
A semantics for abstraction
Chiara Ghidini 1 and Fausto Giunchiglia2

Abstract. The goal of this paper is to propose a model-theoretic for-
malization of abstraction, where abstraction is modeled astwo repre-
sentations, the ground and the abstract representation, modeling the
same phenomenon at different levels of detail. Using the framework
of Local Models Semantics, the ground and abstract representations
are modeled as two sets of (local) first order models, while the rela-
tions holding between them are captured by an appropriate “compat-
ibility relation”. The tuning of the compatibility relation allows for
the definition of the many different kinds of abstraction.

1 Introduction

Abstraction is a mechanism for representing things in a simplified
manner, hopefully capturing their essence. Ideally, one would hope
to consider all is relevant and drop all the irrelevant details. Humans
use it as a way to deal with the complexity of the world; any rep-
resentation they construct is a simplified version of the world itself.
Humans and computer programs also use abstraction to provide an
even more simplified version (an abstract representation) of a previ-
ously constructed representation (the so-called ground, or concrete,
representation). The main reason is economicity, namely the possi-
bility of concentrating, within a possibly very large representation,
only on what is really crucial to the matter under consideration. Ab-
straction has many important applications in natural language under-
standing, problem solving and planning, explanation, reasoning by
analogy, and so on (see [5] for a detailed discussion). A new appli-
cation, which, we believe will become very important, is theuse of
abstraction in the study and discovery of mappings between seman-
tically heterogeneous ontologies [3].

In [5, 6, 4] a theory of abstraction mainly based on proof-theoretic
notions was provided. Our goal in this paper is to propose a semantic
formalization of the notion of abstraction, which is able tocapture
exactly the same intuitions underlying the work cited aboveand to
show, at the model theoretic level, some of the properties that char-
acterize abstraction as introduced in [5].

Our formalization is based on theLocal Models Semantics, as de-
fined in [1] and further refined in [2]. Each representation ismodeled
as a set of (local) first order models, while the fact that the two repre-
sentations are related is captured by acompatibility relationwhich
links what is true in the two sets of models. The novel technical
contributions of the paper are: (i) a formulation of abstraction as a
mapping between two languages, and a clear characterization of a
class of abstractions operating on the structure of formulae (the, so
called, atomic abstraction); (ii) a simple formulation of first order Lo-
cal Models Semantics as a framework to express relations between
first order theories; and (iii) the definition of a semantics of (atomic)

1 ITC-Irst, Trento I-38100, Italy. Email:ghidini@itc.it
2 Department of Information and Communication Technology, University of

Trento, I-38100, Italy. Email:fausto@dit.unitn.it

abstraction and a first investigation of its properties.
The paper is structured as follows. In Section 2 we provide the ba-

sic definitions of abstraction. In Section 3 we provide an extension of
Local Models Semantics to the case of first order logic, and inSec-
tion 4 we present our semantics of abstraction. Finally, we describe
some properties of abstractions and we end with concluding remarks.

2 Abstraction

We follow [5], Where Giunchiglia and Walsh describe informally an
abstraction as a mapping between two representations of a problem.
The basic definition given in [5] formalizes abstraction as apair of
formal systems plus a mapping between the languages of the two
formal systems. This definition was motivated by the interest of the
authors in studying the proof-theoretic properties of abstraction and
their application to theorem proving and, more generally, to reason-
ing. However, this definition fails to capture the basic intuition that
abstraction, since operating at the level of representations, applies
before the deductive mechinery of a formal theory (and any infer-
ence engine built on top of it) is applied. This is the basic fact which
differentiates abstraction from most of the other reasoning mecha-
nisms. We formalize abstraction as a pair of (formal) languages plus
a mapping between them.3

Definition 2.1 (Abstraction) Given two languagesL0 and L1,
abs : L0 → L1 is anabstraction.

