
Generating Random Bayesian Networks with Constraints
on Induced Width

Jaime S. Ide and Fabio G. Cozman and Fabio T. Ramos1
Abstract. We present algorithms for the generation of uniformly
distributed Bayesian networks with constraints on inducedwidth.
The algorithms use ergodic Markov chains to generate samples. The
introduction of constraints on induced width leads to realistic net-
works but requires new techniques. A tool that generates random
networks is presented and applications are discussed.

1 INTRODUCTION

It is often the case that theoretical questions involving artificial in-
telligence techniques are hard to answer exactly. Many suchques-
tions appear in the theory of Bayesian networks; for example, How
does quasi-random sampling algorithms compare to pseudo-random
sampling? Significant insight into such questions could be obtained
by analyzing large samples of Bayesian networks. However itmay
be difficult to collect hundreds of “real” Bayesian networksfor an
experiment, or it may be the case that an experiment must be con-
ducted for a specific type of Bayesian network for which few “real”
examples are available. One must then randomly generate Bayesian
networks that are somehow close to “real” networks. In fact,many
researchers have used random processes to generate networks in the
past, but without guarantees of that every allowed graph is produced
with the same uniform probability (for example, [14, 15]).

We would like to have a method that generates Bayesian networks
uniformly; that is, we would like to guarantee that averagestaken
with generated networks produce unbiased estimates. We would also
like to have generation methods that are flexible in the sensethat con-
straints on generated networks can be added with relative ease. For
example, it should be possible to add a constraint on the maximum
number of parents for nodes, the average number of children,or the
maximum number of loops. Ad hoc methods are usually concocted
for a particular set of constraints, and it is hard to imagineways to
add constraints to them.

Finally, we would like to generate “realistic” networks, however
hard it may be to define what is a “real” Bayesian network. A rea-
sonable strategy is to look for properties that are commonlyused
to characterize Bayesian networks, and to allow some control over
them. This is the strategy followed by Ide and Cozman [5]: they allow
control over the degree of a node, thus allowing some controlover
the “density” of the connections in the generated Bayesian networks.
We have found that such a strategy is reasonable but not perfect. Re-
strictions solely on node degree and number of edges lead to “overly
random” edges — real networks often have their variables distributed
in groups, with few edges between groups.2 Another strategy, sug-1 Escola Politécnica, Univ. de São Paulo, São Paulo, Brazil. Email:

jaime.ide@poli.usp.br2 Tomas Kocka brought this fact to our attention.

gested by T. Kocka (personal communication), would be to produce
Bayesian networks with a large number of equivalent graphs,as this
is a property observed in real networks. However we would like to
use properties with clear intuitive meaning, so that users of our algo-
rithms would quickly grasp the properties of generated networks.

A quantity that characterizes the algorithmic complexity of
Bayesian networks, and is easy to explain and to understand,is the in-
duced width. Indirectly, the induced width captures how dense a net-
work is. Besides, it makes sense to control induced width, aswe are
usually interested in comparing algorithms or parameterizing results
with respect to the complexity of the underlying network.3 Unfortu-
nately, the generation of random graphs with constraints oninduced
width is significantly more involved than the generation of graphs
with constraints on node degree and number of edges. In this paper
we report on new algorithms that accomplish generation of graphs
with simultaneous constraints on all these quantities: induced width,
node degree, and number of edges.

Following the work of Ide and Cozman [5], we divide the genera-
tion of random Bayesian networks into two steps. First we generate
a random directed acyclic graph that satisfies constraints on induced
width, node degree, and number of edges; then we generate proba-
bility distributions for the graph. To generate the random graph, we
construct ergodic Markov chains with appropriate stationary distribu-
tions, so that successive sampling from the chains leads to the gen-
eration of properly distributed networks. The necessary theory and
algorithms are presented in Sections 2 and 3.

