

Abstract. To enable the development of automated support for
design, a challenge is to model and analyse dynamics of design
processes in a formal manner. This paper contributes a declara-
tive, logical approach for specification of dynamic properties of
design processes, supported by a formal temporal language.
1This language is used to specify dynamic properties of a de-
sign process as a whole, or of parts thereof. At the most de-
tailed level, in an executable sublanguage also simulation mod-
els are specified in a declarative, logical manner, which allows
to use these specifications in logical analysis as well. The ap-
proach is illustrated by an example component-based agent-
system design process.

1 INTRODUCTION
Providing automated support to manage the dynamics of a de-
sign process is in most cases not trivial. For example, in [6]
some of the requirements put forward are that (1) a complete
design process representation is needed, (2) with sufficient
detail to allow for direct execution. Also by [1], [5] it is put
forward that supporting the management of the dynamics of a
design process is an important challenge to be addressed. This
indeed is the aim of the current paper. The type of design con-
sidered is the design of component-based (e.g., software) sys-
tems for dynamic applications. In such application areas often
components can be (re)used for which the properties are
known. By composing a number of such components in a com-
ponent-based design, the required overall dynamics is obtained.
As holds for many design processes, designing component-
based systems can be a rather complex and dynamic process,
for which a number of tasks play a role, for example in this
specific case:
1. maintaining of specifications of properties of (reusable)

components
2. maintaining of requirements on the overall system to be

designed (usually in close contact with a stakeholder)
3. refinement and revision of requirements
4. determination of reusable components based on their prop-

erties, to find a system that satisfies the requirements
5. checking whether a system (a design object description)

satisfies the requirements
6. revision of a design object description that does not satisfy

the requirements
Most of these tasks essentially involve the dynamics of design
as a process. The analysis of this design process dynamics is
the subject of the current paper.

1 Vrije Universiteit Amsterdam, Department of Artificial Intelligence, De
Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands. E-mail: {tbosse,
jonker, treur}@cs.vu.nl. URL: http://www.cs.vu.nl/~{tbosse, jonker, treur}
2 Universiteit Utrecht, Department of Philosophy, Heidelberglaan 8, 3584
CS Utrecht, The Netherlands

 During a design process, two important concepts play a
role: a design problem statement and a solution specification. A
design problem statement consists of:
• a set of requirements in the form of dynamic properties on

the overall system behaviour that have to be fulfilled
• a partial description of (prescribed) system architecture

that has to be incorporated
• a partial description of (prescribed) dynamic properties of

elements of the system that have to be incorporated; e.g.,
for components, for transfers, for parts, for interactions be-
tween parts.

A solution specification for a design problem is a specification
of a design object (both structure and behaviour) that fulfils the
imposed requirements on overall behaviour, and includes the
given (prescribed) descriptions of structure and behaviour.
Here ‘fulfilling’ the overall behaviour requirements means that
they are implied by the dynamic properties for components,
transfers and interactions between parts within the specifica-
tion.

In this paper, in Section 2 a formalisation of design process dy-
namics will be discussed in terms of design states, design transi-
tions and design traces. Section 3 addresses some dynamic proper-
ties of design processes. Section 4 gives an overview of an exam-
ple design process. In Section 5, a relevant requirement will be
given for the example system to be designed. It will be shown how
this global requirement for the overall system can be refined to
local requirements for parts of the system. Section 6 will describe a
simulation model of the example design process, and shows an
example simulation trace. In Section 7 the example design process
is analysed in terms of dynamic properties. Finally, Section 8 is a
conclusion.

2 DESIGN PROCESS DYNAMICS
To analyse dynamics of a design process, a formalisation is
needed of such dynamics. Such a formalisation is introduced in
this section, inspired by [4]. It is based on the notion of design
process state and design trace.
The state of a design process at a certain time point can be de-
scribed as a combined state consisting of two states, S = <S1,
S2> with:
• S1 requirements manipulation state (RM-state),

including the current requirements set
• S2 design object description manipulation state (DM-

state),
including the current design object description state

A particular design process shows a sequence of transitions
from one state S to another (next) state S'. Design traces are
time-indexed sequences of design states, where each subse-
quent pair of states is a design transition. To describe such se-
quences a fixed time frame T is assumed which is linearly or-
dered. A trace γ over a state ontology Ont (including ontology
for design objects and requirements) and time frame T is a

