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Abstract. Knowledge-based programs ([10, 18]) are a powerful
notion for expressing action policies in which branching condi-
tions refer to implicit knowledge. However, branching conditions in
knowledge-based programs cannot refer to possibly erroneous be-
liefs or to graded belief, such as “if my belief thatϕ holds is high
then do some actionα else perform some sensing actionβ”. The pur-
pose of this paper is to build a framework where such programs can
be expressed. In this paper we focus on the execution of such a pro-
gram (a companion paper investigates issues relevant to the off-line
evaluation and construction of such programs). We define a simple
graded version of doxastic logicKD45 as the basis for the definition
of belief-based programs. Then we study the way the agent’s belief
state is maintained when executing such programs, which calls for
revising belief states by observations (possibly unreliable or impre-
cise) and progressing belief states by physical actions (which may
have normal as well as exceptional effects).

1 Introduction

Knowledge-based programs, or KBPs ([10] – see also [18, 2, 21,
14, 3, 15]), are a powerful notion for expressing action policies in
which branching conditions refer to implicit knowledge and call for a
deliberation task at execution time. However, branching conditions in
KBPs cannot refer to possibly erroneous beliefs or to graded belief,
such as “while I have no strong belief about the direction of the
railway stationdo ask someone”. The purpose of this paper is to
build a framework for suchbelief-based programs(BBPs).

While knowledge states in KPBs are expressed in epistemic logic
(usually S5), BBPs need a logic ofgraded belief, where different
levels of uncertainty or entrenchment can be expressed. We therefore
have to commit to a choice regarding the nature of uncertainty we
wish to handle. Rather than reasoning with probabilistic belief states
(and therefore introducing probabilistic modalities), which would
take us far from usual logics of knowledge or belief such asS5 and
KD45, we choose to define belief states asordinal conditional func-
tions(OCF) [20] – also calledkappa-fonctions. Introducing OCFs in
logic is easy (see [12, 5, 6] for logical frameworks of dynamicity and
uncertainty based on OCFs); besides, OCFs are expressive enough
in many situations where there exists only a small number of “belief
degrees”; therefore they are a good trade-off between simplicity and
expressivity, as well as between ordinality and cardinality, since they
allow for an approximation of probabilities without the technical dif-
ficulties raised by the integration of logic and probability.

A graded version ofKD45 is defined in Section 2. In Section 3
we show how belief states arerevisedby possibly unreliable obser-
vations produced by sensing actions. In Section 4 we show how be-
lief states areprogressedwhen the agent performs(physical) actions
which may have alternative effects, some of which being more ex-
ceptional than others. Belief-based programs are defined in Section
5. Section 6 discusses related work.

2 KD45G

The languageL of graded doxastic dynamic logicKD45G is built
from afinite set of propositional symbols, the usual connectives, the
symbols> et⊥, and the doxastic modalitiesB1 , B2, . . . ,B∞. A
formula ofL is flat if it does not contain nested modalities andobjec-
tive if it does not contain any modality.For the purposes of this paper
it is sufficient to focus on flat formulas only(non-flat formulas do not
play any role for reasoning when executing belief-based programs).

Formulas ofKD45G are denoted by capital Greek lettersΦ,Ψ
etc. while objective formulas are denoted by small Greek lettersϕ,ψ
etc.Biϕ intuitively means that the agent belivesϕ with strengthi.
The largeri, the stronger the belief expressed byBi, andB∞ is a
knowledgemodality and will be denoted more simply byK (belief
with infinite strength is true knowledge).

Let us now define specific classes of flat formulas. Adoxastic atom
is a formulaBiϕ whereϕ is objective. A flat formulaΦ is doxasti-
cally interpretableiff it all its subformulas are inside the scope of a
modality, or equivalently, if it is a Boolean combination of doxastic
atoms; Anormal positive doxastically interpretable formula(NPDI)
is a formula of the formKϕ∧Bnϕn∧ . . .∧B1ϕ1 , whereϕ = ϕ∞,
ϕ1, . . . ,ϕn are objective formulas such that for allj andi > j we
have|= ϕj → ϕi. For instance,B4(a→ ¬b)∨ b∧K(a∨ c) is flat,
but not doxastically interpretable;¬B2a and(B4a∧B2¬b)∨K(a∨
c) are doxastically interpretable;K(a∨c)∧B3a∧B2a∧B1(a∧¬c)
is a NPDI formula;K(a∨c),B2a andB1(a∧¬c) are doxastic atoms
(anda fortiori, NPDI formulas)1.

