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Abstract.
In this paper we develop a language for representing complex

qualitative preferences among problem solutions. We use ranked
knowledge bases to represent prioritized goals. A basic preference
description, that is a ranked knowledge base together with a pref-
erence strategy, defines a preference relation on models which rep-
resent problem solutions. Our language allows us to express nested
combinations of preference descriptions using various connectives.
This gives the user the possibility to represent her preferences in a
natural, concise and flexible manner.

1 Introduction

In this paper we develop a language for specifying complex, qual-
itative preferences among potential problem solutions. Preferences
play a crucial role in many areas of AI: in soft constraint solving
constraints may have different priority, in decision making or plan-
ning some goals may be more important than others, in configuration
some properties of the system to be designed are more critical than
others, and so on.

By a solution we mean an assignment of a certain valued to each
variablev in given set of variablesV such thatd is taken from the
finite domain ofv. Without loss of generality, we will restrict our dis-
cussion here to the boolean case where the values for each variable
aretrue or false. Solutions thus correspond to interpretations in the
sense of classical propositional logic. Moreover, we also assume that
background knowledge may be given in the form of a set of propo-
sitional formulasB. This background knowledge further constrains
the set of interpretations: only models ofB are considered as poten-
tial solutions. We are thus looking for ways of specifying preferences
among such models in a concise yet flexible way.

The number of models is exponential in the number of variables.
For this reason it is, in general, impossible for a user to describe her
preferences by enumerating all pairs of the preference relation among
models. This is where logic comes into play.

Traditionally, logic is used for proving theorems. Here, we are
not so much interested in logical consequence, we are interested in
whether a model satisfies a formula or not. In the simplest case we
can use a single formulaf , interpret it as a goal, and say a model
m1 is preferred to modelm2 (denotedm1 > m2) iff m1 |= f and
m2 6|= f .

In the general case, a single formula is not sufficient and we need
a set of formulasF rather than a single formula. We obviously may
have more than one goal. Since it is often impossible to satisfy all
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of them, a preference relation among the elements ofF is useful to
distinguish important from less important goals.

To express the preferences among goals we will use ranked knowl-
edge bases (RKBs) in this paper [8, 3, 14, 12] which are sometimes
also called stratified knowledge bases. Such knowledge bases have
proven fruitful in a number of approaches. A brief introduction will
be given in the next section. Intuitively, the rankrank(f) of a for-
mulaf in anRKB is an integer expressing its relative importance.

It is important to note that anRKB alone is not sufficient to deter-
mine the preference relation on models, even if all formulas are in-
terpreted as goals. For instance, theRKB does not tell us whether a
model satisfying 2 goals of the same high rank is better than a model
satisfying only 1 such goal. We need in addition a recipe of how to
use theRKB for this purpose, in other words, we need a preference
strategy.

Although the use of integers is convenient,RKBs are often used
in a purely qualitative way where the actual numbers are irrelevant.
What counts is only the total preorder≥ on formulas represented
through the integers, wheref1 ≥ f2 iff rank(f1) ≥ rank(f2).

Our focus in this paper will be entirely on these qualitative ap-
proaches. This excludes, for instance, approaches which consider
ranks as rewards and maximize their sum, as is often done in soft con-
straint satisfaction [15]. For an excellent overview of some of these
approaches see [13]. Numerical approaches certainly are highly in-
teresting. Nevertheless, we believe that they are better treated in the
realm of classical decision theory. The strength ofRKBs lies in their
potential for modeling qualitative preferences.

We will thus restrict our discussion to qualitative strategies which
have been used in combination with anRKB . Different strategies
reflect different meanings a user can associate with the importance
ranks. Since there is no single best reading of such ranks, there is
no single best strategy. We therefore believe it is important to give
users the ability to choose and possibly combine different strategies
in flexible ways.

Our main contribution is thus a language for defining complex
preferences among models. Complex preferences may arise because
a single agent uses different strategies for different aspects of a prob-
lem, which then must be combined. They may also arise because the
preferences of multiple agents have to be combined. The basic build-
ing blocks of our language are pairs consisting of a strategy and an
RKB . The language also allows for (nested) combinations of prefer-
ence expressions using different combination methods.