Analysis of Design Process Dynamics

Tibor Bosse1, Catholijn Jonker1 and Jan Treur1,2

mapping γ : T → STATES(Ont), i.e., a sequence of states γt (t ∈
T) in STATES(Ont). The set of all traces over state ontology
Ont is denoted by TRACES(Ont). Depending on the applica-
tion, the time frame T may be dense (e.g., the real numbers), or
discrete (e.g., the set of integers or natural numbers or a finite
initial segment of the natural numbers), or any other form, as
long as it has a linear ordering.

3 DYNAMIC PROPERTIES OF DESIGN
To formally specify dynamic properties that express character-
istics of dynamic processes (such as design) from a temporal
perspective an expressive language is needed. To this end the
Temporal Trace Language TTL is used as a tool; cf. [7], which
is briefly defined as follows. The set of dynamic properties
DYNPROP(Ont) is the set of temporal statements that can be
formulated with respect to traces based on the state ontology
Ont in the following manner. Given a trace γ over state ontol-
ogy Ont, a certain state during a design process at time point t
is denoted by state(γ, t), which as a TTL-expression refers to γt.
These states can be related to state properties via the formally
defined satisfaction relation |=, comparable to the Holds-
predicate in the Situation Calculus: state(γ, t) |= p denotes that
state property p holds in trace γ at time t. Based on these state-
ments, dynamic properties can be formulated in a formal man-
ner in a sorted first-order predicate logic with sorts T for time
points, Traces for traces and F for state formulae, using quanti-
fiers over time and the usual first-order logical connectives
such as ¬, ∧, ∨, ⇒, ∀, ∃.

To be able to perform some automated experiments with de-
sign processes, a simpler language has been used. This lan-
guage (the leads to language) enables to model direct temporal
dependencies between two state properties in successive states,
as occur in specifications of a simulation model (for example,
if in the current state, state property p holds, then in the next
state, state property q holds). This language enables the auto-
matic generation of simulated traces. The executable format is
defined as follows. Let α and β be state properties of the form
‘conjunction of ground atoms or negations of ground atoms. In
the leads to language the notation α →→e, f, g, h β, means:

If state property α holds for a certain time interval with
duration g, then after some delay (between e and f) state

property β will hold for a certain time interval of length h.
For a formal definition of the leads to language in terms (as a
sublanguage) of the language TTL, see [8].

Two different types of dynamic properties can be distin-
guished: Local Properties and Global Properties. Local proper-
ties only concern the smallest steps (taken into account in the
conceptualisation of the process) in the process under analysis;
for example:

At every point in time,
if a requirement r is imposed on the object to be designed,
 and this requirement can be refined to sub-requirement q
then at the next point in time, sub-requirement q will be imposed

 on the object to be designed

In contrast, a global property is a property that concerns the
overall process (taken into account) in the process under analy-
sis, for example:

Eventually there is a committed requirement set R and
a design object description D such that, for each requirement r in R,
the design object description D satisfies requirement r

More complex Local and Global dynamic properties for design
processes will be introduced in Sections 6 and 7, respectively.

4 AN EXAMPLE DESIGN PROCESS
To address in more detail the analysis of design process dy-
namics, an example design process was taken. The analysis
approach is described and evaluated for this example design
process. The example design process concerns the design of a
cooperative information gathering agent system (see Section
4.2). The design approach is by requirements refinement (see
Section 4.1).

4.1 Design by Requirements Refinement
A design process of a complex system (e.g., a software system)
usually starts by specifying requirements for the overall system
behaviour. They express the dynamic properties that should
‘emerge’ if appropriate components are designed and combined
in a proper manner. Given these requirements on overall system
behaviour, the system is designed in such a manner that the
requirements are fulfilled.
Between dynamic properties at different levels of aggregation
within a complex system (to be) designed, certain interlevel
relationships can be identified; overall behaviour of the design
object can be related to dynamic properties of parts of the de-
sign object and properties of interaction between these parts via
the following pattern:

dynamic properties for the parts & dynamic properties for interaction
between parts ⇒ dynamic properties for the design object.