Usually a formal languageL is defined by the alphabet, the set
of well formed terms and the set of well formed formulae (wffs). To
simplify matters we take a language to be a set of wffs.L0 is the
ground language, whileL1 is theabstract language. abs is the map-
ping function. We restrict ourselves to abstractions whichare total,
effective and surjective. We wantabs to be total since we want to be
able to “translate” any well formed formula ofL1 into a formula of
L2. We wantabs to be computable since, from an implementational
point of view this is the only interesting case. We wantabs to be sur-
jective because we want the abstract representation to be completely
“generated” from the ground representation. This simplifies issues
and, more importantly, corresponds to how abstraction has actually
been used in the (Artificial Intelligence) literature. Moreformally,
totality means that for each symbols ∈ L0, abs(s) is defined. Sur-
jectivity means that for each symbols′ ∈ L1 there is ans ∈ L0

such thatabs(s) = s′. Also, sinceabs is a function (and not a rela-
tion) we know that ifabs(s) = s0 andabs(s) = s1, thens0 = s1.
For the sake of simplicity we assume thatabs preserves the names
of variables. The case ofabs dropping variables is a straightforward
extension.
3 In this paper we do not address the problem of the different transformations

that generate abstraction functions (e.g., abstraction created using relations
of the form part-of/whole, class/superclass, selection ofattributes, and so
on.). Instead, we focus on the definition of the semantics of very general
and important class of abstraction functions introduced in[5].

To illustrate a typical use of abstraction let us consider the fol-
lowing example, which is a simplified and modified version of an
example originally proposed by Jerry Hobbs in his paper on “granu-
larity” [7].

Example 2.1 AssumeT0 is a complex theory of the world con-
taining a large number of agents and objects, where places are
points in the Euclidean 3-space. LetL0 be the first order lan-
guage used to describe what is true inT0. For the purpose of this
example we assume thatL0 contains: (i) a number of constants
table, chair, lamp, . . . , b1, b2, . . . for objects, whereb1, b2, . . . are
constants for blocks; (ii) positions, represented as triples 〈x, y, z〉
of real numbers in a Euclidean 3-space; and (iii) a predicate
at(obj, x, y, z) saying that objectobj is at position〈x, y, z〉.

Suppose we are only concerned with discrete positions in theblock
world. Our goal is to define an abstract theoryT1, whose language
L1 is able to describe: (i) a small subset of the objects ofL0. In
particular only the tabletable, and the blocksb1, b2, . . . that areon
the tabletable; (ii) positions represented as squares on a100 × 100
board, whose lower left corner we will assume to be at the origin; (iii)
a predicateon(obj, x, y) similar to the one inL0, where the vertical
dimension is abstracted away; and (iv) an entityEE, for “everything
else”, used to collapse together all the irrelevant things of L0.

Following the intuitions presented in [7], and the definition of ab-
straction presented in [4], the mapping betweenL0 andL1 can be
represented using a functionabs : L0 → L1 defined as follows:

abs(table) = table, for the tabletable.
abs(bi) = bi, for all blocksbi on the tabletable.
abs(x) = EE, for all other objectsx in L0.

abs(〈x, y, z〉) = 〈int(x), int(y)〉, for 0 ≤ x, y ≤ 100, z = 0.
abs(〈x′, y′, z′〉) = EE, for all other locations〈x′, y′, z′〉 in L0.

abs(on(obj, 〈x, y, z〉) = on(obj, 〈x, y〉).

where for each real numberx, int(x) is the greatest natural number
n (including0) such thatn ≤ x.

Following [4], we restrict ourselves to considerL0 andL1 as first
order languages. Furthermore, adopting a definition given in [4], suit-
ably modified to consider languages and not formal systems, we fur-
ther restrict ourselves toatomic abstractions, namely, to abstractions
which map atomic formulae, and keep the logical structure unmodi-
fied. Formally:

Definition 2.2 (Atomic Abstraction) abs : L0 → L1 is anatomic
abstractioniff
• abs(α ◦ β) = abs(α) ◦ abs(β) for all binary connectives◦;
• abs(�α) = �abs(α) for all unary connectives�;
• abs(�x.α) = �x.abs(α) for all quantifiers�.

