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Abstract. Knowledge-based programs ([10, 18]) are a powerful A graded version oKD45 is defined in Section 2. In Section 3

notion for expressing action policies in which branching condi-we show how belief states arevisedby possibly unreliable obser-

tions refer to implicit knowledge. However, branching conditions in vations produced by sensing actions. In Section 4 we show how be-

knowledge-based programs cannot refer to possibly erroneous béef states ar@progressedvhen the agent perfornfphysical) actions

liefs or to graded belief, such as “if my belief thatholds is high  which may have alternative effects, some of which being more ex-

then do some action else perform some sensing actigh The pur-  ceptional than others. Belief-based programs are defined in Section

pose of this paper is to build a framework where such programs cab. Section 6 discusses related work.

be expressed. In this paper we focus on the execution of such a pro-

gram (a companion paper investigates issues relevant to the off-ling KD45

evaluation and construction of such programs). We define a simple

graded version of doxastic logitD45 as the basis for the definition The languageC of graded doxastic dynamic logkD45¢ is built

of belief-based programs. Then we study the way the agent's belidfom afinite set of propositional symbols, the usual connectives, the

state is maintained when executing such programs, which calls fofymbolsT et L, and the doxastic modalitié8: , Bz, ..., Boc. A

revising belief states by observations (possibly unreliable or impreformula of £ is flatif it does not contain nested modalities aofgjec-

cise) and progressing belief states by physical actions (which mafjveif it does not contain any modalitffor the purposes of this paper

have normal as well as exceptional effects). it is sufficient to focus on flat formulas or{lyon-flat formulas do not

play any role for reasoning when executing belief-based programs).

. Formulas ofKD45. are denoted by capital Greek lettebs ¥

1 Introduction etc. while objective formulas are denoted by small Greek lejtets

Knowledge-based programer KBPs ([10] — see also [18, 2, 21 etc. B intuitively means that the agent beliveswith strengthi.

14, 3, 15]), are a powerful notion for expressing action policies inThe largeri, the stronger the belief expressed By, andB.. is a

which branching conditions refer to implicit knowledge and call for a\ljv?%V\{:](af%?t?sﬁ?:r:mt/hair;dtr\lgvglktr)s)v(\j/ﬁendmzd more simply g (belief
deliberation task at execution time. However, branching conditions in 9 o ge). .
Let us now define specific classes of flat formulaslokastic atom

KBPs cannot refer to possibly erroneous beliefs or to graded belief ) o ) .
such as hile | have no strong belief about the direction of the IS a formulaB;» where is objective. A flat formulab is doxasti-

) . N . . cally interpretableiff it all its subformulas are inside the scope of a
railway stationdo ask someone. The purpose of this paper is to modality, or equivalently, if it is a Boolean combination of doxastic
build a framework for suchelief-based program@BPs). Y q Y

While knowledge states in KPBs are expressed in epistemic Iogi?st ZngmﬁggTaig?;':g? d:)};e\stlce;ily |n/t\e]r3pretab\:§hfeorrmL(l_ﬁPDl)
(usually S5), BBPs need a logic offraded belief where different are objectivecpforma?;g SLJ.C.h thaltﬁé)r’ albndef; (P\jvoe
levels of uncertainty or entrenchment can be expressed. We therefof%\’/é":" "D_"_> . For instanceBa(a — —b) Vb AK(aV ¢) is]flat
have to commit to a choice regarding the nature of uncertainty W%ut ot (;Déxast%éll i ter retable;lj?(,l aa;d(B s aﬂb)(i/K(a\/l
wish to handle. Rather than reasoning with probabilistic belief states y P 2 4 2

(and therefore introducing probabilistic modalities), which would c) are doxastically interpretabl& (a V) ABgaABza/\B1 (a/\ )

take us far from usual logics of knowledge or belief sucls8sand is aNPDI formuIaK(avC), Bz andB, (a/\~c) are doxastic atoms
KD45, we choose to define belief statesoadinal conditional func- (anda fort|or|., NPDI. forr.n_ulasﬁ. _

tions (OCF) [20] — also calle¢tappa-fonctionsintroducing OCFs in V\QVS now give a simplified semantics féiat formulas. Let S =

logic is easy (see [12, 5, 6] for logical frameworks of dynamicity and2’ ~ be the (finite) set oftates(or worlds) associated with AR.
uncertainty based on OCFs); besides, OCFs are expressive enouglyhen writing NFDI formulas, we omit tautological doxastic atoms: there-
in many situations where there exists only a small number of “belief fore we writeBza instead oK T A B1 T A Baa.

degrees”; therefore they are a good trade-off between simplicity and This semantics can be generalized so as to interpret non-flat formulas as

e oAl S . well; it can then be proven that any formula can be rewritten into an equiv-
expressivity, as well as between ordinality and cardinality, since they alent flat formula (agit is the case éﬁ andKD45). The general semantigs

allow for an approximation of probabilities without the technical dif-  yses graded accessibility relations instead of OCFs and its exposition would
ficulties raised by the integration of logic and probability. be longer and needless for this paper.




