
Domain descriptions should be modular
Andreas Herzig and Ivan Varzinczak1

Abstract. This work is about the metatheory of actions, and here we
address the problem of what a good domain description for reasoning
about actions should look like. We state some postulates concerning
this sore spot, which establishes the notion of a modular domain de-
scription. We point out the problems that arise when modularity is
violated and propose algorithms to overcome them.

1 INTRODUCTION

In logic-based approaches to reasoning about actions a domain is de-
scribed by a set of logical formulas Σ. At first glance satisfiability is
the only criterion logic provides to check the quality of such a de-
scription. In this paper we go beyond that, and argue that we should
require more than the mere existence of a model for Σ. Our start-
ing point is that in reasoning about actions one usually distinguishes
several kinds of logical formulas. Among these are effect axioms,
precondition axioms, and domain constraints.

We prefer here to speak of effect, executability, and static laws,
respectively. Moreover we separate inexecutability laws from ef-
fect laws. Given these ingredients, suppose the language is power-
ful enough to state that action α is inexecutable in contexts where A
holds, and executable in contexts where B holds. It follows that there
can be no context where A∧B holds. Now ¬(A∧B) is a static law
that is independent of α. It is therefore natural to expect that it fol-
lows from these laws alone! By means of examples we show that if
this is not the case then unexpected conclusions might follow from
Σ. A similar case can be made against implicit inexecutability laws.

This motivates postulates requiring that the different ingredients of
domain descriptions should be arranged in a modular way, such that
interactions between them are limited and controlled. It turns out that
in all existing accounts which allow for these four kinds of laws [8, 9,
13, 1, 15], consistent domain descriptions can be written that violate
some of these postulates. We here give algorithms that allow one
to check whether a domain description satisfies the postulates. With
such algorithms, the task of correcting badly written descriptions can
be made easier.

This paper is organized as follows: after the preliminary defini-
tions (Sections 2 and 3) we state (Section 4) and study (5–7) three
postulates. Finally we discuss strengthenings (Section 8) and assess
related work (Section 9).

2 DOMAIN DESCRIPTIONS

In this section we establish the ontology of domain descriptions.

1 The authors are with the Institut de Recherche en Informatique de Toulouse
(IRIT), Toulouse, France. e-mail: {herzig,ivan}@irit.fr

Static laws Frameworks which allow for indirect effects make use
of logical formulas that link invariant propositions about the world.
Such formulas characterize the set of possible states. They do not
refer to actions, and we suppose they are expressed as formulas of
classical propositional logic. PFOR = {A, B, . . .} is the set of all
classical formulas.

A static law2 is a formula A ∈ PFOR that is consistent. An ex-
ample is Walking → Alive, saying that if a turkey is walking, then it
must be alive [13].

Effect laws Let ACT = {α, β, . . .} be the set of all actions of
a given domain. To speak about action effects we use the syntax of
propositional dynamic logic (PDL) [5]. The formula [α]A expresses
that A is true after every possible execution of α.

An effect law3 for α is of the form A → [α]C , where A,C ∈
PFOR, with A and C both classically consistent. (‘Classically
consistent’ is a shorthand for ‘consistent in classical propositional
logic’.) The consequent C is the effect which obtains when α is
executed in a state where the antecedent A holds. An example is
Loaded → [shoot]¬Alive, saying that whenever the gun is loaded,
after shooting the turkey is dead. Another one is [tease]Walking: in
every situation, the result of teasing is that the turkey starts walking.

Note that the consistency requirements for A and C make sense:
if A is inconsistent then the effect law is superfluous; if C is incon-
sistent then we have an inexecutability law, that we consider to be a
separate entity.

Inexecutability laws We suppose that effect laws with inconsis-
tent consequents are a particular kind of law. This allows us to avoid
mixing things that are conceptually different: for an action α, an ef-
fect law mainly associates it with a consequent C , while an inexe-
cutability law only associates it with an antecedent A.

An inexecutability law for α is of the form A → [α]⊥, where A ∈
PFOR is classically consistent. For example ¬HasGun → [shoot]⊥
expresses that shoot cannot be executed if the agent has no gun.

Executability laws With only static and effect laws one cannot
guarantee that shoot is executable if the agent has a gun. Whereas all
the extant approaches in the literature that allow for indirect effects
of actions contain static and effect laws, the status of executability
laws is less consensual. Some authors [12, 3, 9, 13] more or less
tacitly consider that executability laws should not be made explicit
but rather inferred by the reasoning mechanism. Others [8, 15] have
executability laws as first class objects one can reason about.