Atomic abstractions, as defined in [4], have very nice proof-
theoretic properties which make their use in theorem proving very
convenient; most noticeably, they increase theoremhood (i.e., they
are TI-abstraction in the terminology of [5]) and preserve the shape
of proofs. In other words the abstract proof is a simplified version of
the ground proof, where all the steps which manipulate the “irrele-
vant details” are deleted. Our main interest in atomic abstractions in
this paper is that, first, they are simpler to handle; second,they are
very large class which contains most of the abstractions which can
be found in the literature (see [5] for a long list of examples); and,
finally, in these abstractions, details are deleted by operating only
on the signature (alphabet). This seems the most basic and simplest
form of abstraction one could think of. In the following we talk of
abstractions meaning atomic abstractions.

Let us now consider a classification of abstraction, given byfol-
lowing the recursive definition of a well formed formula.

1. Symbol abstractions. These abstractions operate on symbols and
collapse them together. They can operate on constants:
c1, . . . , cn ∈ L0, c ∈ L1 andabs(ci) = c, for all i ∈ [1, n],

on functions:
f1, . . . , fn ∈ L0, f ∈ L1 andabs(fi) = f, for all i ∈ [1, n],

and on predicates:
p1, . . . , pn ∈ L0, p ∈ L1 andabs(pi) = p, for all i ∈ [1, n].

With a liberal extension of Hobbs’ proposal which, however,
maintains and extends the same intuition, we also call symbol
abstractions,granularity abstractions;

2. Arity abstractions. These abstractions operate on arities and lower
them. They operate on function arities:

f1(x1, . . . , xn) ∈ L0, f(x1, . . . , xm) ∈ L1

with n ≥ m, andabs(f1) = f,

and on predicate arities:

p1(x1, . . . , xn) ∈ L0, p(x1, . . . , xm) ∈ L1

with n ≥ m, andabs(p1) = p.

3. Truth abstractions. These abstractions operate on predicates and
map them into the symbol for truth:

p(x1, . . . , xn) ∈ L0, andabs(p(x1, . . . , xn)) = >.

Example 2.1 provides an example of a granularity abstrac-
tion on constants. An example of granularity abstraction, operat-
ing on functions, collapses the unary functionswalkfrom(loc),
drivefrom(loc), flyfrom(loc) (which take a location and re-
turn a location) into the unary functiongofrom(loc), thus ab-
stracting away the details of how one moves from one location
to another. An example of granularity abstraction on predicates
collapsesCUP (obj), GLASS(obj), and BOTTLE(obj) into
CONTAINER(obj). Typical arity abstractions, which can be ap-
plied to situation calculus, drop the situation arguments thus obtain-
ing, for instance,ON(obj1, obj2) fromON(obj1, obj2, s). Finally,
the most classical example of truth abstraction was introduced in Ab-
strips [8] to drop supposedly irrelevant preconditions of operators.

Here it is important to notice that the definitions above are quite
liberal and many issues are not dealt with. In particular, inmost
cases it is expected that granularity abstractions operateon func-
tions and predicates of the same arity. Moreover, while merging two
functions one may have to choose between two different values re-
turned, for the same input values, by the merged functions and du-
ally, while merging two predicates, one should avoid building an
inconsistent theory (for instance by collapsingCUP andGLASS
with a knowledge base of the following two facts:CUP (C1) and
¬GLASS(C1)). Finally, to maintain certain properties (e.g., to pre-
serve the shape of proofs) truth abstractions must be handled with a
lot of care. For instance, when using them in Abstrips-like reasoning
(this beeing by far their most common use), truth abstractions selec-
tively apply only to ground instances ofp(x1, . . . , xn) occurring in
preconditions to operators.

A dual way to classify abstraction can be provided. This classifica-
tion is not based on the recursive definition of well formed formulae,
but rather on the definition of terms and atomic formulae. We define a
term abstractionas an abstraction that operates on term symbols and

maps ground terms on abstract terms. Term abstractions contain sym-
bol abstractions on constants and functions, and arity abstractions on
function arities. We define aformula abstractionas an abstraction
that operates on predicate symbols and map ground formulae on ab-
stract formulae. Formula abstractions contain symbol abstractions on
predicates, arity abstractions on predicate arities, and truth abstrac-
tion. To simplify the presentation, the theory provided below is given
in terms of term and formula abstractions. Furthermore we assume
that term abstractions on function symbols operate on functions with
the same arity and defined over the same domain; and the same for
formula abstractions over predicate symbols. Notice that this does
not make us loose generality as varying arities and domains can be
easily obtained by composing different abstraction functions.

