
 

Abstract. To enable the development of automated support for 
design, a challenge is to model and analyse dynamics of design 
processes in a formal manner. This paper contributes a declara-
tive, logical approach for specification of dynamic properties of 
design processes, supported by a formal temporal language. 
1This language is used to specify dynamic properties of a de-
sign process as a whole, or of parts thereof. At the most de-
tailed level, in an executable sublanguage also simulation mod-
els are specified in a declarative, logical manner, which allows 
to use these specifications in logical analysis as well. The ap-
proach is illustrated by an example component-based agent-
system design process. 

1  INTRODUCTION 
Providing automated support to manage the dynamics of a de-
sign process is in most cases not trivial. For example, in [6] 
some of the requirements put forward are that (1) a complete 
design process representation is needed, (2) with sufficient 
detail to allow for direct execution. Also by [1], [5] it is put 
forward that supporting the management of the dynamics of a 
design process is an important challenge to be addressed. This 
indeed is the aim of the current paper. The type of design con-
sidered is the design of component-based (e.g., software) sys-
tems for dynamic applications. In such application areas often 
components can be (re)used for which the properties are 
known. By composing a number of such components in a com-
ponent-based design, the required overall dynamics is obtained. 
As holds for many design processes, designing component-
based systems can be a rather complex and dynamic process, 
for which a number of tasks play a role, for example in this 
specific case: 
1. maintaining of specifications of properties of (reusable) 

components 
2. maintaining of requirements on the overall system to be 

designed (usually in close contact with a stakeholder) 
3. refinement and revision of requirements  
4. determination of reusable components based on their prop-

erties, to find a system that satisfies the requirements 
5. checking whether a system (a design object description) 

satisfies the requirements 
6. revision of a design object description that does not satisfy 

the requirements 
Most of these tasks essentially involve the dynamics of design 
as a process. The analysis of this design process dynamics is 
the subject of the current paper. 
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 During a design process, two important concepts play a 
role: a design problem statement and a solution specification. A 
design problem statement consists of: 
• a set of requirements in the form of dynamic properties on 

the overall system behaviour that have to be fulfilled 
• a partial description of (prescribed) system architecture 

that has to be incorporated 
• a partial description of  (prescribed) dynamic properties of 

elements of the system that have to be incorporated; e.g., 
for components, for transfers, for parts, for interactions be-
tween parts. 

A solution specification for a design problem is a specification 
of a design object (both structure and behaviour) that fulfils the 
imposed requirements on overall behaviour, and includes the 
given (prescribed) descriptions of structure and behaviour. 
Here ‘fulfilling’ the overall behaviour requirements means that 
they are implied by the dynamic properties for components, 
transfers and interactions between parts within the specifica-
tion. 

In this paper, in Section 2 a formalisation of design process dy-
namics will be discussed in terms of design states, design transi-
tions and design traces. Section 3 addresses some dynamic proper-
ties of design processes. Section 4 gives an overview of an exam-
ple design process. In Section 5, a relevant requirement will be 
given for the example system to be designed. It will be shown how 
this global requirement for the overall system can be refined to 
local requirements for parts of the system. Section 6 will describe a 
simulation model of the example design process, and shows an 
example simulation trace. In Section 7 the example design process 
is analysed in terms of dynamic properties. Finally, Section 8 is a 
conclusion. 

2  DESIGN PROCESS DYNAMICS 
To analyse dynamics of a design process, a formalisation is 
needed of such dynamics. Such a formalisation is introduced in 
this section, inspired by [4]. It is based on the notion of design 
process state and design trace. 
The state of a design process at a certain time point can be de-
scribed as a combined state consisting of two states, S = <S1, 
S2> with: 
• S1 requirements manipulation state (RM-state), 

including the current requirements set 
• S2 design object description manipulation state (DM-