2 Static laws are often called domain constraints, but the different laws for
actions that we shall introduce in the sequel could in principle also be called
like that.

3 Effect laws are often called action laws, but we prefer not to use that term
here because it would also apply to executability laws that are to be intro-
duced in the sequel.

It seems strange to us just stating information about necessary con-
ditions for execution of an action (inexecutabilities) and saying noth-
ing about the sufficient ones. This is the reason why we think we need
executability laws. Indeed, in several domains one wants to explicitly
state under which conditions a given action is guaranteed to be exe-
cutable, e.g. that a robot should never get stuck and should always be
able to execute a move action. In any case, allowing for executability
laws gives us more flexibility and expressive power.

In dynamic logic the dual 〈α〉A, defined as ¬[α]¬A, can be used
to express executability. 〈α〉> thus reads “the execution of action α
is possible”. An executability law4 for α is of the form A → 〈α〉>,
where A ∈ PFOR is classically consistent. For instance HasGun →
〈shoot〉> says that shooting can be executed whenever the agent has
a gun, and 〈tease〉> establishes that the turkey can always be teased.

Domain descriptions S ⊆ PFOR denotes the set of all static laws
of a given domain. For a given action α ∈ ACT, Eα is the set of
its effect laws, Xα is the set of its executability laws, and Iα is the
set of its inexecutability laws. We define E =

⋃

α∈ACT Eα, X =
⋃

α∈ACT Xα, and I =
⋃

α∈ACT Iα. A domain description is a tuple
of the form 〈S,E ,X , I〉.

3 DYNAMIC LOGIC AND THE FRAME
PROBLEM

Given a domain description 〈S,E ,X , I〉, we need a consequence
relation solving the frame problem. To this end we now give the se-
mantics of PDL, and extend it with dependence relations.

P1, P2, . . . denote propositional constants, L1, L2, . . . literals, and
Φ, Ψ, . . . formulas. (We recall that A, B, . . . denote classical formu-
las.) If L = ¬P then we identify ¬L with P .

A PDL-model is a triple M = 〈W,R, I〉 where W is a set of
possible worlds, R maps action constants α to accessibility rela-
tions Rα ⊆ W × W , and I maps propositional constants to sub-
sets of W . Given a PDL-model M = 〈W,R, I〉, |=M Φ if for
all w ∈ W , w |=M Φ; w |=M [α]Φ if w′ |=M Φ for every
w′ such that wRαw′. A formula Φ is a consequence of the set of
global axioms {Φ1, . . . , Φn} in the class of all PDL-models (noted
Φ1, . . . , Φn |=PDL Φ) if and only if for every PDL-model M , if
|=M Φi for every Φi, then |=M Φ.

PDL alone does not solve the frame problem. For instance, if
〈S,E ,X , I〉 describes our shooting domain then S,E ,X , I 6|=PDL

HasGun → [load]HasGun. The deductive power of PDL has to be
augmented in order to ensure that the relevant frame axioms follow.
The presence of static constraints makes that this is a delicate task,
and starting with [8, 9], several authors have argued that some no-
tion of causality is needed. We here opt for the dependence based
approach presented in [1], where dependence information has been
added to PDL. In [2] it has been shown how Reiter’s solution to the
frame problem can be recast in PDL. α ; L denotes that the exe-
cution of action α may change the truth value of the literal L. In our
example we have

; =

{

〈shoot,¬Loaded〉, 〈shoot,¬Alive〉,
〈shoot,¬Walking〉, 〈tease, Walking〉

}

Because 〈load,¬HasGun〉 /∈ ;, we have load 6; ¬HasGun, i.e.,
¬HasGun is never caused by load. We also have tease 6; Alive and
tease 6; ¬Alive.

4 Some approaches (most prominently Reiter’s) use biconditionals A ↔
〈α〉>, called precondition axioms. This is equivalent to ¬A ↔ [α]⊥,
which illustrates that they thus merge information about inexecutability
with information about executability.

We here suppose that ; is finite. A given dependence relation ;

defines a class of possible worlds models M;: every M ∈ M;

must satisfy that whenever wRαw′ then

• α 6; P and w 6∈ I(P) implies w′ 6∈ I(P);
• α 6; ¬P and w ∈ I(P) implies w′ ∈ I(P).