3 Local Models Semantics – first order

Our formalization is based on the Local Models Semantics (LMS)
formal framework as originally developed in [1]. LMS is hereex-
panded to accommodate the fact that we are dealing with first order
languages. In doing that we take into account some of the features
and intuitions presented in [2], where a very general context-based
logic, called Distributed First Order Logic (DFOL), is presented.4

The intuition underlying our definitions is to associate to each of the
two languages (ground and abstract language) a set of interpretations
(a context, as defined in [1]) and to formalize the abstraction mapping
as acompatibility relationwhich defines how meaning is preserved
in going from the ground to the abstract representation.

3.1 Local models and models

Let {L0, L1} be the ground and abstract languages connected by a
mapping functionabs. LetM i be the class of all models (interpreta-
tions) ofLi (i ∈ {0, 1}). We callm ∈M i a local model(of Li).

SinceL0 andL1 are first order languages, local models are first
order models. Let us briefly recall the basic notions of a firstor-
der model. Amodelm for a first order languageL is a pairm =
〈dom, I〉 where dom is a non empty set called thedomain of
m and I is called interpretation function. As usual the interpre-
tation function assigns an-ary predicateP to ann-place relation
[P]I ⊆ dom

n, an-ary functionf to ann+1-place relation[f]I over
dom

n+1, and an individual constantc to some element[c]I ∈ dom.
An assignment inm is a functiona that associates to each individual
variable ofL an element ofdom. The satisfiability relation with re-
spect to an assignmenta, in symbolsm |= φ[a], is defined as usual.
Given a term (formula)s and a variablex, we adopt the standard
notation[s]I and[x]a to mean the interpretation ofs and the assign-
ment ofx. If no confusion arises we drop the square brackets “[” and
“]” and simply writesI andxa. Also, given an assignmenta, and an
elementd ∈ dom we writea[x := d] to denote a new assignment
a′ such thatya = ya

′

for all y 6= x, andxa
′

= d.

Letm0 = 〈dom0, I0〉 andm1 = 〈dom1, I1〉 be two models for
L0 andL1. Following [2], adomain relationr01 is a relation

r01 ⊆ dom0 × dom1.

In [2], domain relations are used to represent the relationsbetween
the interpretation domains of two first order theories. Herethey are

4 We do not use DFOL for two reasons. First, from a presentationperspective
we want to maintain the style of Local Models Semantics. Second, DFOL
is a very general, powerful logic which is much more complex than we
need. As the following will make clear, abstraction allows us to make some
simplifying hypotheses which refer to the definitions of model given in [2].

used to represent the relation between the domains of the ground and
abstract models. They are the key mechanism which allows to con-
sider the different domains of the ground and abstract spaces. As we
can see from the definition above, domain relations are, in their gen-
eral form, annotated with the subscripts of the domains theyrelate. In
our case we only need one domain relationr01 betweendom0 and
dom1. We can therefore safely drop the indexes. Also, as for the ab-
straction function, we assume that all domain relations aretotal and
surjective functions. That is, for alld1, d2 ∈ dom1, if 〈d, d1〉 ∈ r

and〈d, d2〉 ∈ r, thend1 = d2. Therefore together with the usual
notation〈a, b〉 ∈ r, we will sometimes writer(a) to indicate the
elementb in the pair above.

