard abductiorf*Pducibles(T’ A, Sk) be the set of all ground atomgts, ..., tn)
frameworks [9, 14, 18] can be embedded into ASP with the same enfUch thab € A and eachi; is a term freely generat.ed by the function
bedding into TMS used in [19]. In general, this technique does nofNd constant symbols occurringihandSk. Abducibles(T', A, Sk)
scale to abduction frameworks with infinite domains, due to well-Will be called the set obpen abduciblef the open abduction
known undecidability results. The same applieopen abduction ~ framework(T, A, Sk). ]
that is, a form of abduction where the existence of new individu- AN OPen generalized stable modefl an open abduction frame-
als can be abduced. Open abduction mechanisms that tolerate inffork (7,4, Sk) is a stable model of" U E, for some £ C
nite domains in the presence of nonmonotonic negation exist [7] buftbducibles(T’, A, Sk)-_
they have to relax semantics to three-valued logic to make top-down, AN OPen explanatiorof a closed sentenc (called observa-
resolution-like procedures complete. tion) w.r.t. an open abduction framewo(l_@, A, Sk) is asetE C
In this paper we show that ASP techniques can be applied to conf:bducibles(T’ A, Sk) such that there exists a stable modél of
pute (two-valued) open abduction over possibly infinite domains. Y £ that satisfieg). o o ,
Our results are based upon the theorfimitary programg4, 2], that _ !\Iext we introduce the preliminary definitions needed to define
is, a very expressive class of normal programs with function symboldinitary programs. _ _
and recursion such that stable model reasoning is effectively com- 1he (atom) dependency grapif a program?” is a labelled di-
putable. rected graph denoted bPG(P), whose vertlc_es are the ground
We prove that when the domain theory of the abduction framewort&0ms of 's language. Moreover, (i) there exists an edge labelled
is finitary, the set of minimal explanations of any given ground ob- 1 (called positive edge) fromB to A iff for some rule R ¢
servation( is finite, as well as any such explanation, despite the faceround(P), A € head(R) and B € body(R); (ii) there exists an
that the generalized stable models of the theory can be infinite. WEdge labelled =" (called negative edge) fron® to A iff for some
derive that the set of minimal explanations is decidable. MoreoverUle R € Ground(P), A € head(R) and—B & body(R). )
we show how to embed open abduction into ASP, so that state-of- AN &tom A depends positively (resp. negatively) 6nif there is

the-art ASP solvers can be used to compute explanations over finitar?/direcuEd path froni3 to A in the dependency graph with an even
resp. odd) number of negative edges. Moreover, each atom depends
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we write A >4 B (resp.A >_ B). We write A > B if either
A>, BorA>_ B.IfbothA >, BandA >_ B hold then we
write A >4 B.

By odd-cyclewe mean a cycle in the dependency graph with an

odd number of negative edges. A ground atoradd-cyclicif it oc-
curs in an odd-cycle.

In the context of normal logic programssalitting setfor a pro-
gramP [15] is a set of atom# containing all the atoms occurring in
the body of any rule- € Ground(P) whose head is ifV. The set of
rulesr € Ground(P) whose head is ilV—called the “bottom” ofP
w.r.t. U—will be denoted by (P). By er (P, I') we denote the fol-
lowing partial evaluation of w.r.t. I N U: remove fromGround(P)
eachruled — Lq,..., L, such that somé,; containing an atom of
U is false inI, and remove from the remaining rules all thecon-
taining a member ot/. The following is a specialization to normal
programs of a result in [15].

Theorem 1 (Splitting theorem) Let U be a splitting set for a nor-
mal logic programP. An interpretationM is a stable model oP iff
M = JUI,where

1. I'is a stable model df;(P), and
2. Jis a stable model ofyy (Ground(P) \ by (P), I).

head belongs t&/ (P, Q):
R(P,Q) ={R| R € Ground(P) andhead(R) € U(P,Q)}.
1

If P is finitary, then bothU/ (P, Q) and R(P, Q) are finite and com-
putable. MoreoverR (P, Q) is all that is needed for query answering:

Lemma 4 For all finitary normal programsP and all ground for-
mulae@, R(P, Q) has a stable model{, iff P has a stable model
M such thatM N U(P, Q) = Mg.