The associated consequence relation is noted |=;. In our example
we obtain S,E ,X , I |=; HasGun → [load]HasGun.

4 POSTULATES

Our central hypothesis is that the different types of laws should be
neatly separated, and should only interfere in one sense: static laws
allow one to infer action laws that do not follow from the action laws
alone. The other way round, action laws should not allow to infer
new static laws, effect laws should not allow to infer inexecutability
laws, etc. Here are the postulates for that:

P0. Logical consistency: S,E ,X , I 6|=; ⊥

A domain description should be logically consistent.

P1. No implicit executability laws:

if S,E ,X , I |=; A → 〈α〉>, then S,X |=PDL A → 〈α〉>

If an executability law can be inferred from the domain description,
then it should already “be” in X , in the sense that it should also be
inferable in PDL from the set of executability and static laws alone.

P2. No implicit inexecutability laws:

if S,E ,X , I |=; A → [α]⊥, then S,I |=PDL A → [α]⊥

If an inexecutability law can be inferred from the domain description,
then it should be inferable in PDL from the static and inexecutability
laws alone.

P3. No implicit static laws: if S,E ,X ,I |=; A, then S |=PDL A.

If a static law can be inferred from the domain description, then it
should be inferable in PDL (and even classically) from the set of
static laws alone.

Postulate P0 is obvious. P1 can be ensured by maximizing X . This
suggests a stronger version of P1:

P4. Maximal executability laws:

if S,E ,X ,I 6|=; A → [α]⊥, then S,X |=PDL A → 〈α〉>

It expresses that if in context A no inexecutability for α can be in-
ferred, then the respective executability follows in PDL from the exe-
cutability and static laws. P4 generally holds in nonmonotonic frame-
works, and can be enforced in monotonic approaches such as ours by
maximizing X .

Things are less obvious for Postulates P2 and P3. They are violated
by domain descriptions designed in all approaches in the literature
that allow to express the four kinds of laws. We therefore discuss
each of them in the subsequent sections by means of examples, and
give algorithms to decide whether they are satisfied.

5 NO IMPLICIT INEXECUTABILITY LAWS

Consider the following domain description (and ; as above):

S1 = {Walking → Alive}, E1 =

{

[tease]Walking,
Loaded → [shoot]¬Alive

}

,

X1 = I1 = ∅

From [tease]Walking it follows with S1 that [tease]Alive, i.e., in every
situation, after teasing the turkey is alive: S1, E1 |=PDL [tease]Alive.
Now as tease 6; Alive, the status of Alive is not modified by the
tease action, and we have S1, E1 |=; ¬Alive → [tease]¬Alive.
From the above, it follows S1, E1,X1, I1 |=; ¬Alive → [tease]⊥,
i.e., the turkey cannot be teased if it is dead. But S1, I1 6|=PDL

¬Alive → [tease]⊥, hence Postulate P2 is violated. The formula
¬Alive → [tease]⊥ is an example of what we call an implicit in-
executability law.

In the literature, such laws are also known as implicit qualifica-
tions [4], and it has been argued that it is a positive feature of rea-
soning about actions frameworks to leave them implicit and provide
mechanisms for inferring them [8, 13]. The other way round, one
might argue as well that implicit qualifications indicate that the do-
main has not been described in an adequate manner: inexecutability
laws have a form simpler than that of effect laws, and it might be
reasonably expected that it is easier to exhaustively describe them.5

Thus, all the inexecutabilities should be explicitly stated, and this is
what Postulate P2 says.

How can we check whether P2 is violated? First we need a defini-
tion. Given classical formulas A and B, the function NewConsA(B)
computes the set of strongest clauses that follow from A ∧ B,
but do not follow from A alone (cf. e.g. [6]). It is known that
NewConsA(B) can be computed by subtracting the prime impli-
cates of A from those of A ∧ B. For example, the set of prime im-
plicates of P is just {P}, that of P ∧ (¬P ∨ Q) ∧ (¬P ∨ R ∨ T) is
{P, Q,R ∨ T}, hence NewConsP ((¬P ∨ Q)∧ (¬P ∨ R ∨ T)) =
{Q, R∨T}. And for our example, NewConsWalking→Alive(Walking) =
{Alive, Walking}.