The methods presented in this paper focus on Bayesian networks,
but they convey a general method for generation of testing examples
in artificial intelligence. The idea is to generate uniformly distributed
examples using Markov chains. This strategy allows one to easily
add and modify constraints on the generated examples, provided that
a few steps are taken. The theory in Section 3 can serve as a guide
for exactly what steps must be taken to guarantee appropriate results.

A freely distributed program for Bayesian network generation is
presented in Section 4. In Section 4 we also discuss applications of
random networks.

2 BASIC CONCEPTS

This section summarizes material from [5] and [3].
A directedgraph is composed of a set of nodes and a set of edges.

An edge(u; v) goes from a nodeu (the parent) to a nodev (the
child). A path is a sequence of nodes such that each pair of consecu-
tive nodes is adjacent. A path is acycle if it contains more than two
nodes and the first and last nodes are the same. A cycle isdirected
if we can reach the same nodes while following arcs that are inthe3 Carlos Brito suggested this strategy.



same direction. A directed graph isacyclic (a DAG) if it contains no
directed cycles. A graph isconnectedif there exists a path between
every pair of nodes. A graph issingly-connected, also called apoly-
tree, if there exists exactly one path between every pair of nodes;
otherwise, the graph ismultiply-connected(or multi-connectedfor
short). An extreme sub-graphof a polytree is a sub-graph that is
connected to the remainder of the polytree by a single path. In an
undirectedgraph, the direction of the edges is ignored. Anordered
graph is a pair containing an undirected graph and an ordering of
nodes. Thewidth of a node in an ordered graph is the number of its
neighbors that precede it in the ordering. Thewidthof an ordering is
the maximum width over all nodes. Theinduced widthof an ordered
graph is the width of the ordered graph obtained as follows: nodes are
processed from last to first; when nodeX is processed, all its preced-
ing nodes are connected (call these connectionsinduced connections
and the resulting graphinduced graph). An example is presented at
Figure 1. Theinduced widthof a graph is the minimal induced width
over any ordering; the computation of induced width is an NP-hard
problem [3], and computations are usually based on heuristics [6].

A Bayesian network represents a joint probability density over a
set of variablesX [10]. The density is specified through a directed
acyclic graph; every node in the graph is associated with a variableXi in X, and with a conditional probability densityp(Xijpa(Xi)),
wherepa(Xi) denotes the parents ofXi in the graph. A Bayesian
network represents a unique joint probability density [10]: p(X) =Qi p(Xijpa(Xi)) (consequence of aMarkov condition). Themoral
graph of a Bayesian network is obtained by connecting parents of
any variable and ignoring direction of edges. Theinduced widthof a
Bayesian network is the induced width of its moral graph. Aninfer-
enceis a computation of a posterior probability density for aquery
variable givenobservedvariables; the complexity of inferences is
directly related to the induced width of the underlying Bayesian net-
work [3].

We use Markov chains to generate random graphs, following [8].
Consider a Markov chainfXt; t � 0g over finite domainsS andP = (pij)Mij=1 to be aM x M matrix representing transition prob-
abilities, whereM is the number of states andpij = Pr(Xt+1 =jjXt = i), for all t [11, 13]. Thes-step transition probabilities is
given byP s = p(s)ij = Pr(Xt+s = jjXt = i), independent oft.
A Markov chain isirreducible if for all i,j there existss that satis-
fiesp(s)ij > 0. A Markov chain is irreducible if and only if all pair
of states intercommunicate. A Markov chain ispositive recurrentif
every statei 2 S can be returned to in a finite number of steps; it
follows a that finite irreducible chain is positive recurrent. A Markov
chain isaperiodic if the greatest common divisor of all thoses for

F

L
D

B

H

L

B

H
(a) (b)

(c) (d)

L

H

D

F

B

F

L
D

B

H

F

D

Figure 1. a) Network, b) moral graph, c) induced graph for orderingF;L;D;H;B, and d) induced graph for orderingL;H;D;B; F . Dashed
lines represent induced connections.

which p(s)ii > 0, is equal to one (that is,G:C:D:(sjp(s)ii > 0) = 1).
Aperiodicity is ensured ifpii > 0 (pii is a self-loop probability).
A Markov chain isergodic if there exists a vector� (thestationary
distribution) satisfyinglims�!1 p(s)ij = �j , for all i andj; a finite
aperiodic, irreducible and positive recurrent chain is ergodic. A tran-
sition matrix is calleddoubly stochasticif the rows and columns sum
to one (that is, if

PNj=1 pij = 1 and
PNi=1 pij = 1). A Markov

chain with such a transition matrix has a uniform stationarydistribu-
tion [11].