We now give a simplified semantics forflat formulas2. Let S =
2V AR be the (finite) set ofstates(or worlds) associated withV AR.

1 When writing NFDI formulas, we omit tautological doxastic atoms: there-
fore we writeB2a instead ofK> ∧B1> ∧B2a.

2 This semantics can be generalized so as to interpret non-flat formulas as
well; it can then be proven that any formula can be rewritten into an equiv-
alent flat formula (as it is the case forS5 andKD45). The general semantics
uses graded accessibility relations instead of OCFs and its exposition would
be longer and needless for this paper.



States are denoted bys, s′ etc. If ϕ is objective then we note
Mod(ϕ) = {s ∈ S|s |= ϕ}. ForA ⊆ S, Form(A) is the formula
(unique up to logical equivalence) such thatMod(Form(A)) = A.

Definition 1 (belief states) An ordinal conditional function (OCF)
[20], also called abelief state, is a functionκ : S 7−→ N such that
mins∈S κ(s) = 0. Intuitively,κ(s) is the “exceptionality degree” of
s3. In particular, κ(s) = 0 means thats is not an exceptional state
whileκ(s) = +∞ means thats is impossible. Thevoid belief state
κvoid is defined byκvoid(s) = 0 for all s. κ is extended to objective
formulas byκ(ϕ) = min {κ(s) | s |= ϕ}.

Definition 2 A model forKD45G is a pair 〈s∗, κ〉 wheres∗ ∈ S, κ
an OCF, andκ(s∗) < +∞.

The truth of a flat formula ofL in a states of a model(κ, s∗) is
defined by :

• for ϕ objective,(κ, s∗) |= ϕ iff s∗ |= ϕ;
• for ϕ objective andi ∈ N, (κ, s∗) |= Biϕ iff κ(¬ϕ) > i;
• (κ, s∗) |= Φ ∨Ψ iff (κ, s∗) |= Φ or (κ, s∗) |= Ψ
• (κ, s∗) |= ¬Φ iff (κ, s∗) 6|= Φ.

The connectives∧,→,↔ are defined from∨ and¬ in the usual way.
Φ is valid (resp.satisfiable) iff is is satisfied in any model (resp. in
at least one model).Ψ is aconsequenceof Φ (denoted byΦ |= Ψ)
iff for any (κ, s∗), (κ, s∗) |= Φ implies (κ, s∗) |= Ψ. Φ andΨ are
equivalentiff Φ |= Ψ andΨ |= Φ.

In (κ, s∗), s∗ represents the (objective) actual state whileκ rep-
resents the agent’s subjective beliefs. WhenΦ is doxastically in-
terpretable,s∗ has no influence on the truth value ofΦ: only the
subjective beliefs count (hence the terminology “doxastically inter-
pretable”), therefore, abusing notations, for doxastically interpretable
formulas we noteκ |= Φ instead of(κ, s∗) |= Φ.

Any belief stateκ corresponds to a NPDI formula, unique up to
logical equivalence:

Definition 3 (from belief states to NPDI formulas and vice versa)

1. for any belief structureκ, H(κ) = Φκ is the NPDI formula
(unique up to logical equivalence) defined byΦκ =

∧
Biϕi

whereϕi = Form({s ∈ S | κ(s) < i}).4
2. given a NPDI formulaΦ =

∧
i Biϕi, G(Φ) = κΦ is the OCF

defined by
∀s ∈ S, κΦ(s) = min

κ|=Φ
κ(s)

For example, letκ defined byκ([a,¬b]) = 0, κ([a, b]) = 1,
κ([¬a, b]) = 1 andκ([¬a,¬b]) = ∞. Then

H(κ) = K(a ∨ b) ∧B1(a ∧ ¬b) .