Algorithm 1 (Finding implicit inexecutability laws)
input: S,E ,I,;
output: a set of implicit inexecutability laws II

II:= ∅
for all α ∈ ACT do

for all J ⊆ Eα do
AJ:=

∧

{Ai : Ai → [α]Ci ∈ J}
CJ:=

∧

{Ci : Ai → [α]Ci ∈ J}
if S ∪ {AJ} is classically consistent then

for all
∨

Li ∈ NewConsS(CJ) do
if ∀i, α 6; Li and S,I 6|=PDL (AJ ∧

∧

¬Li) → [α]⊥ then
II:= II ∪ {(AJ ∧

∧

¬Li) → [α]⊥}

Example 1 Consider S1, E1, I1 and ; as given above. Then Algo-
rithm 1 returns II = {¬Alive → [tease]⊥}.

Theorem 1 〈S,E ,X , I〉 satisfies Postulate P2 if and only if II = ∅.

This is the key algorithm of the paper. We are aware that it comes
with considerable computational costs: first, the number of formulas
AJ and CJ is exponential in the size of Eα, and second, the compu-
tation of NewConsS(CJ) might result in exponential growth. While
we might expect Eα to be reasonably small in practice, the size of

5 Note that nevertheless this is not related to the qualification problem, which
basically says that it is difficult to state all the executability laws of a do-
main.

NewConsS(CJ) is more difficult to control. Note that the algorithm
terminates because we have assumed ; finite.

The algorithm not only decides whether the postulate is satisfied,
its output II also can provide a way to “repair” the domain descrip-
tion. Basically there are three options, that we illustrate with our ex-
ample: 1) add ¬Alive → [tease]⊥ to I1; 2) add the (unintuitive) de-
pendence 〈tease, Alive〉 to ;; or 3) weaken the law [tease]Walking
to Alive → [tease]Walking. It is easy to see that whatever we opt for,
the new domain description will satisfy P2.

6 NO IMPLICIT STATIC LAWS

Executability laws increase expressive power, but might conflict
with inexecutability laws. For instance, let S2 = S1, E2 = E1,
X2 = {〈tease〉>}, and I2 = {¬Alive → [tease]⊥}. (Note that Pos-
tulate P2 is satisfied.) We have the unintuitive X2, I2 |=PDL Alive:
the turkey is immortal! This is an implicit static law because Alive
does not follow from S2 alone: P3 is violated.

How can we find out whether there are implicit static laws? We as-
sume that Postulate P2 is satisfied, i.e., all inexecutabilities are cap-
tured by I.

Algorithm 2 (Finding implicit static laws)
input: S,X , I
output: a set of implicit static laws SI

SI:= ∅
for all α ∈ ACT do

for all A → [α]⊥ ∈ I and A′ → 〈α〉> ∈ X do
if S 6|=PDL ¬(A ∧ A′) then
SI:= SI ∪ {¬(A ∧ A′)}

Example 2 For 〈S2, E2,X2, I2〉, Algorithm 2 returns SI =
{Alive}.

The existence of implicit static laws may thus indicate too strong
executability laws: in our example, we wrongly assumed that tease is
always executable. It may also indicate that the inexecutability laws
are too strong, or that the static laws are too weak:

Example 3 Suppose a computer representation of the line of inte-
gers, in which we can be at a strictly positive number, Positive, or
at a negative one or zero, ¬Positive. Let MaxInt and MinInt, respec-
tively, be the largest and the smallest representable integer number.
goleft is the action of moving to the biggest integer smaller than the
one at which we are. Consider the following domain description for
this scenario (Ati means we are at number i):

S3 = {Ati → Positive : i > 0} ∪ {Ati → ¬Positive : i ≤ 0}

E3 =
{AtMinInt → [goleft]Underflow}∪

{Ati → [goleft]Ati−1 : i > MinInt}

X3 = {〈goleft〉>}, I3 = ∅

with the dependence relation (MinInt ≤ i ≤ MaxInt):

; =

{

〈goleft, Ati〉, 〈goleft, Positive〉,
〈goleft,¬Positive〉, 〈goleft, Underflow〉

}

In order to satisfy Postulate P2, we run Algorithm 1 and obtain I3 =
{(At1 ∧At2) → [goleft]⊥}. Now applying Algorithm 2 to this action
theory gives us the implicit static law ¬(At1 ∧ At2), i.e., we cannot
be at 1 and 2 at the same time.

Theorem 2 Suppose 〈S,E ,X ,I〉 satisfies P2. Then Postulate P3 is
satisfied if and only if SI = ∅.

