
An Investigation into the Expressive Power of PDDL2.1
Maria Fox and Derek Long and Keith Halsey

Department of Computer and Information Sciences,
University of Strathclyde, Glasgow, UK

maria.fox,derek.long,keith.halsey@cis.strath.ac.uk

Abstract. The planning domain language PDDL2.1, used in the
3rd International Planning Competition, has sparked off some con-
troversy in the planning community as researchers consider its ex-
pressive power and the ease with which interesting domain models
can be constructed in the language. In this paper we show that the
expressive power of PDDL2.1 is much greater than is commonly be-
lieved. We demonstrate that PDDL2.1 can model many of the do-
main features often claimed to lie beyond its modelling capability.
In so doing we provide a means by which powerful domain features
and language constructs can be given a semantics in terms of the
canonical basis of PDDL2.1.

1 Introduction

The Planning Domain Description Language, PDDL, was first de-
veloped by a committee led by Drew McDermott [11], for use in the
International Planning Competition (IPC) series. For the 3rd IPC,
Fox and Long [7] expanded the language to include temporal fea-
tures and to support the expression of plan metrics. While the core
of the original language proposal concentrated on STRIPS and ADL
features, with an expressive power that has been explored quite thor-
oughly [4, 14], the new features of PDDL2.1 enter territory that is not
so well understood. In particular, since there are alternatives for the
expression of temporal features, it is of interest to understand what
can and cannot be expressed in the syntax of PDDL2.1 in order to
understand where its limits lie. Helmert showed that the metric as-
pects of PDDL2.1 [8] make the plan existence problem undecidable.
This result is important but it does not imply that one has practical
access to huge expressive power. Indeed, whilst it might be theoret-
ically possible to encode any feature using Gödel numbering, this
does not help to answer the question of whether a certain family of
constraints is efficiently expressible in the language. For example, we
might be concerned with whether we can express predetermined ex-
ogenous events by means of a polynomial expansion of a PDDL2.1
domain description. The notion of the polynomial expressibility of a
family of constraints is defined below. In this paper we restrict out
interest to the consideration of temporal constraint families.

Temporal constraints that have been proposed as important for
planning, but which are not an explicit part of PDDL2.1, in-
clude deadlines, predetermined exogenous events (fully exogenous
events, which are unpredictable, cannot be modelled without non-
determinism), durative actions that support logical change in state at
other times than the start and end point and more complex temporal
constraints for plans to satisfy. Constraints might require that certain
conditions never become true during the execution of a plan or that
certain conditions be always true during the execution of a plan. Con-

straints might also refer to windows during the plan execution, either
tied to absolute times or to triggering activities within the plan.

In this paper we consider four language features: temporally ex-
tended goals, durative actions having effects at multiple time points,
exogenous events and certain interval temporal constraints. We ar-
gue that all of these constraint forms are expressible within PDDL2.1
by means of polynomial transformations. This means that the addi-
tion of syntax to the language to support their convenient expression
should be seen as “syntactic sugar” mapping into canonical repre-
sentations in PDDL2.1. Where no polynomial time transformation is
possible a feature can be seen as necessitating an extension to the
core language. Hoffmann and Thiebaux’s axioms [17] and continu-
ous numeric effects (see [12] and [9]) are of this kind. This paper is
not concerned with the practicality of these transformations for plan-
ning, only in determining the expressive power of PDDL2.1. Explo-
ration of their potential in practical planning is discussed in [5].

2 Definitions and Terminology

Definition 1 A planning instanceis a pair I = 〈D, P 〉 whereD is
a domain description andP is a problem description, in PDDL2.1

Definition 2 Given a planning instance〈D, P 〉 and a set of con-
straintsC, anoriginal planis a plan for〈D, P 〉 that satisfiesC.