States are denoted hy, s’ etc. If © is objective then we note
Mod(p) = {s € S|s = ¢}. ForA C S, Form(A) is the formula
(unique up to logical equivalence) such thidbd(Form(A)) = A.

Definition 1 (belief states) An ordinal conditional function (OCF)
[20], also called abelief stateis a functions : S — N such that
minges x(s) = 0. Intuitively, x(s) is the “exceptionality degree” of
s%. In particular, x(s) = 0 means thak is not an exceptional state
while k(s) = +o0o means that is impossible. Theoid belief state
Kvoid IS defined bye,o:4(s) = 0 for all s. » is extended to objective
formulas byx(p) = min {x(s) | s = ¢}.

Definition 2 A model forKD45¢; is a pair (s*, k) wheres*™ € S, x
an OCF, andk(s*) < +oo.

The truth of a flat formula of in a states of a model(x, s*) is
defined by :

for ¢ objective,(k, s*) = ¢iff s* = ¢;

for o objective and € N, (x, s*) = Big iff x(—¢p) > i;
(k,s") E@VUIff (k,s") =Por(k,s") =¥

(k,s™) = Qiff (k,s") £~ D.

The connectives,, —, < are defined fronv and— in the usual way.
& is valid (resp.satisfiabl@ iff is is satisfied in any model (resp. in
at least one model)l is aconsequencef ® (denoted byd = ¥)
iff for any (x, s*), (k,s*) &= ® implies (k,s*) = ¥. ® and ¥ are
equivaleniff ® = ¥ and¥ = .

In (k,s™), s* represents the (objective) actual state whileep-
resents the agent's subjective beliefs. Whienis doxastically in-
terpretable,s™ has no influence on the truth value ®f only the

2. for any NPDI formula®, ke = G(®) is the minimal OCF satis-
fying @, i.e.,k |= ®iff K > k.

3. for any NPDI formula® = A Biy;, we havexs(s) = i iff s |=
Pit1 N\ i

Notice that when writingb. = A Biws, @; is the formula ex-
pressingall the agent believes to the degreim the belief states. It
can be shown easily that eagh for i < +oo (resp. K = By)
is a KD45 (resp. S5) modality restricted to flat formulas: thus,
Bi(¢ A ) < Bip A Bjy andKy — ¢ are valid inKD45¢ .
Lastly, for alls andj > i, K¢ — Bip andBjp — Bjy are valid
in KD45¢ .

We now define the&eombinationof belief states, and by isomor-
phism, the combination of NPDI formufas

Definition 4 (OCF combination) Let x; and k2 be two OCFs. If
ming (k1 + K2) = 0o, thenk: ® k2 is undefined; otherwise, © k2
is defined by

K1 @D Ko

K1+ K2 — msin(m + liz)

When defined, we hauaing (k1 @ k2) = 0, therefores; @ k2 is
an OCF.
By isomorphism, NPDI formulas can be combined as well:

Definition 5

if defined
otherwise

H(ke © kv) = H(G(®) & G(V))

<I>®\I!:{ i

An important result is that if6, U are two NPDI formulas, then
kE PR VIiff kK > ko ® ke. Moreover, the following formulas are
valid:

subjective beliefs count (hence the terminology “doxastically inter-

pretable”), therefore, abusing notations, for doxastically interpretable

formulas we note |= @ instead of(x, s*) = .
Any belief statex corresponds to a NPDI formula, unique up to
logical equivalence:

Definition 3 (from belief states to NPDI formulas and vice versa)

1. for any belief structures, H(k) = @, is the NPDI formula

(unique up to logical equivalence) defined . = A Bips:

wherep; = Form({s € S| k(s) < i}).*

. given a NPDI formulad = A, Biy;, G(®) = ks is the OCF
defined by

Vs € S, ka(s) = I’I‘l_qul) K(s)

For example, letx defined byx([a, —b])
k([a,b]) = 1 andk([—a, —b]) = co. Then
H(k) =K(aVb)ABi(a A -b)

It is not hard to show that?(H(k)) = « and H(G(®)) = &,

Bip ® Bjp = Biyjp

Bi—jo ifi>j
Bi<p®Bj—\tpE Bj,i—wp If] >

T ifi=j
PRU=URP;, P2x(VOHE)=(PRV)RE);
PR T =P; P lLl=1

Importantly,® ® & is generally not equivalent .