It is not hard to show thatG(H(κ)) = κ andH(G(Φ)) ≡ Φ,
which means that there is a one-to-one correspondence between
OCFs and equivalence classes (w.r.t. equivalence onKD45G ) of
NPDI formulas. The following properties can also be shown:

1. for any belief stateκ, H(κ) = Φκ is the strongest (up to equiva-
lence inKD45G ) NPDI formula entailed byκ, i.e., for any NPDI
Ψ we haveκ |= Ψ iff Φκ |= Ψ.

3 κ(s) is usually interpreted in terms of infinitesimal probabilities:κ(s) =
k < +∞meansprob(s) = o(εk), whereε is infinitely small

4 Recall thatK = B∞.

2. for any NPDI formulaΦ, κΦ = G(Φ) is the minimal OCF satis-
fying Φ, i.e. ,κ |= Φ iff κ ≥ κΦ.5

3. for any NPDI formulaΦ =
∧

Biϕi, we haveκΦ(s) = i iff s |=
ϕi+1 ∧ ¬ϕi.

Notice that when writingΦκ =
∧

Biϕi, ϕi is the formula ex-
pressingall the agent believes to the degreei in the belief stateκ. It
can be shown easily that eachBi for i < +∞ (resp.K = B∞)
is a KD45 (resp. S5) modality restricted to flat formulas: thus,
Bi(ϕ ∧ ψ) ↔ Biϕ ∧ Biψ andKϕ → ϕ are valid inKD45G .
Lastly, for all i andj ≥ i, Kϕ → Biϕ andBiϕ → Bjϕ are valid
in KD45G .

We now define thecombinationof belief states, and by isomor-
phism, the combination of NPDI formulas6.

Definition 4 (OCF combination) Let κ1 and κ2 be two OCFs. If
minS(κ1 + κ2) = ∞, thenκ1 ⊕ κ2 is undefined; otherwise,κ⊕ κ2

is defined by

κ1 ⊕ κ2 = κ1 + κ2 −min
S

(κ1 + κ2)

When defined, we haveminS(κ1⊕ κ2) = 0, thereforeκ1⊕ κ2 is
an OCF.

By isomorphism, NPDI formulas can be combined as well:

Definition 5

Φ⊗Ψ =

{
H(κΦ ⊕ κΨ) = H(G(Φ)⊕G(Ψ)) if defined
⊥ otherwise

An important result is that ifΦ, Ψ are two NPDI formulas, then
κ |= Φ⊗Ψ iff κ > κΦ ⊕ κΨ. Moreover, the following formulas are
valid:

Biϕ⊗Bjϕ ≡ Bi+jϕ

Biϕ⊗Bj¬ϕ ≡


Bi−jϕ if i > j
Bj−i¬ϕ if j > i
> if i = j

;

Φ⊗Ψ ≡ Ψ⊗ Φ; Φ⊗ (Ψ⊕ Ξ) ≡ (Φ⊗Ψ)⊗ Ξ);
Φ⊗> ≡ Φ; Φ⊗⊥ ≡ ⊥

Importantly,Φ⊗ Φ is generally not equivalent toΦ.

3 Observations and revision

We now consider a finite setACT of actions available to the agent.
Although an action may generally both have “physical” (orontic) ef-
fects on the state of the world and give some feedback leading the
agent to revise her belief state, we assume without loss of generality
thatACT is partitioned into two disjoint subsetsACTP (pure phys-
ical actions, feedback-free), andACTE (pure sensing actions, with
no physical effects).

The feedback of a sensing action is anobservation. Ideally, an
observation is precise and reliable, but this is far from being always
the case in practice. We first have to make clear what we mean by
observation.

Definition 6 An observational belief state (OBS), or, for short, an
observation, is a belief stateκobs, corresponding to a NPDI-formula
Φobs = H(κobs) = Ko ∧ Bnon ∧ . . . ∧ B1o1 (by convention we
write o∞ = o).