3 GENERATING RANDOM DAGS

In this section we show how to generate random DAGs with con-
straints on induced width, node degree and number of edges. After
such a random DAG is generated, it is easy to construct a complete
Bayesian network by randomly generating associated probability dis-
tributions — if all variables in the Bayesian network are categorical,
probability distributions are produced by sampling Dirichlet distri-
butions. More general methods can be contemplated (for example,
it may be interesting to generate logical nodes together with proba-
bilistic nodes) and are left for future work.

To generate random DAGs with specific constraints, we construct
an ergodic Markov chain with uniform limiting distribution, such that
every state of the chain is a DAG satisfying the constraints.By run-
ning the chain for many iterations, eventually we obtain a satisfactory
DAG.

Algorithm PMMixed produces an ergodic Markov chain with the
required properties (Figure 2). The algorithm is significantly more
complex than the algorithms presented by Ide and Cozman [5].The
added complexity comes from the constraints in induced width. Such
a price is worth paying as the induced width is a property thatcharac-
terizes a Bayesian network much more accurately than node degree.

The algorithm works as follows. We create a set ofn nodes (from0 ton� 1) and a simple network to start. The loop between lines 03
and 08 constructs the next state (next DAG) from the current state.
Lines 05 and 08 verify whether the induced width of the current DAG
satisfies the maximum value allowed; constraints on maximumnode
degree and maximum number of edges must also be checked there.
If the current DAG is a polytree, the next DAG is constructed in lines
04 and 05; if the current DAG is multi-connected, the next DAGis
constructed in lines 07 and 08. Depending on the current graph, dif-
ferent operations are performed (the procedures AorR and ARcor-
respond to the valid operations). Note that the particular procedure
to be performed and the acceptance (or not) of the resulting DAG is
probabilistic, parameterized byp.

Algorithm PMMixed is essentially a mixture of procedures AorR
and AR. These procedures are used by Ide and Cozman [5] to pro-
duce respectively multi-connected graphs and polytrees with con-
straints on node degree. We need both to guarantee irreducibility of
Markov chains when constraints on induced width are present; the
procedure AR creates a needed “path” in the space of polytrees that
is used in Theorem 3. The mixture of procedures has two other ben-
efits: first, it creates more complex transitions, hopefullyincreasing
the convergence of the chain; second, it eliminates a restriction on
node degree that was needed by Ide and Cozman [5].

The PMMixed algorithm can be understood as a sequence of prob-
abilistic transitions that follow the scheme in Figure 3.

We now establish ergodicity of Algorithm PMMixed.

Theorem 1 The Markov chain generated by Algorithm PMMixed is
aperiodic.



Algorithm PMMixed: Generating DAGs with induced
width control
Input: Number of nodes (n), number of iterations (N ), max-
imum induced width, and possibly constraints on node degree
and number of nodes.
Output: A connected DAG withn nodes.
01. Create a network withn nodes, where all nodes have just
one parent, except the first node that does not have any parent;
02. RepeatN times:
03. If current graph is a polytree:
04. With probabilityp, call Procedure AorR; with

probability(1� p), call Procedure AR.
05. If the resulting graph satisfies imposed

constraints, accept the graph;
otherwise, keep previous graph;

06. else (graph is multi-connected):
07. Call Procedure AorR.
08. If the resulting graph is a polytree and satisfies

imposed constraints, accept with probabil-
ity p; else accept if it satisfies imposed
constraints; otherwise keep previous graph.