What shall we do with an implicit static law? Again, several op-
tions show up: whereas in the latter example the implicit static law
should be added to S , in the former the implicit static law is due to
an executability law that is too strong and should be weakened.

So, in order to satisfy Postulate P3, a domain description should
contain a complete set of static laws or, alternatively, should not make
so strong assumptions about executability. This means that eliminat-
ing implicit static laws may require revision of S or completion of
X . In the next section we approach the latter option.

7 MAXIMAL EXECUTABILITY LAWS

Implicit static laws only show up when there are executability laws.
Which executability laws can be consistently added to a given do-
main description?

Algorithm 3 (Finding implicit executability laws)
input: S,X ,I
output: a set of implicit executability laws X I

X I:= ∅
for all α ∈ ACT do

Aα:=
∨

{Ai : Ai → [α]⊥ ∈ Iα}
if S 6|=PDL Aα and S,X 6|=PDL ¬Aα → 〈α〉> then
X I:= X I ∪ {¬Aα → 〈α〉>}

Example 4 Suppose S4 = {Walking → Alive}, X4 = ∅ and I4 =
{¬Alive → [tease]⊥}. Then Algorithm 3 yields X I = {Alive →
〈tease〉>}.

Theorem 3 Suppose 〈S,E ,X , I〉 satisfies P2 and P3. Postulate P4
is satisfied if and only if X I = ∅.

What Theorem 3 says is that it suffices to take the ‘complement’
of I to obtain all the executability laws of the domain. Note that this
counts as a solution to the qualification problem given that all pre-
conditions for guaranteeing executability of actions are thus known.

8 DISCUSSION

In this section we discuss other properties related to consistency
and modularity of domain descriptions. Some will follow from ours,
while some others look natural at first glance, but turn out to be too
strong.

Theorem 4 If 〈S,E ,X , I〉 satisfies P3, then S,E ,X ,I |=; ⊥ iff
S |=PDL ⊥.

This means that if there are no implicit static laws then consistency
of a domain description (P0) can be checked by just checking con-
sistency of S .

Theorem 5 If 〈S,E ,X , I〉 satisfies P3, then S,E ,X , I |=; A →
[α]C iff S,Eα, Iα |=; A → [α]C .

This means that under P3 we have modularity inside E , too: when
deducing the effects of α we need not consider the action laws for
other actions. Versions for executability and inexecutability can be
stated as well.

Remark 8.1 Although in the present paper concurrency is not taken
into account, we conjecture that Theorem 5 holds when we have con-
current action execution.

Theorem 6 There exist domain descriptions 〈S,E ,X , I〉 not satis-
fying P3 such that S,E ,X , I |=; A → [α]C and S,Eα, Iα 6|=;

A → [α]C .

For example, we have S2, E2,X2, I2 |=; ¬Alive → [shoot]Alive,
but S2, E2shoot, I2shoot 6|=; ¬Alive → [shoot]Alive.

Now we turn to postulates that are too strong. First, it seems to be
in line with the other postulates to require domain descriptions not to
allow for the deduction of new effect laws: if an effect law follows
from a domain description, and no inexecutability law for the same
action in the same context can be derived, then it should follow from
the set of static and effect laws alone. This means we should have:

P5. No implicit effect laws:

if S,E ,X , I |=; A → [α]C and S,E ,X , I 6|=; A → [α]⊥,

then S, E |=; A → [α]C

But consider the following intuitively correct domain description:

S5 = ∅, E5 =

{

Loaded → [shoot]¬Alive,
(¬Loaded ∧ Alive) → [shoot]Alive

}

X5 = {HasGun → 〈shoot〉>}, I5 = {¬HasGun → [shoot]⊥}

together with the dependence relation ; of Example 1. It satisfies
Postulates P1, P2, P3, and P4, but does not satisfy P5. Indeed, we
have that S5, E5,X5, I5 |=; ¬HasGun ∨ Loaded → [shoot]¬Alive
and S5, E5,X5, I5 6|=; ¬HasGun ∨ Loaded → [shoot]⊥, but
S5, E5 6|=; ¬HasGun ∨ Loaded → [shoot]¬Alive. So, Postulate P5
would not help us to deliver the goods.

