A semantics for abstraction

Chiara Ghidini ! and Fausto Giunchiglia?

Abstract. The goal of this paper is to propose a model-theoretic for-abstraction and a first investigation of its properties.

malization of abstraction, where abstraction is modeldwvasepre-
sentations, the ground and the abstract representatiafeling the
same phenomenon at different levels of detail. Using thaésaork
of Local Models Semantics, the ground and abstract reprasams
are modeled as two sets of (local) first order models, whieréta-
tions holding between them are captured by an appropriatapat-
ibility relation”. The tuning of the compatibility relatioallows for
the definition of the many different kinds of abstraction.

1 Introduction

Abstraction is a mechanism for representing things in a Kiieg
manner, hopefully capturing their essence. Ideally, oneldvbope
to consider all is relevant and drop all the irrelevant det&lumans
use it as a way to deal with the complexity of the world; any-rep
resentation they construct is a simplified version of theldviiself.
Humans and computer programs also use abstraction to pravid
even more simplified version (an abstract representatiba)poevi-
ously constructed representation (the so-called groundoicrete,
representation). The main reason is economicity, namel\ptssi-
bility of concentrating, within a possibly very large repeatation,
only on what is really crucial to the matter under consideratAb-
straction has many important applications in natural lagguinder-
standing, problem solving and planning, explanation, oeem by
analogy, and so on (see [5] for a detailed discussion). A rli-a
cation, which, we believe will become very important, is tee of
abstraction in the study and discovery of mappings betwesras-
tically heterogeneous ontologies [3].

In[5, 6, 4] a theory of abstraction mainly based on proofetieéic
notions was provided. Our goal in this paper is to proposerastic
formalization of the notion of abstraction, which is ablectpture
exactly the same intuitions underlying the work cited abawd to
show, at the model theoretic level, some of the propertiasdhar-
acterize abstraction as introduced in [5].

Our formalization is based on th@cal Models Semanticas de-
fined in [1] and further refined in [2]. Each representatiomideled
as a set of (local) first order models, while the fact that herepre-
sentations are related is captured bgompatibility relationwhich
links what is true in the two sets of models. The novel tecinic
contributions of the paper are: (i) a formulation of abdimatas a
mapping between two languages, and a clear characterizatia
class of abstractions operating on the structure of form(tlae, so
called, atomic abstraction); (ii) a simple formulation e$fiorder Lo-
cal Models Semantics as a framework to express relationeceet
first order theories; and (iii) the definition of a semanti€gabomic)

L ITC-Irst, Trento 1-38100, Italy. Emailghi di ni @tc.it
2 Department of Information and Communication Technologyiversity of
Trento, 1-38100, Italy. Emailf aust o@i t. unitn.it

The paper is structured as follows. In Section 2 we provieebti
sic definitions of abstraction. In Section 3 we provide aresion of
Local Models Semantics to the case of first order logic, arffldc-
tion 4 we present our semantics of abstraction. Finally, escdbe
some properties of abstractions and we end with conclu@ingarks.

2 Abstraction

We follow [5], Where Giunchiglia and Walsh describe infotipan
abstraction as a mapping between two representations obéepn.
The basic definition given in [5] formalizes abstraction gsai of
formal systems plus a mapping between the languages of the tw
formal systems. This definition was motivated by the inteofshe
authors in studying the proof-theoretic properties of i@u$ion and
their application to theorem proving and, more generatlyegson-
ing. However, this definition fails to capture the basic ititin that
abstraction, since operating at the level of represemstiapplies
beforethe deductive mechinery of a formal theory (and any infer-
ence engine built on top of it) is applied. This is the basat fehich
differentiates abstraction from most of the other reagpmirecha-
nisms. We formalize abstraction as a pair of (formal) lamgsaplus

a mapping between thefn.

Definition 2.1 (Abstraction) Given two languageslo, and L,
abs : Lo — L, is anabstraction

Usually a formal languagé. is defined by the alphabet, the set
of well formed terms and the set of well formed formulae (Wffgo
simplify matters we take a language to be a set of wifs.is the
ground languagewhile L, is theabstract languageabs is the map-
ping function. We restrict ourselves to abstractions wtsioh total,
effective and surjective. We wanbs to be total since we want to be
able to “translate” any well formed formula d@f; into a formula of
L>. We wantabs to be computable since, from an implementational
point of view this is the only interesting case. We wabt to be sur-
jective because we want the abstract representation torbpletely
“generated” from the ground representation. This simgifesues
and, more importantly, corresponds to how abstraction basby
been used in the (Artificial Intelligence) literature. Mdamally,
totality means that for each symbele Lo, abs(s) is defined. Sur-
jectivity means that for each symbse! € L, there is ans € Lo
such thatzbs(s) = s’. Also, sinceabs is a function (and not a rela-
tion) we know that ifabs(s) = so andabs(s) = s1, thensg = s1.
For the sake of simplicity we assume thdits preserves the names
of variables. The case abs dropping variables is a straightforward
extension.