09. Return current graph afterN iterations.

Procedure AR: Add and Remove
01. Generate uniformly a pair of distinct nodesi; j;
02. If the arc(i; j) exists in the current graph, keep the same
state; else
03. Invert the arc with probability 1/2 to(j; i), and then
04. Find the predecessor nodek in the path betweeni andj,
remove the arc betweenk andj, and add an arc(i; j) or arc(j; i) depending on the result of line 03.

Procedure AorR: Add or Remove
01. Generate uniformly a pair of distinct nodesi; j;
02. If the arc(i; j) exists in the current graph, delete the arc,
provided that the underlying graph remains connected; else
03. Add the arc if the underlying graph remains acyclic, other-
wise keep same state.

Figure 2. Algorithm for generating DAGs, mixing operations AR and
AorR.

If

AorR

AR

IfAorR

polytree

multiconnected

polytree

multiconnected

p

1-p

accept

reject

p

1-p

multiconnected

polytree

multiconnected

polytree

Figure 3. Structure of PMMixed.

Proof. It is always possible to stay in the same state for procedures
AR and AorR; therefore, all states have a self-loop probability greater
than zero. QED

Theorem 2 The transition matrix defined by the Algorithm PM-
Mixed is doubly stochastic.

Proof. If we have symmetric transition probabilities between two
neighbor states, its rows and columns sum one, because the self-
loop probabilities are complementary to all other probabilities. Pro-
cedure AorR is clearly symmetric; procedure AR is also symmet-
ric [5]. We just have to check that transitions between polytrees and
multi-connected graphs are symmetric; this is true becausetransi-
tions from polytree to multi-connected are accepted with probabilityp, and multi-connected to polytree transitions are also accepted with
the same probability. QED

We need the following lemma to prove Theorem 3.

Lemma 1 After removal of an arc from a multi-connected DAG, its
induced width does not increase.

Proof. When we remove an arc, the moral graph stays the same or
contains less arcs; by just keeping the same ordering, the induced
width cannot increase. QED

Theorem 3 The Markov chain generated by Algorithm PMMixed is
irreducible.

Proof.Suppose that we have a multi-connected DAG withn nodes; if
we prove that from this graph we can reach a simple sorted tree(Fig-
ure 4 (c)), the opposite transformation is also true, because of the
symmetry of our transition matrix — and therefore we could reach
any state from any other (during these transitions, graphs must re-
main acyclic, connected and must satisfy imposed constraints). So,
we start by finding a loop cutset and removing enough arcs to obtain
a polytree from the multi-connected DAG [10]. The induced width
does not increase during removal operations by Lemma 1. Froma
polytree we can move to a simple polytree (Figure 4 (b)) in a recur-
sive way. For all extreme sub-graphs of our polytree, for each pair
of extreme sub-graphs (call thembranches), it is possible to “cut” a
branch and add it in the other branch, by the procedureAR, with-
out ever increasing the induced width. Doing this we get a unique
branch. If we have more than two branches connected to a node,we
repeat this process by pairs; we do this recursively until get a simple
polytree. Now that we have a simple polytree, we get a simple tree
(Figure 4 (a)) just inverting arcs to the same direction, without ever
getting an induced width greater than two. The last step is toget a
simple sorted tree (Figure 4 (c)) from the simple tree. The idea here
is illustrated in Figure 5. We want to sort labelled nodes from 1 ton.
Start removing arc(n; k) and adding arc(l; i) (step 1 to 2). Remove
arc(j; n) and add arc(n�1; n) (step 2 and 3). Note that in this con-
figuration, the induced width is one. Now, remove arc(n� 1; o) and
add arc(j; k) (step 3 and 4). Repeat steps 2 and 4 for all nodes. So,
from any multi-connected DAG it is possible to reach a simplesorted
tree. The opposite path is clearly analogous, so we can go from any
DAG to any other DAG, and the chain is irreducible. Note that con-
straints on node degree and maximum number of edges can be dealt
with within the same processes. QED

By the previous theorems we obtain:

Theorem 4 The Markov chain generated by Algorithm PMMixed is
ergodic and its unique stationary converges to a uniform distribution.