3 Observations and revision

We now consider a finite setCT of actions available to the agent.
Although an action may generally both have “physical’¢atic) ef-
fects on the state of the world and give some feedback leading the
agent to revise her belief state, we assume without loss of generality
that ACT is partitioned into two disjoint subsetsC'Tr (pure phys-
ical actions, feedback-free), altlCT (pure sensing actions, with
no physical effects).

The feedback of a sensing action is @lmservation Ideally, an
observation is precise and reliable, but this is far from being always

which means that there is a one-to-one correspondence betwedf case in practice. We first have to make clear what we mean by

OCFs and equivalence classes (w.r.t. equivalenc&Da5. ) of
NPDI formulas. The following properties can also be shown:

1. for any belief states, H(x) = @, is the strongest (up to equiva-
lence inKD45¢ ) NPDI formula entailed by, i.e., for any NPDI
¥ we havex = W iff &, = 0.

3 k(s) is usually interpreted in terms of infinitesimal probabilitiess)
k < +o00 meangrob(s) = o(*), wheree is infinitely small
4 Recall thatKk = Boo.

observation.

Definition 6 An observational belief state (OBS)r, for short, an
observationis a belief states,;s, corresponding to a NPDI-formula
Dops = H(kobs) = Ko A Bnon A ... A Bio: (by convention we
WIite 000 = 0).

5 This property is nothing but a rewriting of the minimum specificity principle
in possibilistic logic. See [9] for a discussion on the translations between
OCFs and possibility distributions.

6 Note that is not a real connective, because it only connects NPDI formulas.



An observation is therefore defined by the belief state it conveygr A T) v (T A —r) = T —thereforep = 2 andp + m = 2, hence
(which, in practice, may be a function of the belief state of the sourceb; @ &, = B1 T AKT = KT. By induction, one can show that
and the belief that the agent has on the reliability of the soukcg).  afterp; occurrences o0bbsi, p2 of obsz, p3 of obss, ps of obs, and
can also be viewed as the belief state the agent is if she gets thjs of obss (in any order), iterated combination leads to
observation in the void belief statg ;4. )

If ®ops = Ko thenobs is areliable observationwhich brings a ~ ® Bar if 2p1 +p2 > 2ps + py andg = (2p1 + p2) — (2p3 + pa);
totally certain information about the actual state of the world. More® Ba=7 if 2p1 +p2 < 2ps +psandq = (2ps +pa) — (2p1 +p2);
generally, a simple observati@,,s = Bioy, induces a beliefina ® KT if 2p1 +p2 = 2ps + pa.

single factoy, with a reliability degree. In practice, many observa- . - . .
tions will be simple, but not all. This example shows how observatigamforceprior beliefs when

This rather complex definition is due to the fact that a singlethet{] are cond3|sltgnt V\{'kt]h thémk:.cletquy apl)p(;;rs tha:jthe;rt:ual hy-
observation generally relates to the real state of the world in sevpho EsIS U eryl;g et.com 'II'I:1a lon ruEel e[|3er1 (:I:C etween
eral ways, with various degrees of uncertainty (exactly as in theI € successive observations. 1hus, on Example 1, In€ successive an-

Bayesian case). Consider for instance reading the vabrea tem- swers are independent (pedestrians do not listen to the answers given

perature sensor, which may for instance correspond to the obselP-y their predecessofs)

vation ®pps = B1(t —1 < 0 <t+1)AB2(t—2 < 0 <
t+2)AK({t—5<0<t+5). 4 Progression
We now define how the agent revises her current belief state aft

. %hysical actions may change the state of the world but do not give
an observation.

any feedback. Therefore, given an initial belief statand an on-
tic actionq, it is possible to determine the future belief state (after
the action is performed) by projecting the possible outcomes of
on the current belief state. This operation is usually caiedjres-
sion prog(k, ) is the belief state obtained afteris performed in
belief statex. By isomorphism, we also definBrog(®, o) where
Prog(®,a) = H(prog(G(®), «)).

