A Rank Based Description Language
for Qualitative Preferences

Gerhard Brewka!

Abstract. of them, a preference relation among the elements &f useful to
In this paper we develop a language for representing complexistinguish important from less important goals.
qualitative preferences among problem solutions. We use ranked To express the preferences among goals we will use ranked knowl-
knowledge bases to represent prioritized goals. A basic preferenaxge bases{K Bs) in this paper [8, 3, 14, 12] which are sometimes
description, that is a ranked knowledge base together with a prefalso called stratified knowledge bases. Such knowledge bases have
erence strategy, defines a preference relation on models which reproven fruitful in a number of approaches. A brief introduction will
resent problem solutions. Our language allows us to express nesteée given in the next section. Intuitively, the ranknk(f) of a for-
combinations of preference descriptions using various connectivesnula f in an RKB is an integer expressing its relative importance.
This gives the user the possibility to represent her preferences in a Itis important to note that aR K B alone is not sufficient to deter-
natural, concise and flexible manner. mine the preference relation on models, even if all formulas are in-
terpreted as goals. For instance, fR&E B does not tell us whether a
model satisfying 2 goals of the same high rank is better than a model
1 Introduction satisfying only 1 such goal. We need in addition a recipe of how to
use theRKB for this purpose, in other words, we need a preference
In this paper we develop a language for specifying complex, qualstrategy.
itative preferences among potential problem solutions. Preferences Although the use of integers is convenieRtK Bs are often used
play a crucial role in many areas of Al: in soft constraint solving in a purely qualitative way where the actual numbers are irrelevant.
constraints may have different priority, in decision making or plan-what counts is only the total preorder on formulas represented
ning some goals may be more important than others, in configuratiothrough the integers, wheyg > fs iff rank(f1) > rank(f2).
some properties of the system to be designed are more critical than Qur focus in this paper will be entirely on these qualitative ap-
others, and so on. proaches. This excludes, for instance, approaches which consider
By a solution we mean an assignment of a certain vdlteeach  ranks as rewards and maximize their sum, as is often done in soft con-
variablev in given set of variable$” such thatd is taken from the  straint satisfaction [15]. For an excellent overview of some of these
finite domain ofv. Without loss of generality, we will restrict our dis-  approaches see [13]. Numerical approaches certainly are highly in-
cussion here to the boolean case where the values for each variahigresting. Nevertheless, we believe that they are better treated in the
aretrue or false. Solutions thus correspond to interpretations in therealm of classical decision theory. The strengttRéf Bs lies in their
sense of classical propositional logic. Moreover, we also assume th@btential for modeling qualitative preferences.
background knowledge may be given in the form of a set of propo- We will thus restrict our discussion to qualitative strategies which
sitional formulasB. This background knowledge further constrains have been used in combination with &K B. Different strategies
the set of interpretations: only models Bfare considered as poten- reflect different meanings a user can associate with the importance
tial solutions. We are thus looking for ways of specifying preferenceganks. Since there is no single best reading of such ranks, there is
among such models in a concise yet flexible way. no single best strategy. We therefore believe it is important to give
The number of models is exponential in the number of variablesusers the ability to choose and possibly combine different strategies
For this reason it is, in general, impossible for a user to describe he flexible ways.
preferences by enumerating all pairs of the preference relationgamon  Our main contribution is thus a language for defining complex
models. This is where logic comes into play. preferences among models. Complex preferences may ariseskecau
Traditionally, logic is used for proving theorems. Here, we area single agent uses different strategies for different aspects oba pr
not so much interested in logical consequence, we are interested igm, which then must be combined. They may also arise because the
whether a model satisfies a formula or not. In the simplest case wgreferences of multiple agents have to be combined. The basic build-
can use a single formulf, interpret it as a goal, and say a model ing blocks of our language are pairs consisting of a strategy and an
my is preferred to modetu, (denotedmn: > mo) iff mi1 = fand  RKB. The language also allows for (nested) combinations of prefer-
ma = f. ence expressions using different combination methods.
In the general case, a single formula is not sufficient and we need Throughout the paper, thRKBs we use contain formulas repre-
a set of formulag™ rather than a single formula. We obviously may senting goals or desires. Independently of the chosen strategy, mak-
have more than one goal. Since it is often impossible to satisfy aling more formulas true can never decrease the quality of a model.
Some authors have also investigated rejections, that is formulas
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modeled using the goalp, given an adequate strategy. Our choice Since all of these strategies from the literature are of interest, the
of a goal based approach thus does not reduce generality. language to be developed in the next sections will allow the user to
The rest of the paper is organized as follows. In the next sectiomick the one she has in mind when specifying preferences through a
we give a brief reminder on ranked knowledge bases. Section 3 theranked knowledge base, and to combine them in a flexible manner.
introduces basic preference expressions, consisting d/&B to-
gether with one of 4 qualitative strategies. We also investigate thei
relationship. Section 4 defines our full preference description lan