In order to explore whether particular constraints can be ex-
pressed within PDDL2.1 we consider the following process. A plan-
ning instance is provided, with a collection of constraints. These in-
clude arbitrary temporal constraints that might be applied to plan-
ning domains, problems or to potential plans for these planning in-
stances. The initial expression of these constraints is obviously not
in PDDL2.1, since we want to examine whether they can, in fact,
be transformed into an equivalent PDDL2.1 formulation. Thus, we
do not need to specify how these constraints are formulated: where
we consider specific families of constraints we use commonly ac-
cepted representations that we briefly describe. In each case we de-
fine a transformation that takes as input the planning instance and the
constraints that must be expressed and generates a new planning in-
stance, expressed in pure PDDL2.1. For the transformation to achieve
its goal, it is necessary to show that a solution to the new planning
instance can be interpreted as a solution to the original planning in-
stance satisfying the constraint set.

Definition 3 A family of constraintsF is expressibleif, given a plan-
ning instanceI and a set of constraintsC in F that must apply to
plans generated forI, it is possible to transformI andC into a con-
verted planning instanceI ′ in such a way that any plan forI ′ can be
interpreted to yield a plan that satisfiesI andC.

Within the context of the previous definition we refer in the fol-
lowing to original and convertedplanning instances andoriginal,
convertedandinterpretedplans.

Definition 4 A family of constraints ispolynomially expressibleif
it is expressible, the transformation is polynomial in the size of the
input instance and the constraint set, and the interpretation is poly-
nomial in the size of the plan.

Since PDDL2.1 problem definitions may contain a plan metric, de-
scribing the way in which plans are to be evaluated and compared, it
is important that our transformation should also preserve the ordering
implied by the metric. The main implication of this is that we must
be careful, in applying transformations, not to allow the durations of
plans for the converted instances to have an unpredictable relation-
ship with the durations of the corresponding interpreted plans. The
following definitions introduce useful terms.

Definition 5 A happeningis the collection of action start and end
points that occur at the same time point in a plan. The happenings
of a plan therefore define the finite collection of time points at which
things “happen”. Atrue happeningis a happening in the converted
plan that corresponds to a happening in the interpreted plan. Two
happenings areε-separatedif the first happens at timet1 and the
second at timet2 and the difference betweent1 and t2 is greater
than or equal toε.

Definition 6 A generated propositionis a new dummy proposition
that is unique in the plan (not referred to by any domain action or
problem element).

We consider as our core language the PDDL2.1 extensions that
support the modelling of durative actions with fixed or computed du-
rations, but without duration inequalities. Duration inequalities pro-
vide additional expressive power, but they have been little explored
by the community and we consider it of interest to show that the tem-
poral constraint families discussed in this paper are – in principle –
within the capabilities of existing planning systems.

In the semantics of PDDL2.1 plans all action end-points occurring
at the same time point are considered to be simultaneous and not or-
dered. Thus it is important that simultaneously occurring start or end
points should not interfere with one another in any way. We enforce
a strong mutex relation that guarantees non-interference and this re-
sults in a need to separate conflicting start or end points by a non-
zero quantity of time. In order to acknowledge the limitations of the
underlying computer systems supporting the construction, validation
and execution of plans, the need to fix the minimum value of sepa-
ration, calledε, is imposed in the definition of a planning instance
or family of instances. These issues are discussed in the published
description of the PDDL2.1 language and semantics [7].

The transformations that we describe below involve enforcing re-
lationships between the start or end points of actions in a plan solving
a given planning instance. To enforce these relationships it can be
necessary to insert activities within theε-sized gaps between these
actions. These activities are represented at a lower granularity than
that visible to the validation of the original plan, therefore their in-
sertion into theε-sized gaps can be seen asclimbing inside time. It
might seem contradictory to splitε when its role is to ensure a min-
imal temporal separation. However, the subdivisions ofε occur only
within plans for the converted planning instance and would be in-
visible to the validation process for the original plan. The process
of interpretation removes these subdivisions so that the plan satisfy-
ing the expressed constraint set can be validated. Similarly it might

seem, in the following transformations, that we are contradicting the
observation that no executive can measure time more precisely than
at some level of granularityε. In these transformations it is necessary
for actions to be placed very precisely with respect toε, appearing
to require an ability to measure more precisely thanε allows. In fact,
this extra precision is only used to express constraints imposed by
the world, so the behaviour of the executive will have to respect these
constraints in order to interact correctly with the world. The choices
that the planner appears to be making are actually forced upon it
by the way the world is modelled. In this sense, a transformation is
exactly like a component design in any proof of complexity: the el-
ements of the component slot together in a precise way to achieve a
desired theoretical behaviour.