+00 if s = —o The semantics of progression is defined as in [5] by mea@si6
(K @ Kobs)(s) = K(s|obs) = { K(s) — k(o) ifsk=o transition models

Definition 7 Letk be a belief state and,,s an observational belief
state. The revision of by ks is simply the combination of and
Kobs, 1.€.,T7€V(K,0) = K ® Kobs-

In particular, wherbs = Ko is a reliable observation, we get

that is, a conditioning by in the sense of [20]. By isomorphism, Definition 8 An OCF transition model is a collection of OCFs
revision can be performed syntactically:= Ko A Bnon A... A {ra(.]5),s € S}.
B1p1 being a NPDI formula andbs = KoABpo, A...ABj101 an

observation, the revisioff by obs is ® ® obs. The following result ria(s'|s) is the exceptionality degree of the outcomievhen per-
shows how the latter expression can be computed syntactically in #'Ming actiona in states. Notice that for alls € 5, ra(.[s) is an
compact waywithout performing revision state by state OCF, which means thatin, s £a (s']s) = 0.

Definition 9 (progression ofx by an ontic action) Given an initial
belief statex and an ontic actiorx whose dynamics is expressed by
D ® Pobs =Bap A ... ABm¥prm-1 AKyp the OCF transition modet.., the progression of by o is the belief
statex’ = prog(k, ) defined by

Proposition 1

where Ve e 5 w(s ] ,

« v=pho s € ,H(s)frsrlelg{/@(s)—&—ma(s\s)}

® U, = No;)V Noi—1)V ...V (p; No1);

. ;f: Hffll{j wj)ié S(_pf. ) (v 2 Notice that<' is a belief state, because the normalizatiohath <
o m = min{k, Y, =¥} and ke (.|s) implies thatmin, ¢ g {minses {k(s) + ka(s'|s)}} =

0, i.e.min{x'(s"), s' € S} =0.
Example 1 The agent wants to know the direction to the railway
station. Assume there are only two directiong§ight) and —r (left).
His initial belief state is void{o = kveiq). He tries to acquire some
more information by asking pedestrians. Let us consider five possibl
observations:®,,,, = Bzr (“the station is on the right”, given
without hesitation®,ss, = B17 (“l believe it's on the right but I'm
not sure”), ®ops, = Ba—r, Pors, = Bi—r and finally @45, =
KT (“I have no idea”). After observing firsbbss, we havek; =
K0 D Kobsy = Kobsy @aNd®1 = $o B Pops, = B17. Assume now that
the second pedestrian giveas, too. Using Propositionl, we get:
Y=TAT =Tt =rAr=ri2=TAT)V(TAr)=r; 7 This has to be contrasted wittansmutationg23], where one enforces the

Y3 = (rAT)V(TAT)V (T Ar) = T — thereforep = 1 new belief state to satisfy a constraint of the forifyy) = 4. Probability
andp +m = 3, henced; ® By, = Bar AKT = Bar. If the theory has also both kinds of rules: Jeffrey’s (without implicit reinforce-

second observation had beehs, instead ofobss we would have ment) and Pearl’s (see [7] for a discussion).
54 0082 R 8 |f this assumption could no longer be made, then we should have to model
had ®; = ®1 ® ®os, = KT (the agent comes back to his initial it by adding a new variable which would have the effect of blocking (or

belief state). Indeed) = TAT = T; 1 =rA—-nr = L; s = limiting) the reinforcement.

Example 2 Consider two blocksl and B initially put down on a ta-
ble; the propositional variable: is true if A is on top ofB, false oth-
rwise. A robot can perform the actienconsisting in try to putd on
. If Ais onB in the initial state, the action has no effect; otherwise,
it normally succeeds (iex becomes true), and exceptionally fails
(in that casex remains false). The OCF transition model feris:
Ka(z|z) = 0; Ko (—z|2) = 00; Ka(z|2) = 0; Ka(—z|—z) = 1.
If the initial state iSkyo:a, thenprog(kvoia, @) = {(z,0), (—z,1)}
andprog(x’, o) = k" = {(z,0), (-z,2)}. More generally, after




performinga n times without performing any sensing action (start-  Thus, progression amounts to a combination followed by a
ing frome.,oiq), We geprog(kvoia, @) = {(,0), (-x,n)}, whose  forgetting. For the first step, Proposition 1 can be applied again,
associated NPDI formula B, z: the agent believes to the degree  as shown on the following example. The second step amounts to a
that A is on B. sequence of classical forgetting operations.