Another though obvious possibility of amending our modularity
criteria could be by stating the following postulate:

P6. No unattainable effects:

if A → [α]C ∈ E , then S,E ,X , I 6|=; A → [α]⊥

This expresses that if we have explicitly stated an effect law for α
in some context, then there should be no inexecutability law for the
same action in the same context. We do not investigate this further
here, but just observe that the slightly stronger version below leads
to unintuitive consequences:

P6′. No unattainable effects (strong version):

if S,E |=; A → [α]C , then S,E ,X , I 6|=; A → [α]⊥

Indeed, for the above domain description we have that E5 |=;

(¬HasGun ∧ Loaded) → [shoot]¬Alive, but S5, E5,X5, I5 |=;

(¬HasGun ∧ Loaded) → [shoot]⊥. This is certainly too strong. Our
example also illustrates that it is sometimes natural to have some ‘re-
dundancies’ or ‘overlaps’ between I and E .

9 RELATED WORK

Pirri and Reiter have investigated the metatheory of the situation cal-
culus [11]. In a spirit similar to ours, they simplify the entailment
problem for this calculus, and show for several problems such as con-
sistency or regression that only some of the modules of a domain de-
scription are necessary. Note that in their domain descriptions S = ∅.
This allows them to show that such theories are always consistent.

Zhang et al. [14] have also proposed an assessment of what a good
domain description should look like. They develop the ideas in the

framework of EPDL [15], an extended version of PDL which allows
for propositions as modalities to represent causal connection between
literals. We do not present the details of that, but concentrate on the
main metatheoretical results.

Zhang et al. propose a normal form for describing action theories,
and investigate three levels of consistency. Roughly speaking, a do-
main description Σ is uniformly consistent if it is globally consistent
(i.e., Σ 6|=EPDL ⊥); a formula Φ is Σ-consistent if Σ 6|=EPDL ¬Φ,
for Σ a uniformly consistent theory; Σ is universally consistent if
Σ |=EPDL A implies |=EPDL A.

Given these definitions, they propose algorithms to test the dif-
ferent versions of consistency for a domain description Σ that is in
normal form. This test essentially amounts to checking whether Σ
is safe, i.e., whether Σ |=EPDL 〈α〉>, for every α. Success of this
check should mean the domain description under analysis satisfies
the consistency requirements.

Nevertheless, this is only a necessary condition: it is not hard
to imagine domain descriptions that are uniformly consistent but
in which we can still have implicit inexecutabilities that are not
caught by the algorithm. Consider for instance a scenario with
a lamp that can be turned on and off by a toggle action, and
its EPDL representation given by {On → [toggle]¬On, Off →
[toggle]On, [On]¬Off, [¬On]Off}.

The causal statement [On]¬Off means On causes ¬Off. Such a do-
main description satisfies each of the consistency requirements (in
particular it is uniformly consistent, as Σ 6|=EPDL ⊥). However, Σ is
not safe because the implicit static law ¬(On∧Off) cannot be proved.

Lang et al. [7] address consistency in the causal laws approach [9],
focusing on the computational aspects. They suppose an abstract no-
tion of completion of a domain description solving the frame prob-
lem. Given a domain description Σα containing logical information
about α’s direct effects as well as the indirect effects that may fol-
low, the completion of Σα roughly speaking is the original theory Σα

amended of logical axioms stating the persistence of all non-affected
(directly nor indirectly) literals.

Their EXECUTABILITY problem is to check whether α is exe-
cutable in all possible initial states (Zhang et al.’s safety property).
This amounts to testing whether every possible state w has a succes-
sor w′ reachable by α such that w and w′ both satisfy the completion
of Σα. For instance, still considering the lamp scenario, the represen-

tation of the domain description for toggle is {On
toggle
−→ Off, Off

toggle
−→

On, Off −→ ¬On, On −→ ¬Off}, where the first two formulas are
conditional effect laws for toggle, and the latter two causal laws in
McCain and Turner’s sense. We will not dive in the technical details,
and just note that the executability check will return “no” for this
example as toggle cannot be executed in a state satisfying On ∧ Off.

10 CONCLUSION

We have tried to point out some of the problems that can arise when
domain descriptions are not modular. In particular we have argued
that the non-dynamic part of domain descriptions should not be in-
fluenced by the dynamic one.6

We have put forward several postulates, and have in particular tried
to demonstrate that when there are implicit inexecutability and static
laws then one has slipped up in designing the domain description
under consideration. As shown, a possible solution comes into its

6 It might be objected that it is only by doing experiments that one learns the
static laws that govern the universe. But note that this involves learning,
whereas here — as always done in the reasoning about actions field — the
static laws are known once forever, and do not evolve.

own with Algorithms 1, 2 and 3, which can give us some guidelines
in correcting a domain description if needed.