We now present a collection of components that we have designed
to enable the expression, in PDDL2.1, of a range of domain mod-
elling features not explicit in the language. Afterwards we present
several transformations to demonstrate their use. This paper does not
present a complete collection of all of the features that are express-
ible in PDDL2.1 by means of transformation: this collection grows
as new features are considered. We do not claim that the transforma-
tions constructed are convenient for use in domain modelling. Our
view is that modelling convenience is an issue that should be kept
separate from that of the expressive power of a language.

2.1 The Strut and the Clip

The strut enforces a minimum interval between two happenings. It
is a durative action, where the duration is equal to the minimal sep-
aration required. The strut is associated with two generated proposi-
tions:s1 is added as an effect of the preceding action end-point and
an invariant of the strut, and is deleted by the succeeding action. The
second propositions2 is added as the start effect of the strut and the
start condition of the succeeding action. This configuration ensures
that the strut appears between the two start or end points, so that they
are minimally separated. Because the pairs of points are non-mutex
the end of the preceding action can abut with the start of the strut and
the end of the strut can abut with the start of the succeeding action.

The transformation of the original domain to enable the use of the
strut requires the addition of the strut actions and the modification of
the conditions and effects of the original actions. This work is poly-
nomial in the size of the original domain description and the collec-
tion of constraints that has to be expressed. There is then polynomial
work required to interpret the interval constraints in the converted
plan.

The clip forces non-mutex action end-points in the original
grounded planning instance to coincide in the converted plan. We
can distinguish between the tight clip, which plays this role, and the
loose clip, which ties two or more happenings to lie within a certain
interval of one another. Happenings can be forced to lie a fixed dis-
tance apart by using a strut and a clip attaching the two happenings
to the two ends of the strut.

The clip is associated with a generated propositionh, which ap-
pears as a start effect and an invariant and is deleted as an end ef-
fect. The propositionh is made a precondition of the end-points that
need to be clipped together. The duration of the “tight” clip is2ε.
This forces the clip to be placed equidistantly around the start or end
points being clipped together. The clip can clip together as many end-
points as are required to abut at a particular instant. It is necessary to
ensure that everything that needs to be clipped together is forced into
the same clip. To ensure this we make each of the end-pointsi in the
collection achieve a new generated proposition,ei, which we add as

a precondition of the end-point of the clip. We also ensure that the
clip deletes the effectei in order to “clean up” after its application.

In general, if the length of the clip is greater than2ε then the hap-
penings that lie within it are not constrained to be simultaneous but
just to lie within the length of the clip of one another (less2ε to al-
low for the need to separate mutex actions at the two end points of
the clip). We refer to this construct as theloose clip. This provides a
means for expressing interval constraints, as we describe below.

Usually the clip will appear strictly inside the converted plan struc-
ture, meaning that it does not affect the duration of the original plan.
In the special case where the clip extends beyond the end of the plan,
so that the duration is affected, it is straightforward to recognize and
remove the extraε from the duration.

The exploitation of clips introduces only a constant amount of
work in each abuttal case and the number of abuttal cases is polyno-
mial in the length of the converted plan. In constructing the converted
domain, a different clip needs to be made for each pair requiring clip-
ping. The number of pairs is polynomial in the size of the original
domain so therefore a polynomial number of clips is required.

2.2 The Epsilon Slice

In order to climb inside time we need a mechanism for breaking into
anε period. This means that we need to define a smaller-grainedε′,
and the size of this depends on how much activity needs to be fit-
ted into theε-sized gap. We consider the case in which two activities
need to be inserted to play a specific role. In general it might be nec-
essary to fit more activities into the period. This can be achieved but
we do not consider the general case in this paper. For the transforma-
tions that we consider later the special case suffices.