Example 2 shows that once again, the underlying hypothesis iExample 2 (continued)We have®, = K(z; — 24+1) A Bizgt1.
the independence between the outcomes of the different occurrencége initial belief state corresponds t® = Bixz. Then,
of actions. Indeed, the intuitive explanation of the result of previous?:®¥o = K ABntnA.. .AB1v1, Wherey = TA(xy — Te41);
example is that after theseexecutions ofy, A is still notonB if Y1 = 2t A Tey1s P2 = (T A (B0 — Te41)) V (T A Te41);
and only if alln occurrences of failed; each of the failures has an %3 = (¢ A (zt — Te41)) V(T A (22 — @41)) V (T A 2441).
excaptionality degree of 1 and failures are independent, hencefortf\fter simplifying the expression we gét = =z, — @41,
n successive failures occur with an exceptionality degreerof %1 = Tt A Te41; P2 = Teqr; Y3 = T — x4 = . Next we
Notice that this reinforcement effect is a consequence of the use @et®: ® Yo = K(z¢ — x141) A B1(ze A 2¢41) A Baz41 and
@ (if conjunction were used instead, we would still @i« after ~ Forget(VAR:, ®: ®3a) = KT AB17:11 AB2zi41 = Bazy,
performinga n times). and finally Prog(®, o) = Baux.

We now show how progression can be computed syntactically, Note the importance of combination, which explains the reinforce-
which avoids explicitly computing progression state by state consistment obtainet!
ing of a straightforward application of the definition.

First, we assume that the effects of actions are described by
graded action theorigsgeneralizing action theories so as to allow

for more or less exce_p_tl_onal actlo_n_ effects. In order to do_ SO, W€ €Xp pelief-based program is built up from the set of primitive actions
tend (as usual) the initial propositional languaféy duplicating ACT and usual program constructor. Given a46tT = ACTp U

each variabler of VAR in z; andz.+. (representingr respec- 4 o of primitive actions, delief-based progrartBBP) is defined
tively before and after the execution of the action); 1ed R, = inductively as follows:

{$t|£l,' S VAR} andVARtH = {$t+1|flj c VAR}, St = 2VARt

andS;1 = 2V 441 For any formula®, &, (resp.®:11) denotes o the empty plan is a BBP:

the formula obtained by replacing each occurrence by x;: (resp. o for anya € ACT, o is a BBP;

z¢41). A gradual action theorys a NPDI formula of this extended ¢ if 7 and«’ are BBP thenr; 7’ is a BBP;

languageX, = KrABnrnA...ABa1ri. The gradual actiontheory o if 7 and 7' are BBP and® is a NPDI formula, then

is obtained from a set of causal (dynamic or static) rules through a if & then = else =’ andwhile & do = are BBPs.

completion process whose technical details are omitted due to lack

of space. Notice however that this completion does not present ariyhus, a BBP is a programvhose branching conditions are doxas-

particular difficulty: it is an easy extension of completion for nonde-tically interpretable the agent can decide whether diwieveso a

terministic action theories such asin [16, 11]. We just give the gradedjiven degree that a formula is true (whereas she is generally unable to

action theory corresponding to Example 2: decide whether a given objective formula is true in the actual world).
For instance, the agent performing the BPP

8 Belief-based programs

Ea = K(.I,‘t i .’L’t+1) A B1.I,’t+1
7= while —(BzrVBz-r) do ask;

Like for the static case, any OCF transition models corre- if Bar then goright else goleft
spond to graded action theories amite versa {rq(.|s),s €
S} induces¥, = Kr A Barn, A ... A Bir; wherer; = performs the sensing actiarsk until she has a belief firm enough
Form{(siy1,5t) | ka(sii1|st) < i} (namely of degree 2) about the way to follow (notice that this pro-

gram is not guaranteed to stop!).