Throughout the paper, theRKBs we use contain formulas repre-
senting goals or desires. Independently of the chosen strategy, mak-
ing more formulas true can never decrease the quality of a model.
Some authors have also investigated rejections, that is formulas
which should be falsified [4]. It turns out that the rejection ofp can be



modeled using the goal¬p, given an adequate strategy. Our choice
of a goal based approach thus does not reduce generality.

The rest of the paper is organized as follows. In the next section
we give a brief reminder on ranked knowledge bases. Section 3 then
introduces basic preference expressions, consisting of anRKB to-
gether with one of 4 qualitative strategies. We also investigate their
relationship. Section 4 defines our full preference description lan-
guage. In this language, expressions can be combined using various
operators. Section 5 illustrates our language using a movie selection
example. Section 6 discusses related work and concludes.

2 Ranked Knowledge Bases

A ranked knowledge base (RKB ), sometimes also called stratified
knowledge base, is a setF of propositional formulas together with
a total preorder≥ on F . A preorder is a transitive and reflexive re-
lation, totality means that for eachf1, f2 ∈ F we havef1 ≥ f2

or f2 ≥ f1. Usually,RKBs are represented in one of the following
ways:

1. as a sequence(F1, . . . , Fn) of sets of formulas such thatf1 ≥ f2

iff for somei, j: f1 ∈ Fi, f2 ∈ Fj andi ≥ j.
2. as a set of ranked formulas(fi, ri), wherefi is a propositional

formula andri, the rank offi, is a non-negative integer such that
fj ≥ fk iff rj ≥ rk.

The two representations ofRKBs are clearly equivalent: the rank
of a formula corresponds to the set index in the first formulation.
For convenience we will mostly use the second one in this paper.
Note that starting from a pair(F,≥) one always gets a set of ranked
formulas where each formula has a unique rank.2

Intuitively, we consider formulas with higher rank to be more im-
portant than those with lower rank.3 The exact meaning of the ranks
depends on the chosen preference strategy.

Different ways of defining consequence relations forRKBs have
been defined in the literature. In [8] an inclusion based method was
used to define preferred maximal consistent subsets (called preferred
subtheories in [8]) of the premises. A maximal subsetS1 is strictly
preferred toS2 iff there is a rankr such that the formulas of rankr in
S1 are a proper superset of those inS2, and for all ranks higher than
r, S1 andS2 agree on the contained formulas. Benferhat and col-
leagues [3] investigated ranked knowledge bases under a cardinality
based criterion. To define preferred maximal consistent subsets, they
take the number of formulas satisfied in a particular stratum into ac-
count. SystemZ [14, 12] generates a ranking from a knowledge base
of rules which gives more importance to more specific rules. Intu-
itively, to determine whether a modelM is preferred, the lowest rank
r is considered for whichM satisfies all rules of degreer and higher.
A close connection between SystemZ and possibilistic logic was es-
tablished in [5]. The major difference is that possibilistic logic uses
reals in the unit interval rather than integers.

In a possibilistic setting, Benferhat and colleagues [4] investigated
bipolar preferences based on the maximal degree of a satisfied goal
(a model is better the higher the maximal degree) and the maximal
degree of a satisfied rejection (a model is the better the smaller the
maximal degree).

2 To represent a set of ranked formulas where a formulaf has more than one
rank as a pair(F,≥), one needs syntactic variants off , that is, equivalent
yet syntactically different formulas.

3 [8] uses the reverse numbering, that isF1 is the most important set. We find
it more intuitive to express higher importance with higher indices.

Since all of these strategies from the literature are of interest, the
language to be developed in the next sections will allow the user to
pick the one she has in mind when specifying preferences through a
ranked knowledge base, and to combine them in a flexible manner.

3 Basic preference expressions

In this and the following section we define the languageLPD for
expressing complex preferences among models. We identify 4 basic
qualitative strategies which we consider fundamental, given prefer-
ences among goals are specified usingRKBs. In our language we
use identifiers taken from the set

Strat = {>, κ,⊆, #}.

for particular strategies. The meaning of these identifiers will be de-
fined shortly.

Definition 1 A basic preference description is a pair(s, K) consist-
ing of a basic strategy identifiers and anRKB K.

Rather than using pair notation(s, {(f1, r1), . . . , (fn, rn)}) or
(s, K), we will often use a strategy identifier as an upper index for
theRKB , that is, we write{(f1, r1), . . . , (fn, rn)}s or Ks, respec-
tively.