Theε-slice allows happenings in the converted plan to be separated
by ε/3, instead of byε. In the interpreted plan onlyε-sized separa-
tions are visible, so actions in the original domain appearing in the
converted plan must beε-separated. To ensure this we introduce the
magnetwhose end-point “poles” repel one another. Instances of the
magnet act as spacers to prevent happenings in the interpreted plan
from getting closer thanε together. The difference between a magnet
and a clip is that the magnet forces end-points apart, so each magnet
encloses just one end point, while the clip forces them to abut and so
encloses two or more start or end points in the original plan.

The magnet has duration2ε/3 and is associated with a generated
propositionm. It has a start effectm, an invariantm and an end effect
¬m. This prevents the magnets from being interlaced, and because
their end-points are mutex they are automatically separated byε/3.
Magnets must be placed equidistantly around happenings because no
two happenings in the converted plan can be closer thanε/3 apart.
Thus, as shown by figure 1, is that actions from the original domain,
appearing in the converted plan, must beε-separated.

In order to force a magnet to be placed around every true hap-
pening in the converted plan we modify the actions in the original
domain to havem as a precondition of both start and end. The trans-
formation of the original domain and problem into the converted
domain and problem is polynomial in the number of actions in the
original domain. Each action has two new conditions added, and we
have added one new action - the magnet. The interpretation process
is polynomial in the length of the plan, requiring only that the mag-
nets be removed. The length of the converted plan is polynomial in
the length of the original plan: one magnet has been placed around
every happening in the original plan.

In order to preserve the meaning of the metric of the original prob-
lem it is necessary to replace total-time in the original metric with

ε/3 ε/3 ε/3ε/3 ε/3

Original Action Original Action

Magnet Actions

m m

¬m ¬m
m

m (invariant) m (invariant)
m

Figure 1. Magnets enforce temporal separation in the converted plan and
therefore the separation of start or end points of the original actions in the
interpreted plans. Note that we are following a convention of listing effects
at the base of an end point on the right, and conditions at the top of the end

point on the left.

total-time− ε/3 in the converted problem. This is needed because
the duration of the converted plan will be extended by the finalε/3-
sized interval overlapping the end of the original plan. It is also nec-
essary to ensure that the first true happening isε-separated from the
initial state. This can be enforced by adding an instantaneous action
magnets-power-upto the converted plan, preceding every other ac-
tion and occurring atε/3 from the initial state. Its effect,m-on, is
added as a precondition of the magnet.

3 Transformations

We now show how, using the components described in the previous
section, it is possible to model in PDDL2.1 some of the language
features most often proposed as desirable.

3.1 Maintenance Goals and Deadline Goals

A maintenance goal is of the form:2c, wherec is a condition and
the constraint expresses that it must hold at all times in a plan. One
can also expressU p c andF p c, whereU stands forUntil andF
stands forFrom, andp is the condition until which, or from which,
the conditionc must hold. These are simple LTL formulas [6] con-
sidered also by Bacchus and Kabanza [2], Baralet al [3], Pistoreet
al [15] and other authors. We begin by considering the constraint2c
and return to the other forms afterwards.

Maintenance constraints require a condition to remain true at all
times during an interval. In fact, the only opportunities for violating a
condition are at the points of change in a plan: that is, the time points
associated with happenings. In order to model the maintenance con-
dition it is therefore sufficient and necessary to enforce that the con-
dition holds over a small interval encompassing each happening. In
order to achieve this we useε/3 slicing and attach the conditionc as
an invariant to the magnet action. Since every end point of an original
action must be embedded within a magnet in the converted plan this
will enforcec to hold invariant across every true happening.

In fact, if the propositional part of the maintenance goal is atomic
there is no need to use theε − slice. One can ensure preservation
of the goal by a simple pre-processing of the domain to remove the
deleting actions. However, in the general case, where the proposi-
tional part is a formula, this solution will not work because the ac-
tions to be removed cannot be uniquely identified.