5 This property is nothing but a rewriting of the minimum specificity principle
in possibilistic logic. See [9] for a discussion on the translations between
OCFs and possibility distributions.

6 Note that is not a real connective, because it only connects NPDI formulas.



An observation is therefore defined by the belief state it conveys
(which, in practice, may be a function of the belief state of the source
and the belief that the agent has on the reliability of the source).κobs

can also be viewed as the belief state the agent is if she gets this
observation in the void belief stateκvoid.

If Φobs ≡ Ko thenobs is a reliable observation, which brings a
totally certain information about the actual state of the world. More
generally, a simple observationΦobs ≡ Bkok, induces a belief in a
single factok, with a reliability degreek. In practice, many observa-
tions will be simple, but not all.

This rather complex definition is due to the fact that a single
observation generally relates to the real state of the world in sev-
eral ways, with various degrees of uncertainty (exactly as in the
Bayesian case). Consider for instance reading the valueθ on a tem-
perature sensor, which may for instance correspond to the obser-
vation Φobs = B1(t − 1 ≤ θ ≤ t + 1) ∧ B2(t − 2 ≤ θ ≤
t+ 2) ∧K(t− 5 ≤ θ ≤ t+ 5).

We now define how the agent revises her current belief state after
an observation.

Definition 7 Letκ be a belief state andκobs an observational belief
state. The revision ofκ by κobs is simply the combination ofκ and
κobs, i.e. , rev(κ, o) = κ⊕ κobs.

In particular, whenobs = Ko is a reliable observation, we get

(κ⊕ κobs)(s) = κ(s|obs) =

{
+∞ if s |= ¬o
κ(s)− κ(o) if s |= o

that is, a conditioning byo in the sense of [20]. By isomorphism,
revision can be performed syntactically:Φ = Kϕ ∧Bnϕn ∧ . . . ∧
B1ϕ1 being a NPDI formula andobs = Ko∧Bnon∧ . . .∧B1o1 an
observation, the revisionΦ by obs is Φ ⊗ obs. The following result
shows how the latter expression can be computed syntactically in a
compact way,without performing revision state by state:

Proposition 1

Φ⊗ Φobs ≡ B1ψp ∧ . . . ∧Bmψp+m−1 ∧Kψ

where

• ψ = ϕ ∧ o
• ψi = (ϕ1 ∧ oi) ∨ (ϕ2 ∧ oi−1) ∨ . . . ∨ (ϕi ∧ o1);
• p = min{j, ψj 6≡ ⊥};
• m = min{k, ψp+k ≡ ψ}.

Example 1 The agent wants to know the direction to the railway
station. Assume there are only two directions,r (right) and¬r (left).
His initial belief state is void (κ0 = κvoid). He tries to acquire some
more information by asking pedestrians. Let us consider five possible
observations:Φobs1 = B2r (“the station is on the right”, given
without hesitation,Φobs2 = B1r (“I believe it’s on the right but I’m
not sure”), Φobs3 = B2¬r, Φobs4 = B1¬r and finallyΦobs5 =
K> (“I have no idea”). After observing firstobs2, we haveκ1 =
κ0⊕κobs2 = κobs2 andΦ1 = Φ0⊕Φobs2 = B1r. Assume now that
the second pedestrian givesobs2 too. Using Proposition1, we get:
ψ = > ∧ > = >; ψ1 = r ∧ r = r; ψ2 = (r ∧ >) ∨ (> ∧ r) = r;
ψ3 = (r ∧ >) ∨ (> ∧ >) ∨ (> ∧ r) = > – thereforep = 1
andp + m = 3, henceΦ1 ⊗ Φobs1 = B2r ∧K> = B2r. If the
second observation had beenobs4 instead ofobs2 we would have
had Φ2 = Φ1 ⊗ Φobs4 = K> (the agent comes back to his initial
belief state). Indeed,ψ = > ∧ > = >; ψ1 = r ∧ ¬r = ⊥; ψ2 =

(r ∧ >) ∨ (> ∧ ¬r) = > – thereforep = 2 andp+m = 2, hence
Φ1⊗Φobs2 = B1>∧K> = K>. By induction, one can show that
after p1 occurrences ofobs1, p2 of obs2, p3 of obs3, p4 of obs4 and
p5 of obs5 (in any order), iterated combination leads to

• Bqr if 2p1 + p2 > 2p3 + p4 andq = (2p1 + p2)− (2p3 + p4);
• Bq¬r if 2p1 + p2 < 2p3 + p4 andq = (2p3 + p4)− (2p1 + p2);
• K> if 2p1 + p2 = 2p3 + p4.