The process to identify new, refined requirements for behaviour
of parts of the system and their interaction is called require-
ments refinement. Subsequently, the required dynamic proper-
ties of parts can be refined to dynamic properties of certain
components and transfers, making use of:

dynamic properties for components & dynamic properties for transfer
between components ⇒ dynamic properties for a part.

4.2 An Example Design Problem
As a case study, the process of designing a multi-agent system
for cooperative information gathering [7] will be analysed in
more detail. To get the idea, assume the system to be designed
has to consist of three agents: A, B and C. The resulting behav-
iour of the system must be as follows: agent A and B are able
to do some investigations and make up a report on some topic,
and communicate that to the third agent C. Both A and B have
access to useful sources of information, but this differs for the
two agents. By co-operation they can benefit from the exchange
of information that is only accessible to the other agent. If both
types of information are combined, conclusions can be drawn
that would not have been achievable for each of the agents
separately. To make the example more precise: the example
agent model is composed of three components: two information
gathering agents A and B, agent C, and environment compo-
nent E representing the external world, see Figure 1.

Each of the agents is able to acquire partial information from
an external source by initiated observations. For reasons of
presentation, this by itself quite common situation for co-
operative information agents is materialised in the following
more concrete form. The world situation consists of an object
that has to be classified. One agent can observe only the bottom
view of the object, the other agent only the side view. By ex-
changing and combining observation information they are able
to classify the object. For example, if an agent knows that the
views are a circle and a square, it is concluded that the object is
a cylinder.

Figure 1. The example Agent System

In most multi-agent systems it is common that each agent

has its own characteristics or attitudes. In the current system to
be designed, the agents used as components in the design can
differ, for instance, in their attitudes towards observation and
communication: an agent may or may not be pro-active, in the
sense that it takes the initiative with respect to one or more of:
• performing observations
• communicate its own observation results to the other agent
• ask the other agent for its observation results
• draw conclusions about the classification of the object
Moreover, an agent may be reactive to the other agent in the
sense that it responds to a request for observation information:
• by communicating its observation result as soon as they

are available
• by starting to observe for the other agent
The successfulness of the system to be designed will depend on
the combination of attitudes of the agents. For example, if both
agents are pro-active and reactive in all respects, then they can
easily come to a conclusion. However, it is also possible that
one of the agents is only reactive, and still the other agent
comes to a conclusion. So, successfulness can be achieved in
many ways and depends on subtle interactions between pro-
activeness and reactiveness attitudes of both agents.

5 REQUIREMENTS OF THE EXAMPLE
In this section the example agent system to be designed as dis-
cussed in the previous section is further elaborated in terms of
relevant requirements. Therefore, it is necessary to define the
design problem statement, consisting of the requirements on the
overall agent system behaviour. To simplify the example, it is
assumed that just one main requirement is imposed on the cur-
rent agent system, namely is whether or not a result will be
generated. This requirement is called DODGP (Design Object
Description Global Property):

DODGP Successfulness
For any trace of the system, there exists a point in time such that in this
trace at that point in time agent C will receive a correct conclusion,
either from A or from B (or from both).

In virtue of which combination of dynamic properties of the
agents can success be achieved? In other words, which dynamic
properties for the agents imply the property successfulness?
Such a requirements refinement process can be managed more
effectively if the overall requirements are not directly related to
agent behaviour requirements, but one or more intermediate
levels are created, as explained in Section 4.1. The idea is that
for the agent system to be successful it is needed that
• both information sources within the environment E are

addressed,
• if they are addressed, they provide the relevant informa-

tion, and
• if the relevant information is provided by the information

sources, a conclusion is drawn.
This first requirements refinement provides the dynamic prop-
erties DODGP1, DODGP2, DODGP3:

DODGP1 Information request effectiveness
At some points in time A and B will start information acquisition to E.

DODGP2 Information source effectiveness
If at some points in time A and B start information acquisition to E,
then E will generate all the correct relevant information for both.

DODGP3 Concluding effectiveness
If at some points in time E generates all the correct relevant informa-
tion, then C will receive a correct conclusion.