To deal with goals of the formU p c we need to introduce a
condition-checking action. Usingε/3 slicing the condition-checking
action has duration2ε/3. It has start effectcc, invariantsc and cc
and end effect¬cc. We attach the preconditionwp ∨ cc to every

original action start and end point, wherewp is a generated proposi-
tion meaning thatp was achieved. This triggers the moment at which
c can cease to hold. To complete the transformation we need an
additional instantaneous action with preconditionp and effectwp.
This means that untilp is achieved a plan must include a constraint-
checking action enforcingc around each true happening. Afterp has
been achieved the constraint-checkers are no longer needed, but the
magnets continue to be required because of theε/3 slicing. Figure 2
(part a) shows the details.

A

thereafter.

Original action Original action

Condition checker for c
when p
 ¬bp

If this action achieves the last part of p then the conditional effect

bp is true from initial state, so no condition checker is needed before p

of the magnet will delete bp, forcing a condition checking action

Magnet

A

wp v cc wp v cc

¬cc ¬cc

Part a: Until P c

Part b: From P c

Instantaneous action

Condition checking actions for condition c

Original action

c actually checked only at these intervals

not significant, because the interval is too small
to contain a true happening.

After this point
condition checking
actions are not
required

cc c,cc inv

reacting to achievement of p

cc c,cc inv

p

wp

Effect contributing last part of p

Until p, condition c must hold

The fact that c is maintained after p is achieved is

bp v cc bp v cc

Figure 2. The enforcement ofU p c andF p c maintenance constraints.

Goals of the formF p c require slightly more subtlety. It is again
necessary to performε/3 slicing. A condition-checking action is re-
quired, as before. The new precondition added to every action start
and end point isbp∨ cc, and we addbp to the initial state conditions.
Sincebp is true from the outset all actions can be applied without
constraint, but now it has to be ensured thatbp is deleted whenp
becomes true. To achieve this we add a conditional effect to the end
point of the magnet, of the form(when p (¬bp)) . Because magnets
must be applied whenever the original actions are applied this en-
sures that, as soon asp is satisfiedbp will be deleted and the planner
must then apply condition-checking actions around each true hap-
pening thereafter. Figure 2 (part b) illustrates this transformation.

A deadline goalis a goal with a deadline by which it must be
achieved. It can be expressed(g by t), whereg is a goal proposition
andt is an absolute time point.

Our transformation in this case relies on the maintenance goal
form F d g described above, whered (deadline-reached) will be a
dummy proposition that we ensure is available at timet. We assume
that, once achieved, a goal has to remain true. If this is not the case
we can alter the transformation slightly to express the requirement
that the fact thatg was once achieved is available from timet.

The mechanism involves creating a durative action,D, of duration
t. It is forced to be applied before any other action by the fact that it
achieves at its start a generated proposition,tg, which is added as a
precondition to all of the actions in the original domain description.

D has end effectd and we use the technique for ensuringF d g to
complete the transformation. Because we are usingε/3 slicing (by
virtue of using theF d g mechanism) the durative action is applied at
ε/3 after the initial state. This time period is too small to be seen after
interpretation so we do not need to be concerned with modifying the
duration ofD to account for its separation from the initial state.

If the goal is not required to continue holding forever after its
achievement we can use the dummy propositionwg to express the
desired constraint. Now we useF d wg instead ofF d g, to express
the fact thatg was achieved byd. To enforce the achievement of
wg we add an instantaneous action with preconditiong and effect
wg. All other details of the transformation remain the same. It might
seem that the need to add an action to check the achievement of the
goal could result in the accumulation of periods of lengthε/3 until
duration constraints in the original problem have been violated. In
fact, this does not arise here as figure 3 shows.D can be applied at
timeε/3. The transformation of constraintF d wg includes a magnet
around the end point ofD that will respond to the achievement ofd,
forcing all subsequent activity to depend on a condition checker for
wg. This implies that byt+2ε/3 all subsequent activity will require
wg. Thus, the action that achieveswg, with preconditiong, must be
applied byt + ε/3, requiring thatg itself is achieved no later thant,
which is the intended original deadline.