guage. In this Ia_mgua_ge, expressions can be co_mbined uging Va”PH? this and the following section we define the langudgeD for
operators. Section 5 illustrates our language using a movie seleCt'O&pressing complex preferences among models. We identify 4 basic

3 Basic preference expressions

example. Section 6 discusses related work and concludes.

2 Ranked Knowledge Bases

A ranked knowledge bas&R B), sometimes also called stratified
knowledge base, is a sét of propositional formulas together with
a total preorde> on F'. A preorder is a transitive and reflexive re-
lation, totality means that for each, f» € F we havef; > fs

or f > fi. Usually, RKBs are represented in one of the following
ways:

1. asasequendd, ..., F,) of sets of formulas such thgt > f»
iff for somes, j: f1 € F;, fo € F; andi > j.

2. as a set of ranked formuldg;, r;), where f; is a propositional
formula andr;, the rank off;, is a non-negative integer such that
fi>fe iff T > Tk.

The two representations dtKBs are clearly equivalent: the rank

of a formula corresponds to the set index in the first formulation.
For convenience we will mostly use the second one in this paper.

Note that starting from a pa{tF, >) one always gets a set of ranked
formulas where each formula has a unique rank.

Intuitively, we consider formulas with higher rank to be more im-
portant than those with lower rafikThe exact meaning of the ranks
depends on the chosen preference strategy.

Different ways of defining consequence relations Ri Bs have

been defined in the literature. In [8] an inclusion based method was

used to define preferred maximal consistent subsets (called geferr
subtheories in [8]) of the premises. A maximal subSeis strictly
preferred taS; iff there is a rank- such that the formulas of rankin

S1 are a proper superset of thoseSg and for all ranks higher than

r, S1 and Sz agree on the contained formulas. Benferhat and col-e 1,
leagues [3] investigated ranked knowledge bases under a cardinality 1,
based criterion. To define preferred maximal consistent subseys, the
take the number of formulas satisfied in a particular stratum into ac-
count. Systen¥ [14, 12] generates a ranking from a knowledge base

of rules which gives more importance to more specific rules. Intu-

itively, to determine whether a modaf is preferred, the lowest rank
r is considered for whicl// satisfies all rules of degreeand higher.
A close connection between Systéfrand possibilistic logic was es-

qualitative strategies which we consider fundamental, given prefer-
ences among goals are specified usiRi§Bs. In our language we
use identifiers taken from the set

Strat = {T,k,C,#}.

for particular strategies. The meaning of these identifiers will be de-
fined shortly.

Definition 1 A basic preference description is a pdi, K) consist-
ing of a basic strategy identifierand anRKB K.

Rather than using pair notatiots, {(fi,71),...,(fn,7n)}) OF

(s, K), we will often use a strategy identifier as an upper index for
the RKB, thatis, we write{(f1,71), ..., (fn,™a)}° Or K*, respec-
tively.

A basic preference description defines a preopdé@hat is, a tran-
sitive and reflexive relation) on models. As usual, the preorder im-
plicitly defines an associated strict partial order defineddhy> ms
iff mi > Mso and notms > mi.

Let K = {(fi,v:)} be anRKB, s a basic strategy name. We use
>X to denote the preorder on models defined(byK). We first
introduce the following notation and auxiliary definitions:

{F1(f,n) e K,m = f)

—oo if m = fiforall (fi,v;) € K,
max{i | (f,i) € K,m |= f} otherwise.
—ooif m = f; forall (fi,v:) € K,
max{i | (f,7) € K,m [~ f} otherwise.