A basic preference description defines a preorder≥ (that is, a tran-
sitive and reflexive relation) on models. As usual, the preorder im-
plicitly defines an associated strict partial order defined bym1 > m2

iff m1 ≥ m2 and notm2 ≥ m1.
Let K = {(fi, vi)} be anRKB , s a basic strategy name. We use

≥K
s to denote the preorder on models defined by(s, K). We first

introduce the following notation and auxiliary definitions:

Kn(m) = {f | (f, n) ∈ K, m |= f}
maxsatK(m) = −∞ if m 6|= fi for all (fi, vi) ∈ K,

max{i | (f, i) ∈ K, m |= f} otherwise.
maxunsatK(m) = −∞ if m |= fi for all (fi, vi) ∈ K,

max{i | (f, i) ∈ K, m 6|= f} otherwise.

Now we can define the corresponding orderings on models:

• m1 ≥K
> m2 iff maxsatK(m1) ≥ maxsatK(m2).

• m1 ≥K
κ m2 iff maxunsatK(m1) ≤ maxunsatK(m2).

• m1 ≥K
⊆ m2 iff Kn(m1) = Kn(m2) for all n, or there is ann

such thatKn(m1) ⊃ Kn(m2), and for allj > n: Kj(m1) =
Kj(m2)

• m1 ≥K
# m2 iff |Kn(m1)| = |Kn(m2)| for all n, or there is

an n such that|Kn(m1)| > |Kn(m2)|, and for all j > n:
|Kj(m1)| = |Kj(m2)|

The strategies can be described informally as follows:

• > prefersm1 overm2 whenever the most important goal satisfied
by m1 is more important than the most important goal satisfied
by m2. It was used in [4] in the context of bipolar representations.
With this strategy the intuitive reading of(f, r) is: if f is true, then
the total satisfaction is at leastr.

• κ prefersm1 overm2 whenever the most important goal not sat-
isfied bym1 is less important than the most important goal not
satisfied bym2, in other words, if the rankr such that all goals of
rankr and higher are satisfied is lower inm1 than the corresond-
ing rank inm2. This is theκ-ranking used in systemZ.



• to check whether⊆ prefersm1 overm2 we start from the most
important goals and go down stepwise to less important ones. If, at
the first rank reached this way for which the formulas satisfied by
the two models differ, we have thatm1 satisfies a superset of the
formulas satisfied bym2, thenm1 is preferred. This is the order
used in [8].

• # is similar to⊆, but rather than checking the sets of formulas
satisfied for each rank, their cardinality is considered. This is the
proposal of Benferhat and colleagues in [3].

Among the preorders on models generated by these strategies only
≥K

⊆ is partial. The others are total, that is, the ordering on models is
again a ranking. To illustrate the strategies let us consider theRKB :

K = {(a, 2), (b, 2), (c, 2), (d, 1), (e, 1)}

We represent models by a sequence of atoms true in the model. For
example,acd represents the model in whicha, c andd are true,b
and e are false. Also, wheneverK is clear from context we omit
the upper indexK from the relation symbols. We havead >> de

sincead, contrary tode, satisfies a goal of rank 2. On the other hand,
ad 6>κ de since both models falsify a goal of rank 2. Furthermore,
abc >κ bd sinceabc satisfies all goals of rank 2, that is, the maximal
rank of a violated goal is 1. On the other handabc 6>> bd since both
satisfy a goal of rank 2.abd is incomparable tocd according to⊆,
howeverabd ># cd since the former satisfies two goals of rank 2.

The different strategies are not independent of each other. We have
the following results:

Proposition 2 Let m1 and m2 be models,K a ranked knowledge
base. The following relationships hold:

m1 >K
> m2 impliesm1 >K

⊆ m2,
m1 >K

κ m2 impliesm1 >K
⊆ m2,

m1 >K
⊆ m2 impliesm1 >K

# m2,
m1 ≥K

⊆ m2 impliesm1 ≥K
# m2,

m1 >K
> m2 impliesm1 ≥K

κ m2,
m1 >K

κ m2 impliesm1 ≥K
> m2.

The first 4 relationships can be illustrated using the following figure:

κ
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Fig.1: Relationship among basic orderings

More relationships can be established if we allowK to be modi-
fied.

Proposition 3 LetK be a ranked knowledge base,m1 andm2 mod-
els. Let

K∧ = {(Ci, i) | Ci conjunction of allf with (f, j) ∈ K, j ≥ i}
K∨ = {(Ci, i) | Ci disjunction of allf with (f, j) ∈ K, j ≥ i}.