state),  
including the current design object description state 

A particular design process shows a sequence of transitions 
from one state S to another (next) state S'. Design traces are 
time-indexed sequences of design states, where each subse-
quent pair of states is a design transition. To describe such se-
quences a fixed time frame T is assumed which is linearly or-
dered. A trace γ over a state ontology Ont (including ontology 
for design objects and requirements) and time frame T is a 
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mapping γ : T → STATES(Ont), i.e., a sequence of states γt (t ∈ 
T) in  STATES(Ont). The set of all traces over state ontology 
Ont is denoted by TRACES(Ont).  Depending on the applica-
tion, the time frame T may be dense (e.g., the real numbers), or 
discrete (e.g., the set of integers or natural numbers or a finite 
initial segment of the natural numbers), or any other form, as 
long as it has a linear ordering.  

3  DYNAMIC PROPERTIES OF DESIGN  
To formally specify dynamic properties that express character-
istics of dynamic processes (such as design) from a temporal 
perspective an expressive language is needed. To this end the 
Temporal Trace Language TTL is used as a tool; cf. [7], which 
is briefly defined as follows. The set of dynamic properties 
DYNPROP(Ont) is the set of temporal statements that can be 
formulated with respect to traces based on the state ontology 
Ont in the following manner. Given a trace γ over state ontol-
ogy Ont, a certain state during a design process at time point t 
is denoted by state(γ, t), which as a TTL-expression refers to γt. 
These states can be related to state properties via the formally 
defined satisfaction relation |=, comparable to the Holds-
predicate in the Situation Calculus: state(γ, t) |= p denotes that 
state property p holds in trace γ at time t. Based on these state-
ments, dynamic properties can be formulated in a formal man-
ner in a sorted first-order predicate logic with sorts T for time 
points, Traces for traces and F for state formulae, using quanti-
fiers over time and the usual first-order logical connectives 
such as ¬, ∧, ∨, ⇒, ∀, ∃.  

To be able to perform some automated experiments with de-
sign processes, a simpler language has been used. This lan-
guage (the leads to language) enables to model direct temporal 
dependencies between two state properties in successive states, 
as occur in specifications of a simulation model (for example, 
if in the current state, state property p holds, then in the next 
state, state property q holds). This language enables the auto-
matic generation of simulated traces. The executable format is 
defined as follows. Let α and β be state properties of the form 
‘conjunction of ground atoms or negations of ground atoms. In 
the leads to language the notation α →→e, f, g, h β, means: 

If  state property α holds for a certain time interval with 
duration g, then  after some delay (between e and f) state 

property β will hold for a certain time interval of length h. 
For a formal definition of the leads to language in terms (as a 
sublanguage) of the language TTL, see [8].  

Two different types of dynamic properties can be distin-
guished: Local Properties and Global Properties. Local proper-
ties only concern the smallest steps (taken into account in the 
conceptualisation of the process) in the process under analysis; 
for example:  
 

At every point in time, 
if  a requirement r is imposed on the object to be designed, 
  and this requirement can be refined to sub-requirement q 
then at the next point in time, sub-requirement q will be imposed  

 on the object to be designed 
 

In contrast, a global property is a property that concerns the 
overall process (taken into account) in the process under analy-
sis, for example:  
 

Eventually there is a committed requirement set R and 
a design object description D such that, for each requirement r in R, 
the design object description D satisfies requirement r 
 

More complex Local and Global dynamic properties for design 
processes will be introduced in Sections 6 and 7, respectively.  

4  AN EXAMPLE DESIGN PROCESS 
To address in more detail the analysis of design process dy-
namics, an example design process was taken. The analysis 
approach is described and evaluated for this example design 
process. The example design process concerns the design of a 
cooperative information gathering agent system (see Section 
4.2). The design approach is by requirements refinement (see 
Section 4.1). 

4.1 Design by Requirements Refinement 
A design process of a complex system (e.g., a software system) 
usually starts by specifying requirements for the overall system 
behaviour. They express the dynamic properties that should 
‘emerge’ if appropriate components are designed and combined 
in a proper manner. Given these requirements on overall system 
behaviour, the system is designed in such a manner that the 
requirements are fulfilled. 
Between dynamic properties at different levels of aggregation 
within a complex system (to be) designed, certain interlevel 
relationships can be identified; overall behaviour of the design 
object can be related to dynamic properties of parts of the de-
sign object and properties of interaction between these parts via 
the following pattern: 
 

dynamic properties for the parts & dynamic properties for interaction 
between parts ⇒ dynamic properties for the design object. 
 