Theorem 5 For all finitary normal programsP and all ground for-
mulaeq,

1. P credulously entails) iff R(P, Q) does.
2. P skeptically entail®) iff R(P, Q) does.

SinceR(P, Q) is finite, it follows that all the above reasoning tasks
are decidable. Moreover, if) is a quantifier-free nonground for-
mula, then credulous and skeptical entailment are semi-decidable and
Turing-equivalent.

In the rest of the paper we shall use other technical properties of

The next definitions and results, taken from [4, 2], characterizemlevant universes and subprogram&.P’, Q) is a splitting set for

finitary programs.

Definition 2 [Finitary programs] We say a prograi is finitary if

the following conditions hold:

1. Each ground atom in DG(P) depends on finitely many ground
atomsB. In other words, the cardinality dfB | A > B} must be

finite for all ground atoms!.
2. There are finitely many odd-cyclic atomsirnG(P).

P andR(P,Q) = by(p,q)(P). Moreover, if P is finitary, then the
partially evaluated top paety p,q)(Ground(P) \ by (p,q)(P),I) is
consistent.

3 EMBEDDING OPEN ABDUCTION INTO ASP

Open abduction can be embedded into ASP. A preliminary ap-
proach covering function-free and constant-free domain theories can
be found in [1]; here we extend that approach to arbitrary domain
theories. Moreover, [1] deals only with the complexity of checking
whether an explanation exists, while in the next sections we show

Two examples of finitary programs can be found in figures 1 and ohow to obtain explanations, and prove that the set of minimal expla-
Many further examples of interesting finitary programs, showing thafations can be finitely presented.

the above definition is compatible with a rather free use of function Each open abductive framewotK’, A, Sk ) can be captured by
symbols and recursion, can be found in [4, 2]. Most finitary pro-@ normal logic programiI(T’, A, Sk) defined as follows. For each
grams satisfy the first condition because the size of some argumeniéedicate symbop € A, introduce a new distinct predicate symbol
does not increase across recursive calls (this is also the case for tHeMoreover, let’, V', andU be new predicate symbols distinct from
programs in figures 1 and 2). Typically, condition 2 is satisfied eitheith® Symbolg, and letc ands, respectively, be a constant and a unary
becauseDG(P) has only cycles with an even number of negative function not occurring iril". TI(T', A, Sk) consists of the following
edges (figures 1 and 2), or because there exists a single odd-cydides, for all rulest — Body in T, for all n-ary function symbols
defining a symbolf which is always false, by means of rules like ./ occurringinT" or Sk, and for allp € A:

p — f,—p, wherep occurs only within this rule.

The consequences of finitary programs can be computed by using

only a finite fragment of their (potentially infinite) domain.

Definition 3 [Kernel atoms, Relevant universe and subprogram] A

kernel atonfor a normal progran® and a ground formul@ is either
an odd-cyclic atom or an atom occurringdh(note that kernel atoms
are ground by definition). The set of kernel atoms foand Q is
denoted byK (P, Q).

The relevant universdor P and @, denoted byU (P, Q), is the
set of all ground atom® such that some kernel atom fér and @
depends orB. In symbols:

U(P,Q) ={B | forsomeA € K(P,Q), A> B}.

The relevant subprogranfior a ground formulay (w.r.t program
P), denoted byR(P, @), is the set of all rules itround(P) whose

H «— Body,U(z1),...,U(zxn) where z1...z,
are the variables of
H «— Body

U(f(z1,...,zn)) < U(z1),...,U(zn)

U(z) « V()

V(e) =V (c)

V(c) — =V (e) B

V(s(X)) < V(X), =V (s(X))

V(s(X)) < =V (s(X))

p(x1y. .y Xn) — P(T1, ..y 20), U(1), ..., U(zn)

P(x1,.. xn) — (1, .., 20),U(x1),...,U(zn)

Note that the possible extensions of predicttainder the sta-
ble model semantics are the initial segments of the infinite sequence



¥ = ¢, s(c), s(s(c)), ... (including the empty sequence aij. In-

tuitively, the extension oV represent the subset 8% that has been
abduced. Under this interpretation, the extensior/ofmodels the
universe of the prograrfi’ U E underlying the definition of open

burue,o)(T U E); thenM = I U J, wherel is a stable model of
R(TUE,Q)andJ N U(T U E,Q) = (. By the latter equality,
I = Q. Next note thatU(T'U E, Q) = U(T,Q) U E’, for some
E' C En U(T,Q), and hencd is a generalized stable model of

generalized stable models. The last two rules nondeterministically R(T, Q), A, Sk ) satisfyingQ. Part 1) follows immediately.

chooseE [19, 11], whileT" is taken into account by the first rule
schema in the program.