Thenm1 ≥K
κ m2 iff m1 ≥K∧

⊆ m2 and m1 ≥K
> m2 iff m1 ≥K∨

⊆

m2.

Moreover, since⊆ and# are equivalent if for each rank there is only
a single formula possessing this rank, the proposition also holds if
we use# instead of⊆.

Ranked rejections [4] can be modeled using theκ-strategy:

Lemma 4 LetR = {(R1, v1), . . . , (Rn, vn)} be a set of rejections.

m1 is more acceptable thanm2 (see [4], Sect.4) iffm1 >R′

κ m2

whereR′ = {(¬R1, v1), . . . , (¬Rn, vn)}

4 The preference language

So far we discussed basic preference descriptions only. A user may
have different ways of modeling her preferences for different aspects
of a problem. Therefore, we also want to allow more complex de-
scriptions representing combinations of the corresponding preorders.

We now give the full definition of our logical preference descrip-
tion language. For reasons which will become clear later, we use
standard propositional connectives together with a new connective
> expressing preference among expressions.

Definition 5 The logical preference description languageLPD is
inductively defined as follows:

1. each basic preference description is inLPD ,
2. if d1 andd2 are inLPD , then the expressions(d1∧d2), (d1∨d2),

(d1 > d2) and−d1 are inLPD .

The formal definition of the meaning of a (non-basic)LPD ex-
pression, that is the definition of its associated preorder on models,
is as follows:

Definition 6 LetR1 andR2 be the preorders on models represented
byd1 andd2, respectively. Lettr(R) denote the transitive closure of
a relationR, R−1 the inverse relation.Ord(lpd), the preorder rep-
resented by the complexLPD expressionlpd, is defined as follows:

Ord(d1 ∧ d2) = R1 ∩ R2

Ord(d1 ∨ d2) = tr(R1 ∪ R2)
Ord(−d1) = R−1

1

Ord(d1 > d2) = (R1 ∩ R2) ∪ (R1 \ R−1
1 )

d1 ∧ d2 corresponds to the well-known Pareto ordering: a modelm1

is at least as good asm2 if it is at least as good asm2 with respect
to bothd1 andd2. m1 is strictly better if it is better according to one
of the suborderings, and at least as good asm2 with respect to the
other.d1∨d2 considersm1 at least as good asm2 if at least one of the
composed orderings does (or one of the agents ifd1 andd2 represent
preferences of 2 agents). The definition needs the transitive closure
since the union of two orderings is not necessarily transitive. The−
operator just reverses the original ordering. Double application of−
obviously gives back the original ordering. Note, however, that other
properties of negation do not hold for−, in particular the de Morgan
laws do not hold. For instance,−(d1∨d2) differs from(−d1∧−d2).4

d1 > d2 is the lexicographic ordering ofR1 andR2 which gives
more priority toR1 and usesR2 only to distinguish between models
which are equally good wrt.R1. m1 is strictly better thanm2 if it is
strictly better wrt.R1, or as good asm2 wrt. R1 and strictly better
wrt. R2. R1 \ R−1

1 is the strict partial order associated withR1.
The binary operators∨,∧ and> are associative. We omit brackets

if this does not cause confusion, assuming binding strength decreases
in the order∧, ∨, >.

The languageLPD gives us flexible means of representing pref-
erences on models. We next discuss some properties of the language.

Under certain circumstances expressions can be simplified. We say
a preference expressiond1 implies an expressiond2 iff Ord(d1) ⊆

4 −(d1 ∨ d2) is equivalent to(−d1 ∨ −d2), and−(d1 ∧ d2) equivalent to
(−d1 ∧ −d2), though.



Ord(d2). We say two preference expressions are equivalent iff
they induce the same preorder on models, that is, iffOrd(d1) =
Ord(d2). Let s ∈ Strat be any of our basic strategies, then:

{(f1, r1), . . . , (fn, rn)}s
> {(s1, r

′
1), . . . (sm, r

′
m)}s

is equivalent to

{(f1, c + r1), . . . , (fn, c + rn), (s1, r
′
1), . . . (sm, r

′
m)}s

wherec = max{r′i}+1. Note that this result depends on the fact that
the two basic preference expressions use the same strategy. A similar
result for different strategies does not hold. Also, for∧ such simpli-
fications are not possible, even if the strategies of the subexpressions
coincide. The only weak result we get is:

Proposition 7 LetK1 andK2 beRKBs.
(K⊆

1 ∧ K
⊆
2 ) implies(K1 ∪ K2)

⊆.