(a) (b) (c)

i kj i kj 1 n2

Figure 4. Simple trees used in our proofs: (a) Simple tree, (b) Simple
polytree, (c) Simple sorted tree.



ji kn lstep 1

nlk i jstep 2

n-1k o

n

jstep 3

jo n-1k nstep 4

Figure 5. Basic moves to obtain a simple sorted tree.

The algorithm PMMixed can be implemented quite efficiently,ex-
cept for the computation of induced width — finding this valueis
a NP-hard problem with no easy solution. There are heuristics for
computing induced width; some of which have been found to be of
high quality [6]. Consequently, we must change our goal: instead of
adopting constraints on exact induced width, we assume thatthe user
specifies a maximum widthgiven a particular heuristic. We call this
width theheuristic width. Our goal then is to produce random DAGs
on the space of DAGs that have constraints on heuristic width.

Apparently we could still use the PMMixed algorithm here, with
the obvious change that lines 05 and 08 must check heuristic width
instead of induced width. However such a simple modificationis
not sufficient: because heuristic width is usually computedwith lo-
cal operations, we cannot predict the effect of adding and removing
edges on it. That is, we cannot adapt Lemma 1 to heuristic width
in general, and then we cannot predict whether a “path” between
DAGs can in fact be followed by the chain without violating heuris-
tic width constraints. We must create a mechanism that wouldallow
the chain to transit between arbitrary DAGs regardless of the adopted
heuristic. Our solution is to add a new type of operation, specified
by procedure J (Figure 6) — this procedure allows “jumps” from
arbitrary multi-connected DAGs to polytrees. We also assume that
any adopted heuristic is such that,if the DAG is a polytree, then the
heuristic width is equal to the induced width.Even if a given heuris-
tic does not satisfy this property, the heuristic can be easily modi-
fied to do so: test whether the DAG is a polytree and, if so, return
the induced width of the polytree (the maximum number of parents
amongst all nodes).

Procedure J must be called with probability(1� p� q) both after

Procedure J: Sequence of AorR
01. If the current graph ispolytree:
02. Generate uniformly a pair of distinct nodesi; j;
03. If arc(i; j) does not exist in current graph,

add the arc; otherwise, keep the same state.
04. If the current graph ismulti-connected:
05. Generate uniformly a pair of distinct nodesi; j.
06. If arc(i; j) exists in current graph, remove the arc;

otherwise, keep the same state.
07. If the new graph satisfies imposed constraints, accept the
graph; otherwise, keep previous graph.

Figure 6. Procedure J.

If

AorR

AR

IfAorR

polytree

multiconnected

polytree

multiconnected

p/(p+q)
accept

reject

p

q
polytree

Jump multiconnected1-p-q

q/(p+q)

Jump1-p-q

p+q

polytree

polytree

multiconnected

multiconnected

Figure 7. Structure of PMMixed with procedure J.

line 04 and after line 07 in the algorithm PMMixed. The complete al-
gorithm can be understood as a sequence of probabilistic transitions
that follow the scheme in Figure 7. All previous theorems canbe
easily extended to this new situation; the only one that mustbe sub-
stantially modified is Theorem 3. Transitions from polytreeto multi-
connected DAGs are performed with probability(1� q); transitions
from multi-connected DAGs to polytrees are performed with proba-
bility 1� (p+ q)� qp+q = 1� q. The value ofp andq control the
mixing rate of the chain; we have observed remarkable insensitivity
to these values.