Let L0 andL1 be two first order languages, and letdom0 and
dom1 be two domains of interpretation forL0 andL1, respectively.
From now on we indicate withM0 a subset ofM0 that contains only
local modelsm = 〈dom0, I〉 over the domaindom0 and such that
all local models inM0 agree on the interpretation of terms5. Simi-
larly for M1. Intuitively M0 (resp.M1) is a set of local models de-
fined over the same domain of interpretation and such that alllocal
models agree on the interpretations of terms. This means that all the
elements inM0 can only differ on the interpretation of predicates.6

GivenM0 andM1, and a domain relationr ⊆ dom0 × dom1

we define acompatibility pairc (for {L0, L1}) as a pair

c = 〈c0, c1〉

where for eachi ∈ {0, 1}, ci is either a local modelm in Mi or the
empty set∅. Notationally, we callci thei-th element ofc.

GivenM0 andM1, and a domain relationr ⊆ dom0 × dom1, a
compatibility relationC (for {L0, L1}) is a setC = {c} of compat-
ibility pairs c defined as above. Amodel is a compatibility relation
overr which contains at least a pair and does not contain the pair of
empty sets.

Definition 3.1 (Model) GivenM0 andM1, and a domain relation
r ⊆ dom0 × dom1, a model(for {Li}) is a compatibility relation
C such thatC 6= ∅ and〈∅, ∅〉 6∈ C.

The intuition is that a model (of an abstraction function) isa set of
pairs of models which are, respectively, a model of the ground and
of the abstract representation. The empty set∅ intuitively describes
an inconsistent representation (i.e., the absence of a model). The two
conditions in the definition above eliminate meaningless compati-
bility relations and pairs, namely totally inconsistent structures. In
particular the second condition eliminates the mapping between in-
consistent ground and abstract spaces and forces us to consider only
pairs that are of the form〈m0,m1〉, 〈∅,m1〉, and〈m0, ∅〉.

3.2 Local satisfiability and satisfiability

We can now say what it means for a model tosatisfya formula of a
languageLi. Let |=

cl
be the (classical) satisfiability relation between

local models and formulae ofLi. Let us call|=
cl

local satisfiability.
Since an element of a compatibility pair can be either a modelm or
the empty set∅, we extend, by abuse of notation, the usage of|=

cl

to the case of∅. To maintain the intuition that∅ models inconsistent
spaces, we say that∅ satiafies all the formulaeφ of a languageLi,
and we use the notation∅ |=

cl
φ. Notationally, let us writei : φ to

5 Formally, for eachma = 〈dom0, Ia〉 andmb = 〈dom0, Ib〉 in M0 and
for each termt in L0 we have thattIa = tIb .

6 Obviously, with the exception of the equality predicate which has the same
standard interpretation for all the first order models.

x x

d0 d1

abs

r
a0 a1

Figure 1. A pictorial representation of preservation of assignments.

meanφ and thatφ is a formula ofLi. This notation and terminology
allows us to keep track of the language we are talking about. That
is, it allows to easily distinguish formulae0 : φ of the ground lan-
guage, and formulae1 :ψ of the abstract language. Also, from now
on, we writea to mean a pair of assignments〈a0, a1〉 such thatai is
the usual first order assignment for the languageLi. Following [4],
we have to impose certain limitations on assignmentsa = 〈a0, a1〉.
In particular we consider here only abstraction functions which pre-
serve names of free and bound variables (or drop them), and preserve
substitution instances. Therefore we restrict ourselves to consider the
pairs of assignments to the variables ofL0 andL1 which preserve the
assignments to the “same” variablex in the two languages.

Definition 3.2 Let C be a model overM0 and M1, and r ⊆
dom0 × dom1. Leta0 anda1 be two assignments to the variables
of L0 andL1 respectively. The paira = 〈a0, a1〉 is an assignment
for C if for all x ∈ L1, r(x

a0) = xa1 .

Definition 3.2 forces us to restrict to assignments which preserve the
correspondence between variables in the two languagesL0 andL1

(see Figure 1). From now on, all assignmentsa satisfy the condition
in Definition 3.2, unless otherwise stated.

Definition 3.3 (Satisfiability) LetC be a model,i :φ a formula, and
a an assignment for{L0, L1}. C satisfiesi :φ, under the assignment
a, in symbolsC |= i :φ[a], if for all c ∈ C

ci |= φ[ai]

whereci |= φ[ai] if e |=cl φ, wheree is either the local modelm or
the empty set∅ defining the elementci.