The other direction does not hold (to see this, consider the case where
we split anRKB such that formulas with high rank are inK1, for-
mulas with low rank inK2). For the cardinality based strategy, using
the union of 2RKBs, that is(K1 ∪ K2)

#, clearly is different from
(K#

1 ∧ K
#
2 ). In the general case complex expressions are not re-

ducible to single ones which use the same formulas, even if the ranks
are allowed to change.

5 Example: Selecting a Movie

In this section we want to illustrate the use of our language with a
commonsense example. Assume you are planning to go to the cinema
with your girl friend. Both of you prefer comedies over action movies
over tragedies. Your girl friend loves to see Hugh Grant and Brad
Pitt, followed by Leonardo di Caprio. Your favourite actors are Julia
Roberts and Nicole Kidman, followed by Gwyneth Paltrow and Halle
Berry. You both feel that the type of movie is as important as the
actors. Moreover, since it is your girl friend’s birthday, her actors’
preferences are more important today than yours.

We can represent this information using the followingRKBs:

K1 = {(Hugh, 2), (Brad, 2), (Leo, 1)}
K2 = {(Julia, 2), (Nicole, 2), (Gwyneth, 1), (Halle, 1)}
K3 = {(comedy, 3), (action, 2), (tragedy, 1)}

We assume the background knowledge contains information that the
mentioned types of movies are mutually exclusive, models thus will
make at most one of the types true. Since seeing more of the favourite
actors is more fun we use the cardinality based strategy. Our prefer-
ences can thus be represented as theLPD expression:

(K#
1 > K

#
2 ) ∧ K

>
3

Assume we have the following information about the movies shown
tonight:

M1 : comedy, Hugh, Brad

M2 : comedy, Hugh, Leo, Julia

M3 : comedy, Brad, Leo, Julia, Halle

M4 : action, Brad, Hugh, Nicole

M5 : action, Brad, Leo, Julia, Halle

M6 : tragedy, Brad, Leo, Julia, Nicole

We assume that the list of actors mentioned for each movie is com-
plete, that is, if one of the names appearing in theRKBs is not listed,
then this actor is not in the corresponding movie.

We represent the information listed above in the background
knowledge in the form of logical implications. For instance, forM1

we get:

M1 → comedy

∧ Hugh ∧ Brad ∧ ¬Leo

∧ ¬Julia ∧ ¬Nicole ∧ ¬Gwyneth ∧ ¬Halle

We also represent that exactly one of the 6 movies needs to be chosen,
that is exactly one of{M1, . . . , M6} must be true in each model. All
models thus contain one selected movie together with its type and its
actors.

According to our preference expression,M1 is preferred overM2

and overM3 because two of your girl friend’s most favourite actors
play inM1. M3 is preferred overM2 since it is as good with respect
to your girl friend’s preferences (trading Hugh for Brad), but better
according to your preferences since it additionally gives you Halle.

M4 andM1 are incomparable:M1 is the better type of movie,
butM4 is better with respect to its actors.M5 is worse than bothM4

(worse actors according to your girl friend) andM3 (worse type), and
thus also worse thanM1. M6 is less preferred than bothM4 andM1:
it has less preferred actors and a worse type.M6 is incomparable to
M5.

The only non-dominated movies are thusM1 andM4. The pref-
erence structure among models (represented through the selected
movies) is illustrated in the following figure (arrows point to strictly
preferred models):
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Fig.2: Strict preferences among movies

6 Discussion

In this paper we developed a flexible preference representation lan-
guage. The basic building blocks of the language are ranked knowl-
edge bases together with a model selection strategy. Ranked knowl-
edge bases allow us to represent prioritized goals conveniently. We
investigated four different strategies known from the literature, all of
them qualitative in the sense that the induced total preorder on for-
mulas is what counts, rather than the actual numbers.

Our language also allows for combinations of preference expres-
sions. Conjunction naturally leads to Pareto orderings based on the
underlying subexpressions. The connective> allows us to define lex-
icographic orderings. The language also has disjunction and a form
of negation which simply reverses the original order.