3 In this paper we do not address the problem of the differamisformations
that generate abstraction functions (e.g., abstractieated using relations
of the form part-of/whole, class/superclass, selectioattsfbutes, and so
on.). Instead, we focus on the definition of the semanticseo§ general
and important class of abstraction functions introduceijn

To illustrate a typical use of abstraction let us consider fibi-
lowing example, which is a simplified and modified version of a
example originally proposed by Jerry Hobbs in his papergrariu-
larity” [7].

Example 2.1 AssumeTy is a complex theory of the world con-

Let us now consider a classification of abstraction, giveridby
lowing the recursive definition of a well formed formula.

1. Symbol abstractionsThese abstractions operate on symbols and
collapse them together. They can operate on constants:

Cly...,¢cn € Lo,c € L1 andabs(c;) = ¢, foralli € [1,n],

taining a large number of agents and objects, where plaaes ar

points in the Euclidean 3-space. L&y be the first order lan-
guage used to describe what is truelin For the purpose of this
example we assume thdt, contains: (i) a number of constants
table, chair,lamp, ..., b1,bs, ... for objects, wheréq, bs, ... are
constants for blocks; (ii) positions, represented asdsil, v, z)

on functions:
fi,..., fn € Lo, f € L1 andabs(f;) = f, foralli € [1,n],

and on predicates:
Diy.-.,Pn € Lo,p € L1 andabs(p;) = p, foralli € [1,n].

of real numbers in a Euclidean 3-space; and (iii) a predicate

at(obj, z,y, z) saying that objectbj is at position(x, y, z).
Suppose we are only concerned with discrete positions ibltoi
world. Our goal is to define an abstract thedry, whose language
L1 is able to describe: (i) a small subset of the objectd.ef In
particular only the tableéable, and the block$1, b2, . .. that areon
the tabletable; (ii) positions represented as squares di@ x 100
board, whose lower left corner we will assume to be at thermr{gi)
a predicaten(obj, z,y) similar to the one ino, where the vertical
dimension is abstracted away; and (iv) an enfitiy, for “everything
else”, used to collapse together all the irrelevant thirfgso
Following the intuitions presented in [7], and the definitiaf ab-
straction presented in [4], the mapping betwdenand L; can be
represented using a functiaths : Lo — L1 defined as follows:

abs(table) = table, for the tabletable.

abs(b;) = b;, for all blocksb; on the tabletable.

abs(z) = E'E, for all other objects: in Lo.

abs((z,y, z)) = (int(x),int(y)), for0 < z,y < 100, z = 0.

abs((z',y',2')) = EE, for all other locationgz’, y’, 2’} in Lo.
abs(on(obj, (z,y, z)) = on(obj, {x,y)).

where for each real numbet, int(z) is the greatest natural number

n (including0) such thatn < .

Following [4], we restrict ourselves to consides and L, as first
order languages. Furthermore, adopting a definition giné4]j suit-
ably modified to consider languages and not formal systerasuw
ther restrict ourselves ttomic abstractionsnamely, to abstractions
which map atomic formulae, and keep the logical structuraadti-
fied. Formally:

Definition 2.2 (Atomic Abstraction) abs : Lo — L, is anatomic
abstractioriff

e abs(a o 3) = abs(a) o abs(B) for all binary connectives;

e abs(®a) = Gabs(a) for all unary connectives;

e abs(oz.a) = ox.abs(«) for all quantifierso.

With a liberal extension of Hobbs’ proposal which, however,
maintains and extends the same intuition, we also call symbo
abstractionsgranularity abstractions

2. Arity abstractionsThese abstractions operate on arities and lower
them. They operate on function arities:

f1($1,..4,$n) S Lo,f(x1,4“,$m) (S
with n > m, andabs(f1)

I

and on predicate arities:
,l’n) S Lo,p(xl, A ,l‘m) (SN
with n > m, andabs(p1) = p.

p1($1,...