The process to identify new, refined requirements for behaviour 
of parts of the system and their interaction is called require-
ments refinement. Subsequently, the required dynamic proper-
ties of parts can be refined to dynamic properties of certain 
components and transfers, making use of: 
 

dynamic properties for components & dynamic properties for transfer 
between components ⇒ dynamic properties for a part.  

4.2 An Example Design Problem 
As a case study, the process of designing a multi-agent system 
for cooperative information gathering [7] will be analysed in 
more detail. To get the idea, assume the system to be designed 
has to consist of three agents: A, B and C. The resulting behav-
iour of the system must be as follows: agent A and B are able 
to do some investigations and make up a report on some topic, 
and communicate that to the third agent C. Both A and B have 
access to useful sources of information, but this differs for the 
two agents. By co-operation they can benefit from the exchange 
of information that is only accessible to the other agent. If both 
types of information are combined, conclusions can be drawn 
that would not have been achievable for each of the agents 
separately. To make the example more precise: the example 
agent model is composed of three components: two information 
gathering agents A and B, agent C, and environment compo-
nent E representing the external world, see Figure 1.  



 

Each of the agents is able to acquire partial information from 
an external source by initiated observations. For reasons of 
presentation, this by itself quite common situation for co-
operative information agents is materialised in the following 
more concrete form. The world situation consists of an object 
that has to be classified. One agent can observe only the bottom 
view of the object, the other agent only the side view. By ex-
changing and combining observation information they are able 
to classify the object. For example, if an agent knows that the 
views are a circle and a square, it is concluded that the object is 
a cylinder.  
 
 
 
 
 
 

Figure 1. The example Agent System 
 
In most multi-agent systems it is common that each agent 

has its own characteristics or attitudes. In the current system to 
be designed, the agents used as components in the design can 
differ, for instance, in their attitudes towards observation and 
communication: an agent may or may not be pro-active, in the 
sense that it takes the initiative with respect to one or more of: 
• performing observations 
• communicate its own observation results to the other agent 
• ask the other agent for its observation results 
• draw conclusions about the classification of the object 
Moreover, an agent may be reactive to the other agent in the 
sense that it responds to a request for observation information: 
• by communicating its observation result as soon as they 

are available 
• by starting to observe for the other agent  
The successfulness of the system to be designed will depend on 
the combination of attitudes of the agents. For example, if both 
agents are pro-active and reactive in all respects, then they can 
easily come to a conclusion. However, it is also possible that 
one of the agents is only reactive, and still the other agent 
comes to a conclusion. So, successfulness can be achieved in 
many ways and depends on subtle interactions between pro-
activeness and reactiveness attitudes of both agents. 

5  REQUIREMENTS OF THE EXAMPLE 
In this section the example agent system to be designed as dis-
cussed in the previous section is further elaborated in terms of 
relevant requirements. Therefore, it is necessary to define the 
design problem statement, consisting of the requirements on the 
overall agent system behaviour. To simplify the example, it is 
assumed that just one main requirement is imposed on the cur-
rent agent system, namely is whether or not a result will be 
generated. This requirement is called DODGP (Design Object 
Description Global Property): 
 

DODGP  Successfulness 
For any trace of the system, there exists a point in time such that in this 
trace at that point in time agent C will receive a correct conclusion, 
either from A or from B (or from both). 
 