K"(m)
mazsat™ (m)

mazunsat™ (m)

Now we can define the corresponding orderings on models:

>& my iff mazsat™ (m1) > mazxsat™ (m2).

>EK my iff mazunsat® (m1) < mazunsat™ (ms).

my > my iff K™(m1) = K™ (ms) for all n, or there is am
such thatk™(m1) D K™(m2), and for allj > n: K7 (m1)
Kj(mQ)

mi1 >4 mo iff |[K™(m1)| = |K"(ms2)| for all n, or there is
ann such that K™ (m1)| > |K"(m2)|, and for allj > n:
[K7 (ma)| = K7 (mo)]

tablished in [5]. The major difference is that possibilistic logic usesThe strategies can be described informally as follows:

reals in the unit interval rather than integers.

In a possibilistic setting, Benferhat and colleagues [4] investigatec T prefersm; overms whenever the most important goal satisfied
bipolar preferences based on the maximal degree of a satisfied goal by m; is more important than the most important goal satisfied
(a model is better the higher the maximal degree) and the maximal by ms.. It was used in [4] in the context of bipolar representations.
degree of a satisfied rejection (a model is the better the smaller the With this strategy the intuitive reading of, r) is: if f is true, then

maximal degree).

2 To represent a set of ranked formulas where a fornfiias more than one
rank as a paifF, >), one needs syntactic variants gfthat is, equivalent
yet syntactically different formulas.

3 [8] uses the reverse numbering, thaFisis the most important set. We find
it more intuitive to express higher importance with higherided.

the total satisfaction is at least

k prefersm, overms whenever the most important goal not sat-
isfied by m; is less important than the most important goal not
satisfied bymo, in other words, if the rank such that all goals of
rankr and higher are satisfied is lowerin; than the corresond-
ing rank inm. This is thex-ranking used in systerff.



e to check whetheC prefersm; overm, we start from the most Lemma4 LetR = {(Ri1,v1),...,(Rn,vn)} be asetof rejections.
important goals and go down stepwise to less important ones. If, g, is more acceptable tham. (see [4], Sect.4) ifin, >R g
the first rank reached this way for which the formulas satisfied bywhereR’ = {(=R1,v1), ..., (= Rn, vn)}
the two models differ, we have that, satisfies a superset of the
formulas satisfied bynsz, thenm, is preferred. This is the order
used in [8]. 4 The preference language

e 7 is similar to C, but rather than checking the sets of formulas So far we discussed basic preference descriptions only. A user may
satisfied for each rank, their cardinality is considered. This is thQ]ave different ways of modeling her preferences for differepeats
proposal of Benferhat and colleagues in [3]. of a problem. Therefore, we also want to allow more complex de-

Among the preorders on models generated by these strategies orﬁﬁwt'ons represI(:ntflnﬁ] gofmtl)l.natlofns of;[hg colrres?ondlng greorQers
Zé is partial. The others are total, that is, the ordering on models is e now give the full definition of our logical preference descrip-

again a ranking. To illustrate the strategies let us consideRK8: tion language. F_o_r reasons Wh_'Ch will become_ clear later, we use
standard propositional connectives together with a new connective

K ={(a,2),(b,2),(c,2),(d,1),(e,1)} > expressing preference among expressions.

We represent models by a sequence of atoms true in the model. FBefinition 5 The logical preference description languagéD is
example,acd represents the model in whieh ¢ andd are true,b inductively defined as follows:

and e are false. Also, wheneveK is clear from context we omit

the upper index< from the relation symbols. We havel >+ de 1. each basic preference description isfif*D,

sincead, contrary tode, satisfies a goal of rank 2. On the other hand,2. if d; andd; are in LPD, then the expressiorfdi Adz), (d1 Vd2),

ad %, de since both models falsify a goal of rank 2. Furthermore, (d1 > d2) and—d; are in LPD.

abc >, bd sinceabc satisfies all goals of rank 2, that is, the maximal

rank of a violated goal is 1. On the other harid %+ bd since both The formal definition of the meaning of a (non-basicPD ex-
satisfy a goal of rank 2zbd is incomparable ted according toC, pression, that is the definition of its associated preorder on models,
howeverabd >4 cd since the former satisfies two goals of rank 2.  is as follows:

The different strategies are not independent of each other. We have . .
the following results: \ﬁeflnltlon 6 LetR; and R» be the preorders on models represented

by d: andds, respectively. Letr(R) denote the transitive closure of
Proposition 2 Let m; andms be modelsK a ranked knowledge a relation R, R™! the inverse relationOrd(Ipd), the preorder rep-

base. The following relationships hold: resented by the compléxPD expressioripd, is defined as follows:
m1 >¥ mao implie3m1 >}Cj mao, O’/‘d(d1 A d2) =RiNRs
m1 > my impliesm; > ma, Ord(dy Vdz) =tr(Ri1URa)
. . F 7% —1
m1 >& my impliesmy >% mo, Ord(—d1) =Ry B
m Zlg( Mo implie3m1 zg ma, O’r‘d(d1 > d2) = (Rl N RQ) U (Rl \ Rl )
K H H K
my 2T M2 impliesm, 2;( mz, d1 A do corresponds to the well-known Pareto ordering: a madgl
my1 >, meg impliesm; >3 ma.

is at least as good as- if it is at least as good asi» with respect
to bothd; andds. m; is strictly better if it is better according to one
of the suborderings, and at least as goodraswith respect to the
other.d, Vd considersn; at least as good a8, if at least one of the
T \>A composed orderings does (or one of the agents é&ndd. represent
> 2 # preferences of 2 agents). The definition needs the transitive closure
/>' since the union of two orderings is not necessarily transitive.Fhe
operator just reverses the original ordering. Double application of
obviously gives back the original ordering. Note, however, that other
Fig.1: Relationship among basic orderings properties of negation do not hold fer, in particular the de Morgan
laws do not hold. For instance,(d; Vdz) differs from(—d; A—d2).*
More relationships can be established if we all&imo be modi- di > ds is the lexicographic ordering d®; and R» which gives
fied. more priority toR; and usesk, only to distinguish between models
which are equally good wriR;. m; is strictly better thamn if it is
strictly better wrt.R, or as good asn. wrt. R, and strictly better

The first 4 relationships can be illustrated using the following figure:

Proposition 3 Let K be aranked knowledge base; andms mod-

els. Let wrt. Re. Ry \ Ry is the strict partial order associated wih.
Kn = {(Ci,i) | C; conjunction of allf with (f, ) € K,j > i} The binary operatorg, A and> are associative. We omit brackets
Ky = {(C;,4) | C; disjunction of allf with (f,j) € K,j > i}. if this does not cause confusion, assuming binding strength decreases
in the ordera, v, >.
Thenmy > mo iff mi >E0 mo andmy >5 mo iff my =&V The language.PD gives us flexible means of representing pref-
ma. erences on models. We next discuss some properties of the language.

Under certain circumstances expressions can be simplified. We say

Moreover, sincé_ and# are equivalent if for each rank there is onl L . . .
N # q 4 R preference expressiah implies an expressiods iff Ord(d,) C

a single formula possessing this rank, the proposition also holds

we use# instead ofC. 4 —(dy Vv dg) is equivalent to —dy V —dz), and—(d1 A d2) equivalent to
Ranked rejections [4] can be modeled usingsbstrategy: (—d1 A —dg), though.




Ord(d2). We say two preference expressions are equivalent ifft A, — comedy

they induce the same preorder on models, that isQiftl(d:) = A Hugh A Brad A —~Leo
Ord(ds). Lets € Strat be any of our basic strategies, then: A —~Julia A = Nicole A ~Gwyneth A ~Halle
{(fr,r1)s ey (B, mn) Yo > {(51,71)5 - (8, i) Y We also represent that exactly one of the 6 movies needs to be chosen,
. wal that is exactly one of M1, . . ., Mg} must be true in each model. All
Is equivalent to models thus contain one selected movie together with its type and its
{(fi,c+71), s (Frrc+70), (51,71)5 o . (Smy T ) }° actors.