Intuitively: a formula ofLi is satisfied by a modelC if the i-th
element of all compatibility pairs satisfy it (under thei-th component
of the assignmenta). Notice that ifci is a local modelm thenci |=
φ[ai] can be rewritten asm |=cl φ[ai]. The interesting case is when
ci = ∅. Our definition implies thatci |= φ[ai] for all formulaeφ
in Li. As we already said, this captures the intuition that if thei-th
element of a compatibility pair models an inconsistent “scenario”,
then it satisfies all formulae inLi.

The definition of logical consequence extends the one given in [1]
and is not relevant to the study of abstraction presented in this paper.
It is therefore omitted for lack of space. The notion ofvalidity is the
obvious one. A formulai :φ is valid if all models satisfyi :φ.

4 A semantics for abstraction

The key idea is to use domain relations and compatibility relations to
model, at a semantic level, the syntactic abstraction relation between
terms and formulae of the ground and abstract language.

Definition 4.1 (Satisfiability of term abstractions) Let abs be a
term abstraction betweenL0 andL1. Let C be a model overM0,
M1, and r ⊆ dom0 × dom1. We say thatC satisfies the term
abstractionabs if

• for all c1, . . . , cn ∈ L0, c ∈ L1 such thatabs(ci) = c, for all
i ∈ [1, n], 〈cI0

i
, cI1〉 ∈ r for everyi in [1, n].

c1 c2 c

d1 d2 d

abs

abs

r

r

I0 I0 I1

Figure 2. Term abstractions and domain relations.

• for all f1, . . . , fn ∈ L0, f ∈ L1 such thatabs(fi) = f , for all
i ∈ [1, n],

if

2

6

6

4

f
I0

1
(d1, . . . , dk) = dk1

,

f
I0

2
(d1, . . . , dk) = dk2

,
. . .

f
I0
n (d1, . . . , dk) = dkn

3

7

7

5

then fI1 (r(d1), . . . , r(dk)) = d.

whered = r(dk1
) = r(dk2

) = . . . = r(dkn
)

• for all f1(x1, . . . , xn) ∈ L0, f(x1, . . . , xm) ∈ L1 such thatn ≥
m andabs(f1) = f

if fI0

1 (d1, . . . , dm, . . . , dn) = dn+1

thenfI1 (r(d1), . . . , r(dm)) = r(dn+1)

It is easy to see that a model satisfies a term abstraction if the domain
relation maps all the ground terms (tuples of terms) into thecorre-
sponding abstract terms (tuples of terms). Figure 2 shows the effect
of granularity abstractions on individual constants. The fact thatc1
andc2 are abstracted into the same constantc inL1 is captured, at the
semantic level, by imposing that both the interpretations of c1 andc2
in dom0 are mapped into the interpretation ofc in dom1.

Term abstractions on function symbols work in a similar but
slightly different way. In abstracting function names, we collapse
functions together. The typical example is the abstractionof two
ground functions+ and∗ into a single abstract function◦. These
functions are usually defined over the same domain, and a crucial
problem arises when we have to decide which value to associate to,
say,a ◦ b. Different uses of abstraction can lead to different choices.
A possible choice could be to use the value of one of the ground
functions. For instance, one could decide to define the function ◦
such thata ◦ b is the value ofa + b for all a, b. But other choices
can be made. For instance one could define the function◦ such that
a ◦ b = 1 if both the values ofa + b anda ∗ b are even numbers,
anda ◦ b = 0, otherwise. The only constraint that term abstractions
impose here is that the two tuples〈a, b, x1〉 and〈a, b, x2〉 belonging
to the interpretation of+ and∗ in the ground language, respectively,
are mapped via the domain relationr to a tuple〈a, b, x〉 belonging to
the interpretation of◦ in the abstract language. This is exactly what
Definition 4.1 imposes.7

The final part of Definition 4.1 concerns arity abstractions on
functions. If an-ary functionf1 is abstracted into am-ary func-
tion f which simply “forgets” about the “non relevant” arguments
xm+1, . . . xn, then the domain relationr will map all then+1-tuples
of fI0