The work presented in this paper shares some motivation with [9].
Also in that paper a language, calledPDL, for expressing complex
preferences is presented. However, there are several major differ-
ences which are due to the fact thatPDL is taylored towards answer
set optimization:

1. PDL is rule based rather than goal based. The basic building
blocks are rules with prioritized heads rather than ranked knowl-
edge bases.

2. SincePDL is used to assess the quality of answer sets (i.e., sets
of literals) rather than models, it becomes important to distinguish
between an atom not being in an answer set and its negation being
in an answer set. In other words, the distinction between classi-
cal negation and default negation (negation as failure) is relevant.
Since we are interested in preferences among models here, this
distinction does not play a role inLPD .



3. PDL distinguishes between penalty producing and other strate-
gies. Both numerical and qualitative combination strategies are
thus used. On the other hand, combinations corresponding to our
disjunction and negation operators are lacking.

Although we restricted our discussion to purely qualitative ap-
proaches, there is no principle obstacle against integrating numerical
approaches as well, at least at the level of basic preference expres-
sions. For instance, we could use ranks as penalties or rewards and
define the preorder on models on the basis of the actual rank values.
The reader should be aware, though, that this only works on the ba-
sic level. The connectives we defined operate on the preorders and
do not take numerical information into account. Any numerical in-
formation would thus be lost in our language at the level of complex
preference expressions.

An interesting related paper is [16] which introduces a preference
language for planning. The language is based on a temporal logic and
is able to express preferences among trajectories. As inLPD , pref-
erences can be combined via binary operators - somewhat different
from ours. The major difference certainly is that our approach aims
at being application-independent, whereas [16] focuses on planning.

Also related is [1]. The authors investigate combinations of pri-
ority orderings based on a generalized lexicographic combination
method. This method is more general than usual lexicographic or-
derings - including the ones expressible through our> operator -
since it does not require the combined orderings to be linearly or-
dered. It is based on so-called priority graphs where the suborderings
to be combined are allowed to appear more than once. The authors
also show that all orderings satisfying certain properties derived from
Arrow’s conditions [2] can be obtained through their method. This is
an interesting result. On the other hand, we found it somewhat diffi-
cult to express examples like our movie example using the method.
We believe our language is closer to the way people actually describe
their preferences.

In [7] CP -networks are introduced, together with corresponding
algorithms. These networks are a graphic representation, somewhat
reminiscent of Bayes nets, for conditional preferences among feature
values under theceteris paribusprinciple. Our approach differs from
CP -networks in several respects: (1) Preferences inCP -networks
are always total orders of the possible values of a single variable.
We are able to represent arbitrary prioritized goals. (2) The ceteris
paribus interpretation of preferences is very different from our goal-
based interpretation. The former views the available preferences as
(hard) constraints on a global preference order. Each preference re-
lates only models which differ in the value of a single variable. A
set of ranked goals, on the other hand, is more like a set of different
criteria in multi-criteria optimization. In particular, goals can be con-
flicting. Conflicting goals may neutralize each other, but do not lead
to inconsistency.

Although our work was mainly motivated by several approaches
developed in the area of nonmonotonic reasoning, many related ideas
can be found in constraint satisfaction, in particular valued (some-
times also called weighted) constraint satisfaction [11, 10, 15, 6].
A valued constraint, rather than specifying hard conditions a solu-
tion has to satisfy, yields a ranking of solutions. A global ranking
of solutions then is obtained from the rankings provided by the sin-
gle constraints through some combination rule. This is exactly what
happens in our approach on the level of basic preference expressions.
Also in constraint satisfaction we find numerical as well as qualita-
tive approaches. In MAX-CSP [11], for instance, constraints assign
penalties to solutions, and solutions with the lowest penalty sum are
preferred. In fuzzy CSP [10] each solution is characterized by the

worst violation of any constraint. Preferred solutions are those where
the worst violation is minimal. This corresponds to theκ strategy.
We are not aware of any approach in constraint satisfaction trying to
combine different strategies. For this reason we believe the language
developed here will be of interest also for the constraint community.

In future work we plan to investigate the use of partially ordered
rather than ranked knowledge bases on the level of basic preference
expressions. We also plan to investigate computational issues related
the approach. In particular, it would be interesting to see whether a
generate and improve method like the one developed for answer set
optimization in [9] can be used here as well.
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