In virtue of which combination of dynamic properties of the 
agents can success be achieved? In other words, which dynamic 
properties for the agents imply the property successfulness? 
Such a requirements refinement process can be managed more 
effectively if the overall requirements are not directly related to 
agent behaviour requirements, but one or more intermediate 
levels are created, as explained in Section 4.1. The idea is that 
for the agent system to be successful it is needed that  
• both information sources within the environment E are 

addressed,  
• if they are addressed, they provide the relevant informa-

tion, and  
• if the relevant information is provided by the information 

sources, a conclusion is drawn. 
This first requirements refinement provides the dynamic prop-
erties DODGP1, DODGP2, DODGP3: 
 

DODGP1  Information request effectiveness 
At some points in time A and B will start information acquisition to E. 
 

DODGP2  Information source effectiveness 
If at some points in time A and B start information acquisition to E,  
then E will generate all the correct relevant information for both. 
 

DODGP3  Concluding effectiveness 
If at some points in time E generates all the correct relevant informa-
tion, then C will receive a correct conclusion. 
 

These properties are logically related to DODGP (see also Ta-
ble 1) by the implication: DODGP1 & DODGP2 & DODGP3  �   DODGP. 
 A next step in the requirements refinement process is to re-
late each of the dynamic properties DODGP1, DODGP2 and 
DODGP3 to agent behaviour properties. The complete refine-
ment of these properties is elaborated in [2]. Due to space limi-
tations, in this paper we only present a table with logical rela-
tionships between dynamic properties, without showing the 
exact definitions of all of the properties. 
 

Table 1. Overview of all possible requirement refinements 
 

DODGP1 ∧ DODGP2 ∧ DODGP3            ⇒   DODGP 

B1  ∨  B2  ∨  B3               ⇒   DODGP1 

DODI1(A)  ∧  DODI1(B)             ⇒   DODGP2 

DODI2(X,Y)  ∧  DODI3(X,Y,C)           ⇒   DODGP3 

DODBP1(A)  ∧  DODBP1(B)            ⇒   B1 

DODBP1(X)  ∧  DODBP2(X)  ∧ DODBP4(Y)  ∧  DODTP(X,Y)   ⇒   B2 

DODBP2(A)  ∧  DODBP4(A)  ∧  DODBP2(B)  ∧ DODBP4(B)  ∧  

DODTP(A,B)  ∧  DODTP(B,A)           ⇒   B3 

DODEP(A)  ∧  DODTP(A,E)            ⇒   DODI1(A) 

DODEP(B)  ∧  DODTP(B,E)            ⇒   DODI1(B) 

B4  ∨  B5                 ⇒   DODI2(X,Y) 

DODBP3(X)  ∧  DODTP(Y,X)  ∧  DODTP(E,X) ∧ DODTP(X,C)   ⇒  DODI3(X,Y,C) 

DODBP6(Y)  ∧  DODTP(E,Y)            ⇒   B4 

DODBP2(X)  ∧  DODBP5(Y)  ∧  DODTP(X,Y)  ∧  DODTP(E,Y)   ⇒   B5 
 

In Table 1, in the form of logical implications an overview is 
shown of all possible refinements as discussed. Here X and Y 
are variables over the set {agent A, agent B}, where X ≠ Y. 
Note that the different alternatives (branches) are indicated by 
the names B1 to B5. Moreover, to be able to distinguish the 
properties concerning the system to be designed (presented in 
this section) from the properties concerning the design process 

B 
  E  

C 

A 



  

itself (presented in Section 7), the names of the former have 
been slightly modified with respect to [2]. To be specific, to the 
name of each property, the prefix “DOD” has been added. 

6  A SIMULATION MODEL 
Making use of the formal approach described in Section 3, the 
dynamics of the example design process have been simulated 
by means of local properties. Two types of local properties are 
distinguished: those that model the dynamics of requirements 
states, and those that model the dynamics of the Design Object 
Description states. Due to space limitations, only a subset of 
the Local Properties used for the simulation are shown. 

The process concerning requirements takes into account 
whether or not the stakeholder asserts that certain requirements 
are undesirable. 
 