1 intom + 1-tuples offI1 obtained by simply eliminating the
“non relevant” elements from the initial tuple and by replacing all
the remaining elementsdi with the corresponding elementd′i in the
abstract domain.
7 For the sake of explanation we have assumed in this example that abstrac-

tion operates only on function names and does not modify constants or
individual elements of the domains. In reality, the constraint that term ab-
straction imposes is that both tuples〈a, b, x1〉 and〈a, b, x2〉 belonging to
the interpretation of+ and∗, respectively, are mapped via the domain re-
lation r to a tuple〈a′, b′, x〉 belonging to the interpretation of◦ where
a′ = r(a) andb′ = r(b).

Definition 4.2 (Satisfiability of formula abstractions) Let abs :
L0 → L1 be a formula abstraction. LetC be a model overM0,
M1, andr ⊆ dom0 × dom1. We say thatC satisfies the formula
abstractionabs if for all compatibility pair 〈c0, c1〉 in C

• for all p1, . . . , pn ∈ L0, p ∈ L1, such thatabs(pi) = p for all
i ∈ [1, n]

if c0 |= pi(x1, . . . xm)[d1, . . . , dm] for somei ∈ [1, n]
then c1 |= p(x1, . . . xm)[r(d1), . . . , r(dm)]

if c0 6|= pi(x1, . . . xm)[d1, . . . , dm] for somei ∈ [1, n]
then c1 6|= p(x1, . . . xm)[r(d1), . . . , r(dm)]

• for all p1(x1, . . . , xn) ∈ L0, p(x1, . . . , xm) ∈ L1 such thatn ≥
m andabs(p1) = p,

if c0 |= p1(x1, . . . xm, . . . xn)[d1, . . . , dm, . . . dn]
then c1 |= p(x1, . . . xm)[r(d1), . . . , r(dm)]

if c0 6|= p1(x1, . . . xm, . . . xn)[d1, . . . , dm, . . . dn]
then c1 6|= p(x1, . . . xm)[r(d1), . . . , r(dm)]

• for all p ∈ L0, such thatabs(p) = >,

if c0 |= p(x1, . . . xm)[d1, . . . , dm] thenc1 |= >

if c0 6|= p(x1, . . . xm)[d1, . . . , dm] thenc1 6|= >

A model satisfies a formula abstraction if the satisfiabilityof formu-
lae, (and of their negation) is preserved throughout abstraction.

In order to exemplify our definitions we sketch a representation
of the scenario described in Example 2.1. For the sake of brevity we
omit irrelevant details and concentrate on the definition ofan illus-
trative example.

Example 4.1 Let L0, L1 andabs : L0 → L1 be the ones in Ex-
ample 2.1. Letdom0 and dom1 be two domains of interpreta-
tion that contain all the constants ofL0 andL1, respectively and
let r ⊆ dom0 × dom1 be a domain relation that follows directly
from abs, that is, a domain relation which satisfy the constraints:

r(table) = table, for the tabletable.
r(bi) = bi, for all blocksbi on the tabletable.
r(x) = EE, for all other objectsx ∈ dom0.

r(〈x, y, 0〉) = 〈int(x), int(y)〉 for all positions〈x, y, 0〉
in dom0 with 0 ≤ x, y ≤ 100.

r(〈x′, y′, z′〉) = EE, for all other locations〈x′, y′, z′〉 in L0.

Let us now take pairs of local modelsm0 andm1 overdom0 and
dom1 that interpret each constantsc in itself. LetC be any models
over r containing these compatibility pairs. It is easy to see thatC

satisfies the granularity abstraction on constants “by construction”.
Let us now restrict to aC that satisfies also the granularity abstraction
on the predicate symbolon. It is easy to see that ifm0 satisfies the
formula on(b, 〈x, y, z〉), and the blockb is on the table, thenm1

satisfies the formulaon(b, 〈int(x), int(y)〉).

5 Properties of abstractions

Given a modelC and an abstractionabs, we say thatC satisfiesabs
if it satisfies all the term and formula abstractions inabs.