3. Truth abstractionsThese abstractions operate on predicates and
map them into the symbol for truth:

p(x1,...,2n) € Lo, andabs(p(z1,...,z,)) = T.

Example 2.1 provides an example of a granularity abstrac-
tion on constants. An example of granularity abstractiquerat-
ing on functions, collapses the unary functiowslk from(loc),
drivefrom(loc), flyfrom(loc) (which take a location and re-
turn a location) into the unary functiopofrom(loc), thus ab-
stracting away the details of how one moves from one location
to another. An example of granularity abstraction on pragis
collapsesCU P(obj), GLASS(obj), and BOTTLE(obj) into
CONTAINER(obj). Typical arity abstractions, which can be ap-
plied to situation calculus, drop the situation argumettitus obtain-
ing, for instanceOD N (obj1, objz) from ON (obj1, objz, s). Finally,
the most classical example of truth abstraction was inteduin Ab-
strips [8] to drop supposedly irrelevant preconditions péiators.

Here it is important to notice that the definitions above ariteqg
liberal and many issues are not dealt with. In particularmiost
cases it is expected that granularity abstractions openat&inc-
tions and predicates of the same arity. Moreover, while mgrtyvo
functions one may have to choose between two different galele

Atomic abstractions, as defined in [4], have very nice proof-turned, for the same input values, by the merged functiodsdan

theoretic properties which make their use in theorem ppviery
convenient; most noticeably, they increase theoremhaed they
are Tl-abstraction in the terminology of [5]) and presetve shape
of proofs. In other words the abstract proof is a simplifiecsian of
the ground proof, where all the steps which manipulate thels-

vant details” are deleted. Our main interest in atomic alssitons in
this paper is that, first, they are simpler to handle; sectray; are
very large class which contains most of the abstractionglwban
be found in the literature (see [5] for a long list of exampylemd,

finally, in these abstractions, details are deleted by dipgranly

on the signature (alphabet). This seems the most basic enpdesit
form of abstraction one could think of. In the following wekiaf

abstractions meaning atomic abstractions.

ally, while merging two predicates, one should avoid buiddian
inconsistent theory (for instance by collapsié@’ P and GLASS
with a knowledge base of the following two factSU/ P(C;) and
—~GLASS(Ch)). Finally, to maintain certain properties (e.g., to pre-
serve the shape of proofs) truth abstractions must be hémdth a

lot of care. For instance, when using them in Abstrips-ligasoning
(this beeing by far their most common use), truth abstrastgelec-
tively apply only to ground instances pfz1,...,z,) occurring in
preconditions to operators.

A dual way to classify abstraction can be provided. Thissifas-
tion is not based on the recursive definition of well formedrfolae,
but rather on the definition of terms and atomic formulae. Afee a
term abstractioras an abstraction that operates on term symbols and

maps ground terms on abstract terms. Term abstractionsin@ym-
bol abstractions on constants and functions, and arityadigins on
function arities. We define formula abstractionas an abstraction
that operates on predicate symbols and map ground formalab-o
stract formulae. Formula abstractions contain symborabtbns on
predicates, arity abstractions on predicate arities, artt abstrac-
tion. To simplify the presentation, the theory provideddweis given
in terms of term and formula abstractions. Furthermore vgerag
that term abstractions on function symbols operate on ifometwvith

used to represent the relation between the domains of thdrand
abstract models. They are the key mechanism which allowsrte ¢
sider the different domains of the ground and abstract spacewe
can see from the definition above, domain relations are din tfen-
eral form, annotated with the subscripts of the domains takge. In

our case we only need one domain relatignh betweendom, and
dom;. We can therefore safely drop the indexes. Also, as for the ab
straction function, we assume that all domain relationsa@sd and
surjective functions. That is, for all;, d2 € domy, if (d,d1) € r

the same arity and defined over the same domain; and the same fand (d, d2) € r, thend: = d2. Therefore together with the usual

formula abstractions over predicate symbols. Notice thist does
not make us loose generality as varying arities and domainse
easily obtained by composing different abstraction fuoni

3 Local Models Semantics — first order

Our formalization is based on the Local Models Semantics $)M
formal framework as originally developed in [1]. LMS is heze-
panded to accommodate the fact that we are dealing with fidetro
languages. In doing that we take into account some of therfest
and intuitions presented in [2], where a very general cdrtased
logic, called Distributed First Order Logic (DFOL), is pesged?
The intuition underlying our definitions is to associate aate of the
two languages (ground and abstract language) a set of iatatipns
(a context, as defined in [1]) and to formalize the abstraatiapping
as acompatibility relationwhich defines how meaning is preserved
in going from the ground to the abstract representation.