ε/3 ε/3 ε/3
ε/3

tg

gAction D

Action confirming g

when d ¬bdbd

Dummy indicating time before deadline Check for deadline passed
attached to end of magnet

Dummy indicating deadline action active

d

Latest point by which g must
be achieved

dwg

Magnet

Figure 3. The structure of activity around the deadline action, when the
goal need not persist after the deadline.

Note that a plan can postpone application ofD, but doing so has
the effect of simply translating the origin since no actions can be used
beforeD starts.

3.2 Predetermined Exogenous Events

Predetermined exogenous events are effects that will occur at times
specified in the initial state, independent of any planned activities.
They can be easily modelled using the simple “tight” clip. Given
predefined timest1, ..., tm at which eventse1, ..., en will occur,
We create a collection of durative actions,d1, ..., dm, of durations
t1, t2 − t1, .., tm − tm−1 respectively. These durative actions have
as their effects the event propositions associated with the time points
corresponding to their durations. We ensure the correct ordering of
these actions, and their occurrence at the correct times, by clipping
them together using clips. To force the chain to begin immediately
we add a generated propositionechain as a start effect of the first
action. This is then added as a precondition of every action in the
domain. This mechanism has the additional effect of forcing the first
true happening to occurε after the start of the first action in the event
chain sequence, which is, in turn, at leastε after the initial state. The

first true happening will then be2ε after the initial state. Therefore,
we adjust the plan during the interpretation stage by shunting ev-
ery step back byt, wheret is the time at which the first action in
the event chain is applied. The plan metric must be modified to use
total-time −ε in place oftotal-time , ensuring that the trans-
formed instance is optimised with the same ordering on plans as the
original planning instance imposes. An alternative approach to this
adjustment during interpretation is to useε-slicing, as for deadlines.

3.3 Interval Temporal Constraints

It is sometimes necessary to separate activities in a plan by fixed in-
tervals. The use of interval constraints has been considered in several
planning systems, such as HSTS [13] and IxTeT [10].

Sometimes the interval between two actions needs to be quite pre-
cisely specified, in which case a strut can be used, together with two
tight clips to force the strut to intervene between two actions. When
the interval constraint is less precise, requiring only that two actions
happen within a certain interval of one another, a loose clip can be
used to surround the end point of the first actions and the start point
of the second.

To enforce that two actionsstart or end at the same timewe use a
tight clip around the start points or end points respectively. To ensure
that theyabut we clip the end of the first action to the start of the
second. Again, this is a tight clip. To ensure that one actionoverlaps
another we place a loose clip around the start points of the actions,
where the duration of the clip is equal to the duration of the action
that starts first. To make one actioncontainanother we place loose
clips around the two start points and the two end points, where the
duration of the clip is equal to the difference in duration between the
encloser and the enclosed.

All of these transformations are simple and do not necessitateε-
slicing. Using these transformations we can express any of the con-
straints of Allen’s interval calculus [1] within the point-based lan-
guage of PDDL2.1.

3.4 Durative Actions with Intermediate Effects

IxTeT [10] uses a language supporting the expression of multiple in-
termediate effects, and the benefits of these for modelling have been
observed. It is true that forcing all effects to take place at the start and
end points of actions, as inPDDL2.1, imposes constraints on how ac-
tivity can be modelled. However, it does not represent any constraint
on expressiveness. It is possible to define durative actions with mul-
tiple intermediate effects using the durative actions of PDDL2.1 and
a combination of loose and tight clips. Noε-slicing is required to
achieve the transformation, so it seems that these actions do not in
fact represent a significant advance on the PDDL2.1 durative action.

The strategy for modelling an action,A, with intermediate effects
is as follows. Suppose that the intermediate effects are a collection
of propositionsp1..pn occurring at timest1..tm, each timeti lying
betweent andt + d (the start and end times ofA. A collection of
PDDL2.1 actions is defined, in a way similar to the modelling of
exogenous events defined above. The actions have durationst1, t2 −
t1, .., tm − tm−1 and end effects corresponding to the propositions
associated with their durations. The start effects ofA will be start
effects of the first action in the sequence. Tight clips are then used to
connect the actions into a sequence.