This example shows how observationsreinforceprior beliefs when
they are consistent with them7. It clearly appears that the crucial hy-
pothesis underlying the combination rule isindependencebetween
the successive observations. Thus, on Example 1, the successive an-
swers are independent (pedestrians do not listen to the answers given
by their predecessors)8.

4 Progression

Physical actions may change the state of the world but do not give
any feedback. Therefore, given an initial belief stateκ and an on-
tic actionα, it is possible to determine the future belief state (after
the action is performed) by projecting the possible outcomes ofα
on the current belief state. This operation is usually calledprogres-
sion: prog(κ, α) is the belief state obtained afterα is performed in
belief stateκ. By isomorphism, we also defineProg(Φ, α) where
Prog(Φ, α) = H(prog(G(Φ), α)).

The semantics of progression is defined as in [5] by means ofOCF
transition models.

Definition 8 An OCF transition model is a collection of OCFs
{κα(.|s), s ∈ S}.

κα(s′|s) is the exceptionality degree of the outcomes′ when per-
forming actionα in states. Notice that for alls ∈ S, κα(.|s) is an
OCF, which means thatmins′∈S κα(s′|s) = 0.

Definition 9 (progression ofκ by an ontic action) Given an initial
belief stateκ and an ontic actionα whose dynamics is expressed by
the OCF transition modelκα, the progression ofκ byα is the belief
stateκ′ = prog(κ, α) defined by

∀s′ ∈ S, κ′(s′) = min
s∈S

{
κ(s) + κα(s′|s)

}
Notice thatκ′ is a belief state, because the normalization ofbothκ

andκα(.|s) implies thatmins′∈S {mins∈S {κ(s) + κα(s′|s)}} =
0, i.e.min{κ′(s′), s′ ∈ S} = 0.

Example 2 Consider two blocksA andB initially put down on a ta-
ble; the propositional variablex is true ifA is on top ofB, false oth-
erwise. A robot can perform the actionα consisting in try to putA on
B. If A is onB in the initial state, the action has no effect; otherwise,
it normally succeeds (ie,x becomes true), and exceptionally fails
(in that case,x remains false). The OCF transition model forα is:
κα(x|x) = 0; κα(¬x|x) = ∞; κα(x|¬x) = 0; κα(¬x|¬x) = 1.
If the initial state isκvoid, thenprog(κvoid, α) = {(x, 0), (¬x, 1)}
and prog(κ′, α) = κ′′ = {(x, 0), (¬x, 2)}. More generally, after

7 This has to be contrasted withtransmutations[23], where one enforces the
new belief state to satisfy a constraint of the formκ(ϕ) = i. Probability
theory has also both kinds of rules: Jeffrey’s (without implicit reinforce-
ment) and Pearl’s (see [7] for a discussion).

8 If this assumption could no longer be made, then we should have to model
it by adding a new variable which would have the effect of blocking (or
limiting) the reinforcement.



performingα n times without performing any sensing action (start-
ing fromκvoid), we getprog(κvoid, α

n) = {(x, 0), (¬x, n)}, whose
associated NPDI formula isBnx: the agent believes to the degreen
thatA is onB.

Example 2 shows that once again, the underlying hypothesis is
the independence between the outcomes of the different occurrences
of actions. Indeed, the intuitive explanation of the result of previous
example is that after thesen executions ofα, A is still not onB if
and only if alln occurrences ofα failed; each of the failures has an
excaptionality degree of 1 and failures are independent, henceforth,
n successive failures occur with an exceptionality degree ofn.
Notice that this reinforcement effect is a consequence of the use of
⊕ (if conjunction were used instead, we would still getB1x after
performingα n times).