4 THE BNGenerator AND APPLICATIONS

The algorithm PMMixed (with the modifications indicated in
Figure 7) can be efficiently implemented with existing ordering
heuristics, and the resulting DAGs are quite similar to existing
Bayesian networks. We have implemented the algorithm usingaO(n log n) implementation of the minimum weight heuristic. The
result is theBNGeneratorpackage, freely distributed under the GNU
license (at http://www.pmr.poli.usp.br/ltd/Software/BNGenerator).
The software uses the facilities in the JavaBayes system, in-
cluding the efficient implementation of ordering heuristics
(http://www.cs.cmu.edu/˜javabayes). The BNGenerator accepts
specification of number of nodes, maximum node degree, maximum
number of edges, and maximum heuristic width (for minimum
weight heuristic, but other heuristics can be added). The software
also performs uniformity tests using a�2 test. Such tests can be
performed only for small number of nodes (as the number of possible
DAGs grows extremely quickly [12]), but they allowed us to test the

Figure 8. Bayesian network generated with BNGenerator: 30 nodes,
maximum degree 20, maximum induced width 2.



algorithm and its procedures. We have observed the relatively fast
mixing of the chain with the transitions we have designed.

To show how to use our previous results, we discuss the evalu-
ation of a particular inference algorithm that has receivedattention
in the literature but have no conclusive analysis yet. Due tothe lack
of space, we present a brief summary of rather extensive tests; more
details can be found in a longer technical report [4]. Two other appli-
cations can be found in that technical report: a study on the relation
between heuristic width and d-connectivity, and a study of conver-
gence for loopy propagation in networks with non-zero probabilities.

Consider the behavior of Monte Carlo methods associated with
quasi-random numbers. That is, numbers that form low discrep-
ancy sequences — numbers that progressively cover the spacein
the “most uniform” manner [7, 9]. There have been quite success-
ful applications of quasi-Monte Carlo methods for integration in
low-dimensional problems; in high-dimensional problems,there has
been conflicting evidence regarding the performance of quasi-Monte
Carlo methods. As a positive example, Cheng and Druzdzel obtained
good results in Bayesian network inference with importancesam-
pling using quasi-random numbers [1]. We have investigatedthe fol-
lowing question: How does quasi-random numbers affect standard
importance sampling and Gibbs sampling algorithms in Bayesian
networks? We have used the importance sampling scheme derived by
Dagum and Luby [2], and have investigated the behavior of Halton
sequences in random networks. The summary of our investigation
is as follows. First, pseudo-random numbers are clearly better than
quasi-random numbers in medium-sized networks for Gibbs sam-
pling. Second, pseudo-random number have a small edge over quasi-
random numbers for importance sampling; however the differences
are so small that both can be used. In fact it is not hard to find net-
works that behave better under quasi-random importance sampling
than under pseudo-random importance sampling.4

The methodology indicated in this example can be applied to other
inference algorithms and theoretical questions related todirected
acyclic graphs and Bayesian networks.

5 CONCLUSION

In this paper we have presented a solution for the generationof uni-
formly distributed random Bayesian networks with control over key
quantities. The main idea is to generate DAGs with control onin-
duced width, and then generate distributions associated with the gen-
erated DAG. Given the NP-hardness of induced width, we have re-
sorted to “heuristic width” — the width produced by one of themany
high-quality heuristics available. We generate DAGs usingMarkov
chains, and the need to guarantee heuristic width constraints leads to
a reasonably complex transition scheme encoded by algorithm PM-
Mixed and procedure J. The algorithm can be modified to accom-
modate a number of other constraints (say constraints on themaxi-
mum number of parents). The methodology used to derive theseal-
gorithms and proving their convergence can be employed to generate
testing examples in other fields of artificial intelligence.The reliance
on Markov chains demands convergence proofs and mixing times,
but it allows the manipulation of constraints and guarantees of uni-
formity that do not seem to be handled by other methods.

We have observed that this strategy does produce “realistic-
looking” Bayesian networks. Using such networks, we have con-4 As a notable (not randomly generated) example of this phenomenon, the

Alarm network does behave slightly better with quasi-random than with
pseudo-random importance sampling (corroborating results by Cheng and
Druzdzel [1]).

firmed comments in the literature that suggest that standardGibbs
sampling cannot profit from quasi-random samples, while straight-
forward importance sampling presents essentially the samebehav-
ior under pseudo- and quasi-random sampling for medium-sized net-
works. We have also investigated the relationship between heuristic
width and d-connectivity and the performance of loopy propagation,
and reported on those issues elsewhere.