The execution of a belief program isnandeterministidunction
mapping a pair consisting of an initial belief state and a program to
1. forget({z}, V) = Yo T V Yuc1; a sequence of actions and observations. Each sensing adaas-

2. forget(X U{z},v) = forget({z}, forget(X,1)). sociated with anondeterministidunction feedback : ACTgr —
OBS. feedback(a) is the observation obtained after performing
Forgetting is extended t85 formulas in [15], and is here extended the sensing actio in a given environment. & is a precise and
to NPDI formulas in the following way: it = Ko A Bnn ... A reliable truth test (that isp senses the value of a fluefij, then
Bipi andX C Var(®), thenForget(X, ®) = K forget(X, o)A feedback(a) € {obs(f),obs(—f)} — whereobs(f) = Kf and

Now, we recall the definition dbrgettinga subset of propositional
variablesX from an objective propositional formuta[17]:

Bnforget(X,pn) A ... AB1forget(X, ¢1). obs(—f) = K~ f). But generally, there may be any number of pos-
Now we have the following syntactical characterization of pro- sible outcomes for a given sensing action, including possible void
gression: observationsdbs(void) = KT). Since off-line reasoning is outside

the scope of this paper, it is needless to specify formally which obser-
vations are possible (and how likely they are in a given belief state)

Proposition 2 Let® be the NPDI formula corresponding to the ini- i i S
after a given sensing action is performed.

tial belief statex, anda an ontic action described by an action theory
as previously defined. Then

9 Such a reinforcement would not be obtained if conjunction were used in-
stead of combination: doing: many times would givéB;z again and
Prog(®,a) = Forget(VAR:, & ® 3a) again.



The execution of a BPR in an initial belief states is defined as
a nondeterministic notion (that is, there is generally a set of possible
executions ofr in ).

Definition 10 Given a BPPr and a belief states, the execution of
m in k is the nondeterministic function defined inductively by

6.3 Actions with exceptional effects

[12] and [5] study belief update operators with belief states mod-
elled by OCFs, so as to model exceptional effects of actions. These
operators are very similar to our progression for ontic actions from

a semantical point of view — but they do not give any syntactical

e czec(\ k) = stop;
o if T = ;7' witha € ACTp then
exec(m, k) = do(a); exec(n’, prog(k, a))
o if 1 = a; 7’ witha € ACTg thenexec(r, k)
= do(a); obs := feedback(a); exec(n’, rev(x, obs))

characterization of progression. [19] considers physical and sensing
actions in a situation calculus setting, where states are mapped to
a plausibility values; these plausibility values are simply inherited
from plausibility values in the initial belief state (noisy observations
and exceptional effects actions are not considered).

e ifr=if & then =’ else =’ then
exec(m, k) = { exec(r’, k) - ifk |= &
’ evec(r” k)  otherwise REFERENCES
o if T = (while ¢ do =');n" then
ewec((ﬂ’;ﬂ)w) if x =@ [1] F. Bacchus, J. Halpern, and H. Levesque. Reasoning about noisy
evec(m, k) = { emec(w”, K) otherwise sensors and effectors in the situation calculistificial Intelligence

Therefore, the execution of a program in a belief state is[2]
a nondeterministicfunction whose output (or trace) is a se-
quence of action execution instructiom®(«) and observations 3]
outcomesobs := feedback(ca). For instance, a possible execu- 4
tion of the programm above in the initial belief stat@,oiq IS
(ask; obs(B1—); ask; obs(B1—r); do(goleft)).

A further formalization, along the lines followed by the formal
modeling of on-line execution of Golog programs [8, 13], is a topic
for further study.

(6]
6 Related work
6.1 Graded belief

The construction given in Part 2 is not highly original (and is not the
primary goal of the paper). It is very similar to the work on strat-
ified belief bases and possibilistic logic where the duality between
(semantical) belief states and (syntactical) NPDI formulas, as well as
combination operators, exists under a similar form [4]. As to gradual (9]
doxastic logics, [22] who define a gradual versionk@45 some-

(7]

(8]

what differet from ours, wherB, expresses thap is true in all  [10]
worlds except: or less.

[11]
6.2 Revision by uncertain observations [12]

The closest work to ours is [6], where observational systems allow-
ing for unreliable observations are modelled using OCFs. Their worki 3]
is less specific than ours (notice that in the absence of ontic actions,
our revision process falls in the the class of Markovian observatiofil4]
systems). The main difference between [6] and our Section 3 is thfﬁS]
the revision functions in [6] remain defined at the semantical level,
which, if computed state by state following the definition, needs an
exponantially large data structure. Our approach can therefore H&6]
viewed as providing a compact representation for a specific class EI7]
observation systems. In another line of work, namely [1], model
noisy observations in a probabilistic version of the situation calcusig]
lus (again, compact representation issues are not considered). Belief
transmutations and adjustments [23] are based on OCFs too; hoW-]
ever, like Jeffrey’s rule in probability theory, they consist in chang-
ing minimally a belief state so as to force a given formula to have 3¢
given exceptionality degree, which therefore drastically differs from
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