These properties are logically related to DODGP (see also Ta-
ble 1) by the implication: DODGP1 & DODGP2 & DODGP3 � DODGP.
 A next step in the requirements refinement process is to re-
late each of the dynamic properties DODGP1, DODGP2 and
DODGP3 to agent behaviour properties. The complete refine-
ment of these properties is elaborated in [2]. Due to space limi-
tations, in this paper we only present a table with logical rela-
tionships between dynamic properties, without showing the
exact definitions of all of the properties.

Table 1. Overview of all possible requirement refinements

DODGP1 ∧ DODGP2 ∧ DODGP3 ⇒ DODGP

B1 ∨ B2 ∨ B3 ⇒ DODGP1

DODI1(A) ∧ DODI1(B) ⇒ DODGP2

DODI2(X,Y) ∧ DODI3(X,Y,C) ⇒ DODGP3

DODBP1(A) ∧ DODBP1(B) ⇒ B1

DODBP1(X) ∧ DODBP2(X) ∧ DODBP4(Y) ∧ DODTP(X,Y) ⇒ B2

DODBP2(A) ∧ DODBP4(A) ∧ DODBP2(B) ∧ DODBP4(B) ∧

DODTP(A,B) ∧ DODTP(B,A) ⇒ B3

DODEP(A) ∧ DODTP(A,E) ⇒ DODI1(A)

DODEP(B) ∧ DODTP(B,E) ⇒ DODI1(B)

B4 ∨ B5 ⇒ DODI2(X,Y)

DODBP3(X) ∧ DODTP(Y,X) ∧ DODTP(E,X) ∧ DODTP(X,C) ⇒ DODI3(X,Y,C)

DODBP6(Y) ∧ DODTP(E,Y) ⇒ B4

DODBP2(X) ∧ DODBP5(Y) ∧ DODTP(X,Y) ∧ DODTP(E,Y) ⇒ B5

In Table 1, in the form of logical implications an overview is
shown of all possible refinements as discussed. Here X and Y
are variables over the set {agent A, agent B}, where X ≠ Y.
Note that the different alternatives (branches) are indicated by
the names B1 to B5. Moreover, to be able to distinguish the
properties concerning the system to be designed (presented in
this section) from the properties concerning the design process

B
 E

C

A

itself (presented in Section 7), the names of the former have
been slightly modified with respect to [2]. To be specific, to the
name of each property, the prefix “DOD” has been added.

6 A SIMULATION MODEL
Making use of the formal approach described in Section 3, the
dynamics of the example design process have been simulated
by means of local properties. Two types of local properties are
distinguished: those that model the dynamics of requirements
states, and those that model the dynamics of the Design Object
Description states. Due to space limitations, only a subset of
the Local Properties used for the simulation are shown.

The process concerning requirements takes into account
whether or not the stakeholder asserts that certain requirements
are undesirable.

LP4 Requirement Refinement
Local property LP4 expresses that, if currently a requirement p exists
that can be refined to a subrequirement q, and it has not been refined
yet, then this should be done by refining via the best branch b (e.g. the
one with the lowest costs). Formalisation:
is_a_current_requirement(p) ∧ is_a_subrequirement_of_via(q,p,b) ∧

not(requirement_refined(p)) ∧ best_branch_for(b,p) ∧ not(undesirable_branch(b))

→→ is_a_current_requirement(q) ∧ requirement_refined(p) ∧

requirement_refined_via(p,b)

The process concerning Design Object Descriptions determines
design object descriptions for sets of requirements given as
input. Within this process it is taken into account whether or
not the stakeholder asserts that certain components are undesir-
able as part of a design object.

LP6 DOD Generation
This property expresses that each local requirement l should be satis-
fied by adding the best component c for that requirement to the current
DOD dod(x). Formalisation:
‘DOD_counter’(x) ∧ is_a_current_requirement(l) ∧ best_component_for(c,l) ∧

not(undesirable_component(c)) →→ current_DOD(dod(x)) ∧ part_of_DOD(c,dod(x))

LP8 Local Requirement Satisfaction Determination
This property determines when a local requirement l is satisfied by a
DOD. This is the case when the current DOD contains a component c
for which this requirement holds. Formalisation:
current_DOD(d) ∧ part_of_DOD(c,d) ∧ holds_for(l,c) ∧ is_a_current_requirement(l)

→→ local_requirement_satisfied(l)

Using the simulation model, a number of experiments have
been performed. In such experiments, different types of revi-
sion might be needed with an increasing impact on the design
process:
• revision of the design object description for given re-

quirements based on the stakeholders judgement that a
component used in the DOD is undesirable.