LP4 Requirement Refinement 
Local property LP4 expresses that, if currently a requirement p exists 
that can be refined to a subrequirement q, and it has not been refined 
yet, then this should be done by refining via the best branch b (e.g. the 
one with the lowest costs). Formalisation:  
is_a_current_requirement(p) ∧ is_a_subrequirement_of_via(q,p,b) ∧ 

not(requirement_refined(p)) ∧ best_branch_for(b,p) ∧ not(undesirable_branch(b)) 

→→ is_a_current_requirement(q) ∧ requirement_refined(p) ∧  

requirement_refined_via(p,b) 
 

The process concerning Design Object Descriptions determines 
design object descriptions for sets of requirements given as 
input. Within this process it is taken into account whether or 
not the stakeholder asserts that certain components are undesir-
able as part of a design object. 
 

LP6 DOD Generation 
This property expresses that each local requirement l should be satis-
fied by adding the best component c for that requirement to the current 
DOD dod(x). Formalisation:  
‘DOD_counter’(x) ∧ is_a_current_requirement(l) ∧ best_component_for(c,l) ∧ 

not(undesirable_component(c)) →→  current_DOD(dod(x)) ∧ part_of_DOD(c,dod(x)) 
 

LP8 Local Requirement Satisfaction Determination 
This property determines when a local requirement l is satisfied by a 
DOD. This is the case when the current DOD contains a component c 
for which this requirement holds. Formalisation:  
current_DOD(d) ∧ part_of_DOD(c,d) ∧ holds_for(l,c) ∧ is_a_current_requirement(l) 

→→  local_requirement_satisfied(l) 
 

Using the simulation model, a number of experiments have 
been performed. In such experiments, different types of revi-
sion might be needed with an increasing impact on the design 
process:  
• revision of the design object description for given re-

quirements based on the stakeholders judgement that a 
component used in the DOD is undesirable.  

• revision of the refined requirements based on the stake-
holder’s judgement that one of these requirements is unde-
sirable. 

• revision of a whole branch based on the calculation that 
the costs of the design object description found are higher 
than expected. 

An example trace of a design process in which the last type 
of revision is needed is depicted in Figure 2. Time is on the 

horizontal axis, the derived state properties are on the vertical 
axis. In this simulation, for all local properties the values 
(0,0,1,1) have been chosen for the timing parameters e, f, g, and 
h. Due to space limitations, only a subset of the derived atoms 
is shown, but the overall dynamics of the process are clear:  
When the process starts, first the initial requirement dodgp is 
identified. After this, this requirement is refined into sub-
requirements dodgp1, dodgp2 and dodgp3 (based on the logical 
relationships of Table 1). This process continues until the most 
elementary requirements (i.e. those that have no subrequire-
ments) have been reached. Then a new design object descrip-
tion (called dod(1)) is created which consists of a number of 
components that satisfy all local requirements. Based on the 
costs of these components, the system calculates the total costs 
for each branch (i.e., for each collection of subrequirements, 
see Table 1). In case this number is higher than the predicted 
costs for that branch, the branch is marked as undesirable. This 
turns out to be the case at, for example, time point 17. Here, the 
refinement of requirement dodi2(x,y) via branch b4 turns out to 
be too expensive. As a result, the system starts backtracking in 
the table of logical relationships in order to select another 
branch. In total, three branches are revised in this trace (namely 
b4, b1 and b2, respectively). Finally, the system succeeds in 
finding a satisfactory DOD. This resulting DOD is then evalu-
ated and its total costs are calculated. 
 

 
Figure 2. Simulation trace  

7  GLOBAL DYNAMIC PROPERTIES 
For design processes like the one described above, a number of 
global dynamic properties can be identified. For example: 
• During (or after termination of) the design process, the design 

process objectives are fulfilled 
• After termination of the design process the final design object 

description satisfies the requirements of the final RM-state 
• After termination of the design process the requirements in the 

final RM-state have been declared sufficient by the stakeholder at 
some point during the process 



 

• If one of the design process objectives is that the design process 
should be fast and cheap, then any design object description gen-
erated during the process solely consists of standard components 

In this section a number of such dynamic properties, expressed 
as TTL statements, are presented. These properties as listed are 
relevant to be considered and checked for a design reasoning 
trace. They need not be satisfied by all design reasoning traces; 
they may be used to distinguish between different types of de-
sign reasoning traces as well. 
 