3.1 Local models and models

notation (a,b) € r, we will sometimes writer(a) to indicate the
element in the pair above.

Let Lo and L, be two first order languages, and bm, and
dom; be two domains of interpretation fdr, and L1, respectively.
From now on we indicate with/, a subset of\/, that contains only
local modelsn = (domy, I) over the domairlom, and such that
all local models inM, agree on the interpretation of tenSimi-
larly for M. Intuitively My (resp.M;) is a set of local models de-
fined over the same domain of interpretation and such théocsl
models agree on the interpretations of terms. This meanhsiittae
elements in\/, can only differ on the interpretation of predicafes.

Given My and M;, and a domain relation C dom x dom;
we define ecompatibility pairc (for { Lo, L1}) as a pair

¢ = {co,c1)

where for eachi € {0, 1}, c; is either a local modet: in M; or the
empty set). Notationally, we calk; thei-th element ot.

Given M, and M, and a domain relation C domg x domi, a
compatibility relationC (for { Lo, L1}) is a setC = {c} of compat-
ibility pairs c defined as above. Modelis a compatibility relation

Let {Lo, L1} be the ground and abstract languages connected by averr which contains at least a pair and does not contain the pair of

mapping functiorubs. Let M; be the class of all models (interpreta-
tions) of L; (i € {0, 1}). We callm € M; alocal modelof L;).

empty sets.

Since Lo and L, are first order languages, local models are first Definition 3.1 (Model) Given M, and M1, and a domain relation

order models. Let us briefly recall the basic notions of a first
der model. Amodelm for a first order languagé is a pairm =
(dom, I) wheredom is a non empty set called th@omain of
m and I is called interpretation function. As usual the interpre-
tation function assigns a-ary predicateP to ann-place relation
[P]' € dom", an-ary functionf to ann+1-place relatiorif]’ over
dom™*!, and an individual constanto some elemerjt]” € dom.
An assignment inn is a functiona that associates to each individual
variable of L an element oflom. The satisfiability relation with re-
spect to an assignmeat in symbolsm = ¢al, is defined as usual.
Given a term (formulay and a variabler, we adopt the standard
notation[s]’ and[z]® to mean the interpretation efand the assign-
ment ofz. If no confusion arises we drop the square brackgtarid
“]" and simply writes” andz. Also, given an assignment and an
elementd € dom we writea[z := d] to denote a new assignment
' such thay® = y* forally # =, andz® = d.

Letmo = (domyo, Ip) andm; = (dom,, I1) be two models for
Lo and L. Following [2], adomain relationry; is a relation

ro1 € domgy X dom;.

In [2], domain relations are used to represent the relati@mt&een
the interpretation domains of two first order theories. Hbey are

4 We do not use DFOL for two reasons. First, from a presentatiapective
we want to maintain the style of Local Models Semantics. 8ec®FOL
is a very general, powerful logic which is much more compleant we
need. As the following will make clear, abstraction allovesta make some
simplifying hypotheses which refer to the definitions of rabgiven in [2].

r C domg x dom;, a model(for {L;}) is a compatibility relation
C such thatC # ¢ and (0, 0) ¢ C.

The intuition is that a model (of an abstraction functiorg et of
pairs of models which are, respectively, a model of the gtoamnd
of the abstract representation. The empty(sittuitively describes
an inconsistent representation (i.e., the absence of aljndtie two
conditions in the definition above eliminate meaningless gati-
bility relations and pairs, namely totally inconsisterustures. In
particular the second condition eliminates the mappingvéen in-
consistent ground and abstract spaces and forces us taleonsiy
pairs that are of the formimg, m1), (B, m1), and(mo, 0).