• revision of the refined requirements based on the stake-
holder’s judgement that one of these requirements is unde-
sirable.

• revision of a whole branch based on the calculation that
the costs of the design object description found are higher
than expected.

An example trace of a design process in which the last type
of revision is needed is depicted in Figure 2. Time is on the

horizontal axis, the derived state properties are on the vertical
axis. In this simulation, for all local properties the values
(0,0,1,1) have been chosen for the timing parameters e, f, g, and
h. Due to space limitations, only a subset of the derived atoms
is shown, but the overall dynamics of the process are clear:
When the process starts, first the initial requirement dodgp is
identified. After this, this requirement is refined into sub-
requirements dodgp1, dodgp2 and dodgp3 (based on the logical
relationships of Table 1). This process continues until the most
elementary requirements (i.e. those that have no subrequire-
ments) have been reached. Then a new design object descrip-
tion (called dod(1)) is created which consists of a number of
components that satisfy all local requirements. Based on the
costs of these components, the system calculates the total costs
for each branch (i.e., for each collection of subrequirements,
see Table 1). In case this number is higher than the predicted
costs for that branch, the branch is marked as undesirable. This
turns out to be the case at, for example, time point 17. Here, the
refinement of requirement dodi2(x,y) via branch b4 turns out to
be too expensive. As a result, the system starts backtracking in
the table of logical relationships in order to select another
branch. In total, three branches are revised in this trace (namely
b4, b1 and b2, respectively). Finally, the system succeeds in
finding a satisfactory DOD. This resulting DOD is then evalu-
ated and its total costs are calculated.

Figure 2. Simulation trace

7 GLOBAL DYNAMIC PROPERTIES
For design processes like the one described above, a number of
global dynamic properties can be identified. For example:
• During (or after termination of) the design process, the design

process objectives are fulfilled
• After termination of the design process the final design object

description satisfies the requirements of the final RM-state
• After termination of the design process the requirements in the

final RM-state have been declared sufficient by the stakeholder at
some point during the process

• If one of the design process objectives is that the design process
should be fast and cheap, then any design object description gen-
erated during the process solely consists of standard components

In this section a number of such dynamic properties, expressed
as TTL statements, are presented. These properties as listed are
relevant to be considered and checked for a design reasoning
trace. They need not be satisfied by all design reasoning traces;
they may be used to distinguish between different types of de-
sign reasoning traces as well.

GP1 Local Requirement Satisfaction
Eventually there is a DOD that contains a satisfactory compo-
nent for each local requirement that exists at that moment.
Formalisation:
∃t ∃d:DOD state(γ,t,DM-state) |== current_DOD(d) ∧

∀r:localreq [state(γ,t,RM-state) |== is_a_current_requirement(r) ⇒

∃ c:component state(γ,t,DM-state) |== part_of_DOD(c, d) ∧

state(γ,t,DM-state) |== holds_for(r, c)]

GP2 DM Successfulness
For each local requirement, if there is a component that satis-
fies it, then such a component will be added to the DOD. For-
malisation:
∀t ∀r ∀:localreq ∀c:component

state(γ,t,DM-state) |== is_a_current_requirement(r) ∧

state(γ,t,DM-state) |== holds_for(r, c) ⇒

∃t’≥t ∃d:DOD ∃c’:component state(γ,t',DM-state) |== part_of_DOD(c’, d) ∧

state(γ,t',DM-state) |== holds_for(r, c’)

GP3 RM Successfulness
At a certain point in time, all nonlocal requirements will be
refined. Formalisation:
∃t ∀n:nonlocalreq state(γ,t,RM-state) |== is_a_current_requirement(n) ⇒

state(γ,t,RM-state) |== requirement_refined(n)

The global properties presented above have been checked
automatically against the simulation trace discussed in Section
6. They all turned out to hold, which confirms the fact that the
simulated design processes satisfied the desired properties such
as termination and successfulness.