GP1 Local Requirement Satisfaction 
Eventually there is a DOD that contains a satisfactory compo-
nent for each local requirement that exists at that moment. 
Formalisation: 
∃t ∃d:DOD   state(γ,t,DM-state) |== current_DOD(d) ∧ 

∀r:localreq [state(γ,t,RM-state) |== is_a_current_requirement(r) ⇒ 

∃ c:component state(γ,t,DM-state) |== part_of_DOD(c, d) ∧ 

state(γ,t,DM-state) |== holds_for(r, c)] 
 

 

GP2 DM Successfulness 
For each local requirement, if there is a component that satis-
fies it, then such a component will be added to the DOD. For-
malisation: 
∀t ∀r ∀:localreq ∀c:component 

state(γ,t,DM-state) |== is_a_current_requirement(r) ∧ 

state(γ,t,DM-state) |== holds_for(r, c) ⇒ 

∃t’≥t ∃d:DOD ∃c’:component state(γ,t',DM-state) |== part_of_DOD(c’, d) ∧ 

state(γ,t',DM-state) |== holds_for(r, c’) 
 

GP3 RM Successfulness 
At a certain point in time, all nonlocal requirements will be 
refined. Formalisation: 
∃t ∀n:nonlocalreq   state(γ,t,RM-state) |== is_a_current_requirement(n) ⇒ 

state(γ,t,RM-state) |== requirement_refined(n) 
 

The global properties presented above have been checked 
automatically against the simulation trace discussed in Section 
6. They all turned out to hold, which confirms the fact that the 
simulated design processes satisfied the desired properties such 
as termination and successfulness. 

In addition to the above, logical relationships can be and 
have been identified between dynamic properties at different 
abstraction levels. Such relationships relate the Global Proper-
ties presented in this section to some of the Local Properties 
presented in Section 6. They can be specified by means of logi-
cal implications or graphically by means of AND/OR trees. In 
these relationships, also properties at an intermediate level of 
aggregation (Intermediate Properties) occur, addressing 
smaller steps than Global Properties do, but bigger steps than 
Local Properties do. In combination with the automated checks 
described above, the interlevel relationships can play an impor-
tant role in the analysis of design processes, because of their 
hierarchical structure. I.e., if a certain Global Property turns out 
not to hold for a given design process trace, then the table of 
logical relationships can be consulted in order to pinpoint 
which local properties are candidates for causing the failure. 

8  CONCLUSION  
In order to develop automated support for the dynamics of non-
trivial design processes, the challenge of modelling and analys-

ing such dynamics in a formal manner has to be addressed; cf. 
[1], [5], [6]. This paper offers an approach to do so. The com-
plex dynamics of a design process has been analysed in such a 
precise way that properties of the process as a whole can be 
specified and, moreover, part of the analysis contains enough 
detail to allow for simulation. The result of simulation has been 
checked against the properties of the design process as a whole.  
 Compared to the references mentioned above, the approach 
put forward is a declarative, logical approach supported by a 
formal language TTL for specification of dynamic properties of 
design processes, which has a high expressivity. Furthermore, 
also simulation models are specified in a declarative, logical 
manner, which allows using these specifications in logical 
analysis as well. 

The paper shows the potential of this formal analysis as a 
technique for analysis at a high level of abstraction, and for 
constructing simulations at an abstract level to experiment with 
dynamics of a design process. The simulation actually is en-
tailed by the analysis and requires no additional programming. 

The analysis approach that is for the first time applied to de-
sign processes here, has previously been applied to complex 
and dynamic reasoning processes other than design, such as 
reasoning based on multiple representations [3]. In these cases 
in addition to simulated traces, also empirical (human) reason-
ing traces have been formally analysed. For further research it 
is planned to formally analyse protocols of human design proc-
esses in a similar manner. 
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