2) Supposé is an explanation af) w.r.t. ( R(T', Q), A, Sk ), that
is, there exists a stable modebf R(T, Q) U E such thatl E Q.

Then it can be proved that the stable models of the above embedince (T, A, Sk) is finitary, the upper party 7, q)(Ground(T' U
ding projectively characterize the explanations of any given query)\byrug,q)(TUE), I) is consistent, that is, it has a stable model
under (T, A, Sk). More precisely, given a stable modél of J. Recall thatR(T' U E, Q) = by(rur,q)(T U E), thereforel U J
II(T, A, Sk), the new atoms must be filtered away, and each news a stable model df’ U E, by the splitting theorem. Moreover, since
terms” (c) must be matched with a suitable elemenfof I = Q, Eis an explanation of) w.r.t. (T, A, Sk ). 1

Let arenaming functiorfor (T, A, Sk) be an injective substitu-
tion, preserving the symbols ifiand A, and mapping the new terms
occurring inX onto elements of k. Finally, let M|r, 4 be the set of
atoms ofM whose predicate symbol occursihor A (equivalently,
M |r, 4 is obtained by removing from/ all the atoms with one of
the new predicate symbols introducedI(7, A, Sk)).

The first corollary tells us that minimal explanations can be com-
puted by means of the relevant subprogra(f’, @) (that is, a frag-
ment of the ground instantiation of the domain the®djy

Corollary 10 For all ground observations@Q and all finitary
(T, A, Sk), Eis a minimal explanation of) w.r.t. (T, A, Sk ) iff
Theorem 6 If M is a stable model ofI(T, A, Sk) then for all re- £ is aminimal explanation af w.rt. ( R(T, Q), A, Sk ).
naming functiong there exists an open generalized stable madél

of (T, A, Sk ) such that The second corollary follows from the property tha(T’, Q) is

finite whenT is finitary.

1. p(M(V)) (the image op restricted to the extension &f in M)
equals the subset ¢fk actually occurring inM’.

2. p(M|7,4) = M'".

Conversely, if M’ is an open generalized stable model of l- The minimal explanations ¢f are finite;

(T, A, Sk, then there exist a stable modef of II(T, A, Sk) and 2+ @ has finitely many minimal explanations;
a renaming functiop such that 1 and 2 hold. 3. The set of minimal explanations@fis decidable.

Corollary 11 If (T, A, Sk ) is finitary, then for all ground observa-
tionsQ:

4 FINITARY ABDUCTION FRAMEWORKS 5 COMPUTING EXPLANATIONS WITH ASP

In the previous section we proved that open abduction can be embed € @bove results do not tell us how to search for explanations. We

ded into ASP, but we said nothing about decidability. Note that thewould like ASP solvers to perform such search. For this purpose, we
embedding’s domain contains at least one function symioB it refine the relationships between open abduction frameworks and the

remains to be seen how to deal effectively with an infinite Herbran
domain. For this purpose we focus our attention on finitary domain

theories.

Definition 7 An open abduction frameworkT’, A, Sk ) is finitary
iff T is finitary. 1

Note that adding facts to a normal logic program does not chan

its dependency graph. Then the following proposition holds.

Proposition 8 For all open abduction frameworksT", A, Sk ) and
all E C Abducibles(T, A, Sk), T U E is finitary iff T' is finitary.

In particular, if an open abduction framewafi’, A, Sk ) is finitary,
then all possible prograni8 U F are finitary, too.

Theorem 9 For all open abduction frameworksI’, A, Sk ) and alll
ground observationg),

1. If E'is an explanation of) w.r.t. (T, A, Sk ), then there exists an
explanationE’ C En U(T,Q) of Qw.rt. { R(T, Q), A, Sk ).

2. If (T, A, Sk) is finitary , then every explanatioR’ of Q w.r..
(R(T,Q), A, Sk) is also an explanation ap w.r.t. (T, A, Sk).

Proof.(Sketch)

1) Supposev is an explanation of) w.r.t. (T, A, Sk ). By defini-
tion, there exists a stable mod#l of 7' U E such thatl = Q. Re-
callthatU (TUE, Q) is asplitting setfol'UE, andR(TUE, Q) =

£mbedding into ASP.