, . According to our preference expressiadd; is preferred oved/,
wherec = maz{r;}+1. Note that this result depends on the factthat 5,4 overnr, because two of your girl friend’s most favourite actors
the two bas_lc preference expressions use the same strategy. A S|m|l@5y in M,. Ms is preferred oved/; since it is as good with respect
result for different strategies does not hold. Also, fosuch simpli- 4 your girl friend’s preferences (trading Hugh for Brad), but brette
fications are not possible, even if the strategies of the subexpressiogg o rging to your preferences since it additionally gives you Halle.
coincide. The only weak result we get is: M, and M, are incomparableM; is the better type of movie,
Proposition 7 Let K; and K, be RKBs. but M, is better with respect to its actorls is worse than botid/4
(K1§ A KQE) implies(K; U KQ)E, (worse actors according to your girl friend) ait (worse type), and

thus also worse thah/; . Mg is less preferred than bofid, and M :

The other direction does not hold (to see this, consider the case Wheﬁenas less preferred actors and a worse tyfe.is incomparable to
we split anRK B such that formulas with high rank are i, for- '

mulas with low rank inK;). For the cardinality based strategy, using

: . & .
”}?#”'Oln(if ZFKfS’ that IS(IKl U K>) ,lclearly IS dlfferent from erence structure among models (represented through the selected
( AN _)' n the general case complex expressions are not reFnovies) is illustrated in the following figure (arrows point to strictly
ducible to single ones which use the same formulas, even if the ranlﬁreferred models):

are allowed to change.

. . My My
5 Example: Selecting a Movie
In this section we want to illustrate the use of our language with a / \“\\L\

commonsense example. Assume you are planning to go to the cinema Mo— Ms<~—Ms  M;
with your girl friend. Both of you prefer comedies over action movies
over tragedies. Your girl friend loves to see Hugh Grant and Brad
Pitt, followed by Leonardo di Caprio. Your favourite actors are Julia
Roberts and Nicole Kidman, followed by Gwyneth Paltrow and Halle
Berry. You both feel that the type of movie is as important as theg Discussion
actors. Moreover, since it is your girl friend’s birthday, her actors’
preferences are more important today than yours. In this paper we developed a flexible preference representation lan-
We can represent this information using the followiRg Bs: guage. The basic building blocks of the language are ranked knowl-
K1 = {(Hugh,?2), (Brad,?2), (Leo,1)} edge bases together with a model sgle.cﬁon strategy. Rank_ed knowl-
K> = {(Julia, 2), (Nicole, 2), (Guyneth, 1), (Halle, 1)} _edge _bases allow us to represeqt prioritized goals c_onvenlently. We
K3 = {(comedy, 3), (action, 2), (tragedy, 1)} |nvest|gat§d f.our.dlfferent strategies knlown from the literature, all of
them qualitative in the sense that the induced total preorder on for-
We assume the background knowledge contains information that thgyulas is what counts, rather than the actual numbers.
mentioned types of movies are mutually exclusive, models thus will  Our language also allows for combinations of preference expres-
make at most one of the types true. Since seeing more of the favouritgons. Conjunction naturally leads to Pareto orderings based on the
actors is more fun we use the cardinality based strategy. Our prefetmderlying subexpressions. The connectivallows us to define lex-
ences can thus be represented asthR® expression: icographic orderings. The language also has disjunction and a form
(Kf‘ > Kf) N of negation which simp_ly reverses the original order. o _
The work presented in this paper shares some motivation with [9].
Assume we have the following information about the movies shownAlso in that paper a language, call&DL, for expressing complex
tonight: preferences is presented. However, there are several major- diffe
M, : comedy, Hugh, Brad ences \_Nh_ich_are due to the fact tHabL is taylored towards answer
set optimization:

The only non-dominated movies are thus and M. The pref-

Fig.2: Strict preferences among movies

Ms : comedy, Hugh, Leo, Julia

Ms : comedy, Brad, Leo, Julia, Halle
My : action, Brad, Hugh, Nicole

M5 : action, Brad, Leo, Julia, Halle
Ms : tragedy, Brad, Leo, Julia, Nicole

1. PDL is rule based rather than goal based. The basic building
blocks are rules with prioritized heads rather than ranked knowl-
edge bases.

2. SincePDL is used to assess the quality of answer sets (i.e., sets

of literals) rather than models, it becomes important to distinguish

between an atom not being in an answer set and its negation being
in an answer set. In other words, the distinction between classi-
cal negation and default negation (negation as failure) is relevant.

Since we are interested in preferences among models here, this

distinction does not play a role ibPD.