In addition to the above, logical relationships can be and
have been identified between dynamic properties at different
abstraction levels. Such relationships relate the Global Proper-
ties presented in this section to some of the Local Properties
presented in Section 6. They can be specified by means of logi-
cal implications or graphically by means of AND/OR trees. In
these relationships, also properties at an intermediate level of
aggregation (Intermediate Properties) occur, addressing
smaller steps than Global Properties do, but bigger steps than
Local Properties do. In combination with the automated checks
described above, the interlevel relationships can play an impor-
tant role in the analysis of design processes, because of their
hierarchical structure. I.e., if a certain Global Property turns out
not to hold for a given design process trace, then the table of
logical relationships can be consulted in order to pinpoint
which local properties are candidates for causing the failure.

8 CONCLUSION
In order to develop automated support for the dynamics of non-
trivial design processes, the challenge of modelling and analys-

ing such dynamics in a formal manner has to be addressed; cf.
[1], [5], [6]. This paper offers an approach to do so. The com-
plex dynamics of a design process has been analysed in such a
precise way that properties of the process as a whole can be
specified and, moreover, part of the analysis contains enough
detail to allow for simulation. The result of simulation has been
checked against the properties of the design process as a whole.
 Compared to the references mentioned above, the approach
put forward is a declarative, logical approach supported by a
formal language TTL for specification of dynamic properties of
design processes, which has a high expressivity. Furthermore,
also simulation models are specified in a declarative, logical
manner, which allows using these specifications in logical
analysis as well.

The paper shows the potential of this formal analysis as a
technique for analysis at a high level of abstraction, and for
constructing simulations at an abstract level to experiment with
dynamics of a design process. The simulation actually is en-
tailed by the analysis and requires no additional programming.

The analysis approach that is for the first time applied to de-
sign processes here, has previously been applied to complex
and dynamic reasoning processes other than design, such as
reasoning based on multiple representations [3]. In these cases
in addition to simulated traces, also empirical (human) reason-
ing traces have been formally analysed. For further research it
is planned to formally analyse protocols of human design proc-
esses in a similar manner.

REFERENCES
[1] Baldwin and Chung (1995). A Formal Approach to Managing Design

Processes. IEEE Computer, Feb. 1995, pp. 54-63.

[2] Bosse, T., Jonker, C.M., and Treur, J., (2003). Requirements Analysis
in Design of Agent Systems. Vrije Universiteit Amsterdam, Depart-
ment of Artificial Intelligence. Technical Report. URL:
http://www.cs.vu.nl/~wai/Papers/BDBCh3.pdf

[3] Bosse, T., Jonker, C.M., and Treur, J., (2003). Simulation and analy-
sis of controlled multi-representational reasoning processes. Proc. of
the Fifth International Conference on Cognitive Modelling, ICCM’03.
Universitats-Verlag Bamberg, 2003, pp. 27-32.

[4] Brazier F.M.T., Langen P.H.G. van, Treur J., (1996). A logical theory
of design. In: J.S. Gero (ed.), Advances in Formal Design Methods
for CAD, Proc. of the Second International Workshop on Formal
Methods in Design. Chapman & Hall, New York, 1996, pp. 243-266.

[5] Brown, D. C., and Chandrasekaran, B., (1989). Design Problem Solv-
ing: Knowledge Structures and Control Strategies, Pitman, London.

[6] Corkill, D.D. (2000). When Workflow Doesn’t Work: Issues in man-
aging dynamic processes, Proceedings of the Design Project Support
using Process Models Workshop, Sixth International Conference on
Artificial Intelligence in Design, Worcester, Massachusetts, June
2000, pp. 1-13.

[7] Jonker, C.M., and Treur, J. (2002). Compositional Verification of
Multi-Agent Systems: a Formal Analysis of Pro-activeness and Reac-
tiveness. International Journal of Cooperative Information Systems,
vol. 11, 2002, pp. 51-92.

[8] Jonker, C.M., Treur, J., and Wijngaards, W.C.A. (2003). A Temporal
Modelling Environment for Internally Grounded Beliefs, Desires and
Intentions. Cognitive Systems Research Journal, vol. 4, 2003, pp.
191-210.