3.2 Local satisfiability and satisfiability

We can now say what it means for a modekttisfya formula of a
languagel;. Let =, be the (classical) satisfiability relation between
local models and formulae df;. Let us call=, local satisfiability
Since an element of a compatibility pair can be either a moder
the empty sef), we extend, by abuse of notation, the usagé=gf

to the case ofl. To maintain the intuition that models inconsistent
spaces, we say thétsatiafies all the formulaé of a languagel;,
and we use the notatidh |=, ¢. Notationally, let us write : ¢ to

5 Formally, for eachn, = (domy, I,) andm;, = (domy, I,) in My and
for each termt in Lo we have that!e = tfo.

6 Obviously, with the exception of the equality predicate ethihas the same
standard interpretation for all the first order models.

abs
xT xT
ao l r l ay
do dy

Figure 1. A pictorial representation of preservation of assignments

mean¢ and thatp is a formula ofL,. This notation and terminology
allows us to keep track of the language we are talking abcuat T
is, it allows to easily distinguish formula@: ¢ of the ground lan-
guage, and formulag: +) of the abstract language. Also, from now
on, we writea to mean a pair of assignmen(ig, a1) such thau; is
the usual first order assignment for the languageFollowing [4],
we have to impose certain limitations on assignments (ao, a1).

In particular we consider here only abstraction functiotsciv pre-
serve names of free and bound variables (or drop them), @sewe
substitution instances. Therefore we restrict ourselvesnsider the
pairs of assignments to the variabled@fand L; which preserve the
assignments to the “same” variahlén the two languages.

Definition 3.2 Let C be a model overMy and M, and r C
domy x dom;. Letao anda; be two assignments to the variables
of Lo and L, respectively. The pait = (ao, a1) is an assignment
for Cifforall x € Ly, r(z%) = .

Definition 3.2 forces us to restrict to assignments whicls@ree the
correspondence between variables in the two languagesnd L,
(see Figure 1). From now on, all assignmemntatisfy the condition
in Definition 3.2, unless otherwise stated.

Definition 3.3 (Satisfiability) LetC be a model;: ¢ a formula, and
a an assignment fof Lo, L1 }. C satisfies : ¢, under the assignment
a, in symbolsC = i:¢[a], if forall c € C

ci | ¢lai]

wherec; = ¢lai] if e |5, ¢, wheree is either the local modet or
the empty sdf defining the elemeny; .

Intuitively: a formula of L; is satisfied by a moddC if the i-th
element of all compatibility pairs satisfy it (under théh component
of the assignment). Notice that ifc; is a local modein thenc; =
¢[a;] can be rewritten as |, ¢[a;]. The interesting case is when
c; = (0. Our definition implies that; |= ¢|a;] for all formulae¢
in L,. As we already said, this captures the intuition that if ik
element of a compatibility pair models an inconsistent fsc®”,
then it satisfies all formulae in;.

The definition of logical consequence extends the one givéti
and is not relevant to the study of abstraction presenteusmaper.
It is therefore omitted for lack of space. The notionvafidity is the
obvious one. A formula: ¢ is validif all models satisfyi : ¢.

4 A semantics for abstraction

The key idea is to use domain relations and compatibiligtiehs to
model, at a semantic level, the syntactic abstractionioeldtetween
terms and formulae of the ground and abstract language.

Definition 4.1 (Satisfiability of term abstractions) Let abs be a
term abstraction betweehy and L;. Let C be a model ovei/y,
My, andr C domgy x dom;. We say thatC satisfies the term
abstractionabs if

e forall ci,...,¢cn € Lo, ¢ € Ly such thatabs(c;) = ¢, for all
i€ [1,n], ([, ety e rforeveryiin [1, 7).

C1 C2

IOL lfo i
d

r

I

Figure 2. Term abstractions and domain relations.

o forall fi,...,fn € Lo, f € L1 such thatabs(f;) = f, for all
1€ [1,n],
f];‘)(dly---,dk):dkp
it | 2" dk) = diys | then f(r(dy), ..., (dy)) = d.
20 (d, ... dy) = dp,
whered = r(dkl) = T(dk2) =...= T(dkn)
e forall fi(x1,...,2n) € Lo, f(z1,...,2m) € L1 such thatn >
m andabs(f1) =
if £10(dy, ... dm,...,dn) =dni1
thenf™ (r(d1),...,7(dn)) = r(dni1)

Itis easy to see that a model satisfies a term abstractioa ddmain
relation maps all the ground terms (tuples of terms) intodiee-
sponding abstract terms (tuples of terms). Figure 2 showefflect
of granularity abstractions on individual constants. Taet thatc;
andc; are abstracted into the same constantZ; is captured, at the
semantic level, by imposing that both the interpretatidng @ndc.
in dom, are mapped into the interpretationcoih dom;.