We assume that the list of actors mentioned for each movie is com-
plete, that is, if one of the names appearing infféBs is not listed,
then this actor is not in the corresponding movie.

We represent the information listed above in the background
knowledge in the form of logical implications. For instance, fdg
we get:



3. PDL distinguishes between penalty producing and other strateworst violation of any constraint. Preferred solutions are those where
gies. Both numerical and qualitative combination strategies aréhe worst violation is minimal. This corresponds to thestrategy.
thus used. On the other hand, combinations corresponding to ove are not aware of any approach in constraint satisfaction trying to
disjunction and negation operators are lacking. combine different strategies. For this reason we believe the language
Although we restricted our discussion to purely qualitative ap_developed here will be of intc_erest glso for the constrain_t community.
proaches, there is no principle obstacle against integrating numerical N future work we plan to investigate the use of partially ordered

approaches as well, at least at the level of basic preference expre@ther than ranked knowledge bases on the level of basic preference

sions. For instance, we could use ranks as penalties or rewards aR§Pressions. We also plan to investigate computational issues related
define the preorder on models on the basis of the actual rank value$1€ @pproach. In particular, it would be interesting to see whether a
The reader should be aware, though, that this only works on the p&lenerate and improve method like the one developed for answer set

sic level. The connectives we defined operate on the preorders affPtimization in [9] can be used here as well.

do not take numerical information into account. Any numerical in-
formation would thus be lost in our language at the level of comple
preference expressions.

LAcknowledgements
The paper greatly benefitted from discussions with and suggestions

An interesting related paper is [16] which introduces a preferenc®Y ¥rome Lang. The author acknowledges support from DFG (Com-

language for planning. The language is based on a temporal logic a
is able to express preferences among trajectories. AgbD, pref-
erences can be combined via binary operators - somewhat differe
from ours. The major difference certainly is that our approach aims[1]
at being application-independent, whereas [16] focuses on planning.

Also related is [1]. The authors investigate combinations of pri- 2]
ority orderings based on a generalized lexicographic combination
method. This method is more general than usual lexicographic or{3]
derings - including the ones expressible through nuoperator -
since it does not require the combined orderings to be linearly or-
dered. Itis based on so-called priority graphs where the subordering,
to be combined are allowed to appear more than once. The authors
also show that all orderings satisfying certain properties derived from
Arrow’s conditions [2] can be obtained through their method. This is
an interesting result. On the other hand, we found it somewhat dif'fi-[s]
cult to express examples like our movie example using the method.
We believe our language is closer to the way people actually describe
their preferences.

In [7] CP-networks are introduced, together with corresponding (6]
algorithms. These networks are a graphic representation, somewh ﬁ
reminiscent of Bayes nets, for conditional preferences amongéeatu
values under theeteris paribugrinciple. Our approach differs from
CP-networks in several respects: (1) Preferenceg ifr-networks (8]
are always total orders of the possible values of a single variable.
We are able to represent arbitrary prioritized goals. (2) The ceteris[g]
paribus interpretation of preferences is very different from out-goa
based interpretation. The former views the available preferences as
(hard) constraints on a global preference order. Each prefemenc
lates only models which differ in the value of a single variable. A
set of ranked goals, on the other hand, is more like a set of different ]
criteria in multi-criteria optimization. In particular, goals can be con-
flicting. Conflicting goals may neutralize each other, but do not lead2]
to inconsistency.

Although our work was mainly motivated by several approache§13]
developed in the area of nonmonotonic reasoning, many related ideas
can be found in constraint satisfaction, in particular valued (somet4]
times also called weighted) constraint satisfaction [11, 10, 15, 6].
A valued constraint, rather than specifying hard conditions a solu-
tion has to satisfy, yields a ranking of solutions. A global ranking[1s]
of solutions then is obtained from the rankings provided by the sin-
gle constraints through some combination rule. This is exactly what
happens in our approach on the level of basic preference exprgssio [16]
Also in constraint satisfaction we find numerical as well as qualita-
tive approaches. In MAX-CSP [11], for instance, constraints assign
penalties to solutions, and solutions with the lowest penalty sum are
preferred. In fuzzy CSP [10] each solution is characterized by the

[Rytationale Dialektik: BR 1817/1-5).
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