Theorem 1 Given a modelC for an abstractionabs, a compatibility
pair c ∈ C, and a ground formula0 : φ, if c0 |= φ[a], thenc1 |=
abs(φ)[a].

The proof is by induction on the structure ofφ. We first prove the
theorem for atomic formulae and their negation. Then we use the
inductive hypothesis to prove the theorem for generic formulae.

Theorem 1 represents the fact that satisfiability of formulae “in-
creases” within a compatibility pair. That is, given a compatibility
pair 〈c0, c1〉 satisfying an abstractionabs, and a formulaφ satisfied
by c0, we can be sure that the abstractionφ′ of φ is satisfied byc1.
This theorem is the first model-theoretic counterpart of theproperty
of TI-abstraction studied in [5]. From Theorem 1, we easily obtain:

(a) pairs of the form〈∅, m〉 never occur in a modelC;
(b) if C |= 0:φ[a], thenC |= 1:abs(φ)[a];
(c) if C |= 0:φ[a] for all modelsC, thenC |= 1:abs(φ)[a] for all

modelsC.
A consequence of property (a) is that a modelC for an atomic ab-

straction is composed of pairs of the form〈m,m′〉 and〈m, ∅〉. This
reflects, from the model theoretic point of view, a well knownprop-
erty of TI-abstractions. Since they “increase” theoremhood, they can
only “decrease” models. Or, analogously they can abstract consistent
set of formulae into consistent or inconsistent set of formulae, but
they can never map an inconsistent set of formulae into a consistent
one. Properties (b) and (c) generalize the property of Theorem 1. In
particular property (c) allows us to say that validity of formulae “in-
creases” within the class of modelsC. That is, if0 :φ is a valid for-
mula in the class of modelsC for the abstractionabs, then1:abs(φ)
is also a valid formula in the class of modelsC.

6 Conclusion

In this paper we have proposed a semantics of abstraction based on
the intuition that abstraction is a (very important) technique for rep-
resenting knowledge in context and of reasoning about it. This is a
first step. Ongoing work, omitted here for lack of space, is devoted
to the study of composition of abstractions. In particular we have
proved that models for a composed abstractionabs1 ◦ abs2 can be
obtained by suitable combinations of models forabs1 andabs2. Fu-
ture work has to show that our notions are the semantic counterpart of
the proof-theoretic notions provided in [5, 6] (by providing correct-
ness and completeness results). On the more applied side, weplan to
use the framework provided in this paper in the study and discovery
of mappings between semantically heterogeneous ontologies [3]. On
the modeling side this is a first step towards a classificationof the
many different relations which may exist between two contexts.

REFERENCES
[1] C. Ghidini and F. Giunchiglia. Local models semantics, or contextual

reasoning = locality + compatibility.Artificial Intelligence, 127(2):221–
259, April 2001.

[2] C. Ghidini and L. Serafini. Distributed First Order Logics. InFrontiers
Of Combining Systems 2, Studies in Logic and Computation, pages 121–
140. Research Studies Press, 1998.

[3] F. Giunchiglia and P. Shvaiko. Semantic matching. InProceedings of the
IJCAI-03 Workshop on Ontologies and Distributed Systems (ODS 2003),
volume 71. CEUR-WS, 2003.

[4] F. Giunchiglia and T. Walsh. Abstract theorem proving: Mapping back.
Technical Report 8911-16, IRST, Trento, Italy, 1990.

[5] F. Giunchiglia and T. Walsh. A Theory of Abstraction.Artificial Intelli-
gence, 57(2-3):323–390, 1992.

[6] F. Giunchiglia and T. Walsh. The inevitability of inconsistent abstract
spaces.Journal of Automated Reasoning, 11:23–41, 1993.

[7] J.R. Hobbs. Granularity. InProc. of the 9th International Joint Confer-
ence on Artificial Intelligence, pages 432–435, 1985.

[8] E.D. Sacerdoti. Planning in a Hierarchy of Abstraction Spaces. InProc.
of the 3rd International Joint conference on Artificial Intelligence, 1973.