ACKNOWLEDGEMENTS
We thank Carlos Brito for suggesting the use of induced width,
Robert Castelo for pointing us to Melançon et al’s work, Guy
Melançon for confirming some initial thoughts, Nir Friedman for
indicating how to generate distributions, and Haipeng Guo for test-
ing the BNGenerator. We also thank Jaap Suermondt, Tomas Kocka,
Alessandra Potrich and Márcia D’Elia Branco for providingimpor-
tant ideas, and Y. Xiang, P. Smets, D. Dash, M. Horsh, E. Santos,
and B. D’Ambrosio for suggesting valuable procedures. The first au-
thor was supported by FAPESP grant 00/11067-9. This work was
(partially) developed in collaboration with HP Brazil R&D;the third
author was supported by HP Labs and was responsible for investigat-
ing loopy propagation. The second author was partially supported by
CNPq through grant 300183/98-4.

REFERENCES
[1] J. Cheng and M. Druzdzel, ‘Computational investigationof low-

discrepancy sequences in simulation algorithms for Bayesian net-
works’, in Conf. on Uncertainty in Artificial Intelligence, pp. 72–81,
SF, CA. Morgan Kaufmann.

[2] P. Dagum and M. Luby, ‘An optimal approximation algorithm for
Bayesian inference’,Artificial Intelligence, 93(1–2), 1–27, (1997).

[3] R. Dechter, ‘Bucket elimination: An unifying frameworkfor proba-
bilistic inference’, inConf. on Uncertainty in Artificial Intelligence, pp.
211–219, SF, CA. Morgan Kaufmann.

[4] J. S. Ide and F. G. Cozman and F. T. Ramos,Generation of Random
Bayesian Networks with Constraints on Induced Width, with Applica-
tions to the Average Analysis of d-Connectivity, Quasi-random Sam-
pling, and Loopy Propagation, Tech. Report BT/PMR, University of
São Paulo, Brazil, 2004.

[5] J. S. Ide and F. G. Cozman, ‘Random generation of Bayesiannetworks’,
in Brazilian Symp. on Artificial Intelligence. Springer-Verlag, (2002).

[6] U. Kjaerulff, ‘Triangulation of graphs — algorithms giving small total
state space’, Technical Report R-90-09, Department of Mathematics
and Computer Science, Aalborg University, Denmark, (March1990).

[7] J. G. Liao, ‘Variance reduction in Gibbs sampler using quasi random
numbers’,Journal of Computational and Graphical Statistics, 7(3),
253–266, (September 1998).

[8] G. Melançon and M. Bousque-Melou, ‘Random generation of dags for
graph drawing’, Technical Report technical report INS-R0005, Dutch
Research Center for Mathematical and Computer Science-CWI, (2000).

[9] H. Niederreiter,Random Number Generation and Quasi-Monte Carlo
Methods, volume 63 ofCBMS-NSF regional conference series in Appl.
Math., SIAM, Philadelphia, 1992.

[10] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan-
Kaufman, 1988.

[11] S. I. Resnick,Adventures in Stochastic Processes, Birkhäuser, Cam-
bridge, MA, USA; Berlin, Germany; Basel, Switzerland, 1992.

[12] R. W. Robinson, ‘Counting labeled acyclic digraphs’, inNew Directions
in the Theory of Graphs, ed., F. Harary, pp. 28–43, Michigan, (1973).
Academic Press.

[13] S. M. Ross,Stochastic Processes, John Wiley & Sons; New York, 1983.
[14] P. Spirtes, C. Glymour, and R. Scheines,Causation, Prediction, and

Search (second edition), MIT Press, 2000.
[15] Y. Xiang and T. Miller, ‘A well-behaved algorithm for simulating de-

pendence structure of Bayesian networks’, inInternational Journal of
Applied Mathematics, volume 1, pp. 923–932, (1999).