Given the difficulty of exhaustively enumerating all the precondi-
tions under which a given action is executable and also those under
which such an action cannot be executed, there is always going to be
some executability precondition A or some inexecutability precondi-
tion B that together lead to a contradiction, forcing, thus, an implicit
static law ¬(A∧B). This is the reason we propose to state some in-
formation about both executabilities and inexecutabilities, complete
the latter and then, after deriving all implicit static laws, complete the
former. As a final result we will have complete S , X and I.

Throughout this work we used a weak version of PDL, but our
notions and results can be applied to other frameworks as well. It
is worth noting however that for first-order based frameworks the
consistency check of Algorithm 1 is undecidable. (We can get rid of
this by assuming that 〈S,E ,X , I〉 is finite and there is no function
symbol in the language. In this way, the result of NewCons is finite
and the algorithm terminates.)

Our postulates do not take into account causality statements link-
ing propositions. This could be a topic for further investigation.

ACKNOWLEDGMENTS

Ivan Varzinczak has been supported by a fellowship from the gov-
ernment of the Federative Republic of Brazil, grant CAPES.

REFERENCES
[1] M. A. Castilho, O. Gasquet, and A. Herzig, ‘Formalizing action and

change in modal logic I: the frame problem’, J. of Logic and Computa-
tion, 9(5), 701–735, (1999).

[2] R. Demolombe, A. Herzig, and I. Varzinczak, ‘Regression in modal
logic’, J. of Applied Non-classical Logics (JANCL), 13(2), 165–185,
(2003).

[3] P. Doherty, W. Łukaszewicz, and A. Szałas, ‘Explaining explanation
closure’, in Proc. Int. Symposium on Methodologies for Intelligent Sys-
tems, Zakopane, Poland, (1996).

[4] M. L. Ginsberg and D. E. Smith, ‘Reasoning about actions II: The qual-
ification problem’, Artificial Intelligence, 35(3), 311–342, (1988).

[5] D. Harel, ‘Dynamic logic’, in Handbook of Philosophical Logic, eds.,
D. M. Gabbay and F. Günthner, volume II, 497–604, D. Reidel, Dor-
drecht, (1984).

[6] K. Inoue, ‘Linear resolution for consequence finding’, Artificial Intelli-
gence, 56(2–3), 301–353, (1992).

[7] J. Lang, F. Lin, and P Marquis, ‘Causal theories of action – a compu-
tational core’, in Proc. 18th Int. Joint Conf. on Artificial Intelligence
(IJCAI’03), eds., V. Sorge, S. Colton, M. Fisher, and J. Gow, pp. 1073–
1078, Acapulco, (2003). Morgan Kaufmann Publishers.

[8] F. Lin, ‘Embracing causality in specifying the indirect effects of ac-
tions’, In Mellish [10], pp. 1985–1991.

[9] N. McCain and H. Turner, ‘A causal theory of ramifications and quali-
fications’, In Mellish [10], pp. 1978–1984.

[10] C. Mellish, ed. Proc. 14th Int. Joint Conf. on Artificial Intelligence
(IJCAI’95), Montreal, 1995. Morgan Kaufmann Publishers.

[11] F. Pirri and R. Reiter, ‘Some contributions to the metatheory of the
situation calculus’, Journal of the ACM, 46(3), 325–361, (1999).

[12] L. K. Schubert, ‘Monotonic solution of the frame problem in the situ-
ation calculus: an efficient method for worlds with fully specified ac-
tions’, in Knowledge Representation and Defeasible Reasoning, eds.,
H. E. Kyberg, R. P. Loui, and G. N. Carlson, 23–67, Kluwer Academic
Publishers, (1990).

[13] M. Thielscher, ‘Computing ramifications by postprocessing’, In Mel-
lish [10], pp. 1994–2000.

[14] D. Zhang, S. Chopra, and N. Y. Foo, ‘Consistency of action descrip-
tions’, in PRICAI’02, Topics in Artificial Intelligence. Springer-Verlag,
(2002).

[15] D. Zhang and N. Y. Foo, ‘EPDL: A logic for causal reasoning’, in Proc.
17th Int. Joint Conf. on Artificial Intelligence (IJCAI’01), ed., B. Nebel,
pp. 131–138, Seattle, (2001). Morgan Kaufmann Publishers.