Term abstractions on function symbols work in a similar but
slightly different way. In abstracting function names, walapse
functions together. The typical example is the abstractibtwo
ground functions+ and x into a single abstract functiosn. These
functions are usually defined over the same domain, and aatruc
problem arises when we have to decide which value to assdciat
say,a o b. Different uses of abstraction can lead to different chmice
A possible choice could be to use the value of one of the ground
functions. For instance, one could decide to define the ifomet
such thata o b is the value ofa + b for all a, b. But other choices
can be made. For instance one could define the funetiguch that
a o b = 1 if both the values ofi + b anda * b are even numbers,
anda o b = 0, otherwise. The only constraint that term abstractions
impose here is that the two tuplés, b, z1) and(a, b, z2) belonging
to the interpretation of- and=« in the ground language, respectively,
are mapped via the domain relatioto a tuple(a, b, =) belonging to
the interpretation of in the abstract language. This is exactly what
Definition 4.1 impose$.

The final part of Definition 4.1 concerns arity abstractioms o
functions. If an-ary function f; is abstracted into an-ary func-
tion f which simply “forgets” about the “non relevant” arguments
Tm+1,- - - Tn, then the domain relationwill map all then+ 1-tuples
of f{” into m + 1-tuples of /1 obtained by simply eliminating the
“non relevant” elements from the initial tuple and by rejacall
the remaining elementg with the corresponding elemedt in the
abstract domain.

7 For the sake of explanation we have assumed in this examgii@listrac-
tion operates only on function names and does not modifytaatss or
individual elements of the domains. In reality, the cornistrthat term ab-
straction imposes is that both tuplés, b, z1) and(a, b, z2) belonging to
the interpretation oft andx, respectively, are mapped via the domain re-
lation r to a tuple(a’,b’, z) belonging to the interpretation ef where
a’ =r(a) andt/ = r(b).

Definition 4.2 (Satisfiability of formula abstractions) Let abs

Lo — L, be a formula abstraction. Le€ be a model ovei\y,
M, andr C domo x dom;. We say thaC satisfies the formula
abstractionabs if for all compatibility pair (co,c1) in C

e forall p1,...,pn € Lo, p € L1, such thatabs(p;) = p for all
1 € [1,n]
if co= pl(xl,...xm)[dl,..., m] for somei € [1,n]
then ¢1 &= p(z1,...2m)[r(d1),...,7(dm)]
if co b~ pi(z1,...2m)[dl,“., m] for somei € [1,n]
then ci = p(z1, ... xm)[r(di), ..., r(dm)]
e forall pi(z1,...,2n) € Lo, p(x1,...,2Zm) € L1 such thatn >
m andabs(p1) = p,
if Co ': pl(ml,...mm,.uxn)[dl,lu,dm, dn]
then ¢ = p(z1,...zm)[r(d1),...,7(dm)]
if Co Fﬁ pl(ml,...mm,.uxn)[dl,lu,dm, dn]
then c1 }£ p(z1,...zm)[r(d1),...,7(dm)]
e forall p € Lo, such thatbs(p) = T,

If Co ': p(xl,...xm)[dl,...,
If Co Fﬁ p(xl,...xm)[dl,...,

A model satisfies a formula abstraction if the satisfiabibityormu-
lae, (and of their negation) is preserved throughout attibra

In order to exemplify our definitions we sketch a represémat
of the scenario described in Example 2.1. For the sake oftpree
omit irrelevant details and concentrate on the definitiomuoillus-
trative example.

dm]thenc, = T
dm] theney £ T

Example 4.1 Let Lo, L1 andabs : Lo — L1 be the ones in Ex-
ample 2.1. Letdom, and dom; be two domains of interpreta-
tion that contain all the constants &f, and L., respectively and
letr C domo x dom; be a domain relation that follows directly
from abs, that is, a domain relation which satisfy the constraints:

r(table) = table, for the tabletable.
r(b;) = by, for all blocksb; on the tabletable.
r(x) = EE, for all other objects € domy.
r({z,y,0)) = (int(z),int(y)) for all positions(z, y, 0)

in domg with 0 < z,y < 100.

r((z',y’,2')) = EE, for all other locationgz’,y’, z') in Lo.