An alternative transformation approach uses a loose clip, with du-
ration equal to the duration ofA, to surround the action sequence,
and then uses generated propositions to ensure that the actions inside

the clip do not overlap (by having each action achieve a condition that
is invariant in its successor). The interior actions are forced to pack
tightly into the enclosing clip. The loose clip can be seen as a kind
of packing case that exactly holds the sequence of actions needed to
achieve the intermediate effects. This approach is reported by David
Smith in his commentary on the PDDL2.1 language [16].

4 Conclusion

In this paper we have considered the expressive power of PDDL2.1,
examining a range of modelling features suggested by the commu-
nity as being amongst the most useful for expressing models of plan-
ning domains. We have introduced a small collection of powerful
components that support these transformations, and we have used
them to show that features including temporally extended goals, ex-
ogenous events and many interesting interval constraints can be ex-
pressed within PDDL2.1 with only polynomial transformation work.

It is important to emphasise that we are not claiming that these
transformations make PDDL2.1 a convenient language for actually
modelling problems that involve these features. We make a firm dis-
tinction between the expressive power of the language, and its con-
sequent role as a canonical representation language, and the question
of modelling convenience.

We do not claim that the transformations presented here are
unique, or even the most efficient possible. However, they all require
only polynomial work so they achieve their intended function and
their aesthetic value is a question of taste.

REFERENCES
[1] J. F. Allen, ‘Maintaining knowledge about temporal intervals’,Comm.

ACM, 26, 832–843, (1983).
[2] F. Bacchus and F. Kabanza, ‘Planning for temporally extended goals’,

Annals of Mathematics and Artificial Intelligence, 22, 5–27, (1998).
[3] C. Baral, V. Kreinovich, and R. Trejo, ‘Computational complexity of

planning with temporal goals’, inIJCAI, pp. 509–514, (2001).
[4] T. Bylander, ‘Complexity results for serial decomposability’, inProc.

of 10th National Conference on AI, (1992).
[5] S. Cresswell and A. Coddington, ‘Adapting LPGP to plan with exoge-

nous events and goals with deadlines’, inProc. of ECAI’04, (2004).
[6] E.A. Emerson, ‘Temporal and modal logic’, inHandbook of Theoretical

Computer Science, volume B, 995–1072, MIT Press, (1990).
[7] M. Fox and D. Long, ‘PDDL2.1: An extension toPDDL for expressing

temporal planning domains’,Journal of AI Research, (2003).
[8] M. Helmert, ‘Decidability and undecidability results for planning with

numerical state variables’, inProc. of AIPS’02, (2002).
[9] R. Howey and D. Long, ‘VAL’s progress: The automatic validation tool

for PDDL2.1 used in the international planning competition’, inPro-
ceedings of the ICAPS 2003 workshop on the IPC series, (2003).

[10] P. Laborie and M. Ghallab, ‘Planning with sharable resource con-
straints’, inProceedings of IJCAI’95. Morgan Kaufmann, (1995).

[11] D. McDermott, ‘PDDL–the planning domain def-
inition language’, Technical report, Available at:
www.cs.yale.edu/homes/dvm , (1998).

[12] D. McDermott, ‘Reasoning about autonomous processes in an
estimated-regression planner’, inProceedings of ICAPS’03, (2003).

[13] N. Muscettola, ‘HSTS: Integrating planning and scheduling’, inIntel-
ligent Scheduling, eds., M. Zweben and M.S. Fox, 169–212, Morgan
Kaufmann, San Mateo, CA, (1994).

[14] B. Nebel, ‘On the compilability and expressive power of propositional
planning formalisms’,Journal of Artificial Intelligence Research, 12,
271–315, (2000).

[15] M. Pistore and P. Traverso, ‘Planning as model checking for extended
goals in non-deterministic domains’, inIJCAI, pp. 479–486, (2001).

[16] D. E. Smith, ‘The case for durative actions: A commentary on
PDDL2.1’,Journal of AI Research, 20, 149–154, (2003).

[17] S. Thiebaux, J. Hoffmann, and B. Nebel, ‘In defense of PDDL axioms’,
in Proceedings of 18th IJCAI, (2003).