We start by proving that if an open abductive framework is finitary,
then also the corresponding normal proglT’, A, Sk) is finitary.

Proposition 12 Let W be the set of ground atoni$(¢), V' (¢) and
V (t) occurring inGround (TIL(T', A, Sk)).

1. W is a splitting set fodI(T', A, Sk).

9% bw (II(T, A, Sk)) is finitary.

3. If (T,A,Sk) is finitary,
bw (IL(T, A, Sk)) is finitary.

then Ground(Il’(P, F,0)) \

From the above proposition and [1, Lemma 2] (stating thag (fP)
andGround(P) \ by (P) are finitary thenP is finitary) we obtain:

Theorem 13 If ( P, F,O) is a finitary open abduction framework
then its embeddinl (T, A, Sk) is a finitary normal program.

It turns out that the relationships between open generalized stable
models and the stable models of the ASP embedding formulated in
Theorem 6 carry over to relevant subprograms.

Then, by Theorem 9, we obtain the following result.

Theorem 14 Suppose(T, A, Sk) is finitary. Then for all mini-
mal explanationsEl of @ w.r.t. (T, A, Sk) there exist an expla-
nation £/ O E of Q w.rt. (T, A, Sk), a stable modelM of
R(II(T, A, Sk),Q) and a renaming functiop such thatk’ =
p(M) N Abducibles(T', A, Sk).



In other words, a set of explanations covering all minimal explanaposed here produces a representative set of explanations. It would be
tions of the given observabl€$ can be obtained by running an ASP interesting to see how to minimize explanations via ASP.
solver on the finite, ground normal prograR(I1(T, A, Sk), Q). Finitary programs, in principle, allow a number of optimizations
From the set of stable models generated by the solver, one can ed4]. Identifying suitable such techniques for open abduction is an in-
ily extract individual explanations by projecting each model ontoteresting subject for further research. Another interesting topic for
Abducibles(T', A, Sk). In order to generate skeptical consequencesfuture research is a precise estimate of the computational complex-
it may be profitable to adopt skeptical methods [12, 6] (it is notity of open abduction for finitary open abduction frameworks. Such
clear if the approach of [12] can handle unbounded domains spormresults would precisely determine the expressiveness of this kind of
taneously; [6] can). abduction.

The extended version of [4] describes an algorithm for computing
the relevant subprogram. A prototype implementation in XSB PrologA
is available on the author’'s home page. A prototype finitary program
recognizer is available, too. The recognizer is described in [5]. The work reported in this paper is partially supported by the Euro-

We conclude this section with two examples of abduction frame{ean Community within the Fifth (EC) Framework Programme un-
works whose domain theor¥ is finitary. The first domain theory der contract IST-FET-2001-37004 — WASP working group.
illustrated in Figure 1 is a finitary program for model-based circuit
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out(and(X,Y)) « out(X), out(Y), ~ab(and(X, Y))
out(and(X,Y)) « ab(and(X,Y)), mout(X)
out(and(X,Y)) < ab(and(X,Y)), mout(Y)

[e]

out(or(X,Y)) « out(X), ~ab(or(X,Y))
out(or(X,Y)) « out(Y), ~ab(or(X,Y))
out(or(X,Y)) < ab(or(X,Y)), ~out(X), mout(Y)

out(not(X)) « —out(X), ~ab(not (X))
out(not(X)) < ab(not(X)), out(X)

out(y2) /*other inputs implicitly negated */

Figure 1. Model based diagnosis

/* Frame axiom */
holds(P,T + 1) « holds(P,T), ~ab(P,T + 1)

[* Sample deterministic action */

holds(on_top(A,B), T+ 1) «
do(put_on(A,B),T), I* action */
holds(is_clear(B),T), /*preconds */
holds(in_hand(A),T)

[* Sample nondeterministic action */

holds(in-hand(B), T+ 1) «—
do(grasp(B),T), * action */
holds(is_clear(B),T), /*preconds */
—fails(grasp(B),T)

holds(on-table(B), T+ 1) «
do(grasp(B),T), [* action */
holds(is_clear(B),T), /*preconds */
fails(grasp(B),T)

ab(on_top(B,C), T+ 1) «—
do(grasp(B),T), * action */
holds(is_clear(B),T) /*preconds */

fails(grasp(B),T) < —succeeds(grasp(B),T)
succeeds(grasp(B), T) <« —fails(grasp(B), T)

Figure 2. Reasoning about actions