Let us now take pairs of local modets, andm; overdom, and
dom; that interpret each constantsn itself. Let C be any models
overr containing these compatibility pairs. It is easy to see at
satisfies the granularity abstraction on constants “by tcocson”.
Let us now restrict to & that satisfies also the granularity abstraction
on the predicate symbain. It is easy to see that ifo satisfies the
formula on(b, (x,vy, z)), and the blockb is on the table, them:;
satisfies the formulan(b, (int(x), int(y))).

5 Properties of abstractions

Given a modelC and an abstractiombs, we say thatC satisfiesubs
if it satisfies all the term and formula abstractionsis.

Theorem 1 Given a modeC for an abstractiorubs, a compatibility
pair ¢ € C, and a ground formuld : ¢, if co | ¢[a], thenc: E
abs(9)[al.

The proof is by induction on the structure ¢f We first prove the
theorem for atomic formulae and their negation. Then we hee t
inductive hypothesis to prove the theorem for generic fdamu

Theorem 1 represents the fact that satisfiability of forrauia-
creases” within a compatibility pair. That is, given a conilpéity
pair (co, c1) satisfying an abstractiombs, and a formulay satisfied
by co, we can be sure that the abstractigof ¢ is satisfied byc; .
This theorem is the first model-theoretic counterpart ofpttuperty
of Tl-abstraction studied in [5]. From Theorem 1, we easiyain:

(a) pairs of the form(, m) never occur in a modeT;

(b) if C = 0:¢[a], thenC |= 1:abs(¢)[al;

(c) if C = 0:¢[a] for all modelsC, thenC = 1:abs(¢)[a] for all
modelsC.

A consequence of property (a) is that a mo@efior an atomic ab-
straction is composed of pairs of the fokm, m') and(m, 0). This
reflects, from the model theoretic point of view, a well knopnop-
erty of Tl-abstractions. Since they “increase” theorenthdabey can
only “decrease” models. Or, analogously they can abstmatgistent
set of formulae into consistent or inconsistent set of fdemubut
they can never map an inconsistent set of formulae into aistens
one. Properties (b) and (c) generalize the property of Témdt. In
particular property (c) allows us to say that validity ofrfarlae “in-
creases” within the class of moddls That is, if0: ¢ is a valid for-
mula in the class of modefS for the abstractiombs, thenl:abs(¢)
is also a valid formula in the class of modé€ls

6 Conclusion

In this paper we have proposed a semantics of abstracti@u twas
the intuition that abstraction is a (very important) tecug for rep-
resenting knowledge in context and of reasoning about is T€ha
first step. Ongoing work, omitted here for lack of space, igotked

to the study of composition of abstractions. In particula kave
proved that models for a composed abstractibs, o abss can be
obtained by suitable combinations of modelsdég; andabs,. Fu-

ture work has to show that our notions are the semantic cparteof

the proof-theoretic notions provided in [5, 6] (by providinorrect-
ness and completeness results). On the more applied siggamwe
use the framework provided in this paper in the study ancoslity

of mappings between semantically heterogeneous ontalf@jieOn

the modeling side this is a first step towards a classificatfotihe

many different relations which may exist between two cotstex

REFERENCES
(1]

C. Ghidini and F. Giunchiglia. Local models semanticscontextual
reasoning = locality + compatibilityArtificial Intelligence 127(2):221—

259, April 2001.

2] C. Ghidini and L. Serafini. Distributed First Order Logicln Frontiers
Of Combining Systems Studies in Logic and Computation, pages 121~
140. Research Studies Press, 1998.

[3] F. Giunchiglia and P. Shvaiko. Semantic matchingPtoceedings of the
1JCAI-03 Workshop on Ontologies and Distributed Systeni3Y@003)
volume 71. CEUR-WS, 2003.

[4] F. Giunchiglia and T. Walsh. Abstract theorem provingapping back.
Technical Report 8911-16, IRST, Trento, Italy, 1990.

[5] F. Giunchiglia and T. Walsh. A Theory of AbstractioArtificial Intelli-
gence 57(2-3):323-390, 1992.

[6] F. Giunchiglia and T. Walsh. The inevitability of incdastent abstract
spacesJournal of Automated Reasonintl:23-41, 1993.

[7] J.R.Hobbs. Granularity. IRroc. of the 9th International Joint Confer-
ence on Artificial Intelligencepages 432—-435, 1985.

[8] E.D. Sacerdoti. Planning in a Hierarchy of Abstractiquages. IrProc.

of the 3rd International Joint conference on Artificial Ihigence 1973.