We now show how progression can be computed syntactically,
which avoids explicitly computing progression state by state consist-
ing of a straightforward application of the definition.

First, we assume that the effects of actions are described by a
graded action theories, generalizing action theories so as to allow
for more or less exceptional action effects. In order to do so, we ex-
tend (as usual) the initial propositional languageL by duplicating
each variablex of V AR in xt and xt+1 (representingx respec-
tively before and after the execution of the action); letV ARt =
{xt|x ∈ V AR} andV ARt+1 = {xt+1|x ∈ V AR}, St = 2V ARt

andSt+1 = 2V ARt+1 . For any formulaΦ, Φt (resp.Φt+1) denotes
the formula obtained by replacing each occurrence ofx by xt (resp.
xt+1). A gradual action theoryis a NPDI formula of this extended
language:Σα = Kr∧Bnrn∧. . .∧B1r1. The gradual action theory
is obtained from a set of causal (dynamic or static) rules through a
completion process whose technical details are omitted due to lack
of space. Notice however that this completion does not present any
particular difficulty: it is an easy extension of completion for nonde-
terministic action theories such as in [16, 11]. We just give the graded
action theory corresponding to Example 2:

Σα = K(xt → xt+1) ∧B1xt+1

Like for the static case, any OCF transition models corre-
spond to graded action theories andvice versa: {κα(.|s), s ∈
S} induces Σα = Kr ∧ Bnrn ∧ . . . ∧ B1r1 where ri =
Form{(s′t+1, st) | κα(s′t+1|st) < i}.

Now, we recall the definition offorgettinga subset of propositional
variablesX from an objective propositional formulaψ [17]:

1. forget({x}, ψ) = ψx←> ∨ ψx←⊥;
2. forget(X ∪ {x}, ψ) = forget({x}, forget(X,ψ)).

Forgetting is extended toS5 formulas in [15], and is here extended
to NPDI formulas in the following way: ifΦ = Kϕ ∧ Bnϕn . . . ∧
B1ϕ1 andX ⊂ V ar(Φ), thenForget(X,Φ) = Kforget(X,ϕ)∧
Bnforget(X,ϕn) ∧ . . . ∧B1forget(X,ϕ1).

Now we have the following syntactical characterization of pro-
gression:

Proposition 2 LetΦ be the NPDI formula corresponding to the ini-
tial belief stateκ, andα an ontic action described by an action theory
as previously defined. Then

Prog(Φ, α) ≡ Forget(V ARt,Φt ⊗ Σα)

Thus, progression amounts to a combination followed by a
forgetting. For the first step, Proposition 1 can be applied again,
as shown on the following example. The second step amounts to a
sequence of classical forgetting operations.

Example 2 (continued)We haveΣα = K(xt → xt+1) ∧B1xt+1.
The initial belief state corresponds toΦ = B1x. Then,
Φt⊗Σα = Kψ∧Bnψn∧. . .∧B1ψ1, whereψ = >∧(xt → xt+1);
ψ1 = xt ∧ xt+1; ψ2 = (xt ∧ (xt → xt+1)) ∨ (> ∧ xt+1);
ψ3 = (xt ∧ (xt → xt+1)) ∨ (> ∧ (xt → xt+1)) ∨ (> ∧ xt+1).
After simplifying the expression we getψ = xt → xt+1;
ψ1 = xt ∧ xt+1; ψ2 = xt+1; ψ3 = xt → xt+1 = ψ. Next we
getΦt ⊗ Σα ≡ K(xt → xt+1) ∧ B1(xt ∧ xt+1) ∧ B2xt+1 and
Forget(V ARt,Φt⊗Σα) = K>∧B1xt+1∧B2xt+1 ≡ B2xt+1,
and finallyProg(Φ, α) = B2x.

Note the importance of combination, which explains the reinforce-
ment obtained9.

5 Belief-based programs

A belief-based program is built up from the set of primitive actions
ACT and usual program constructor. Given a setACT = ACTP ∪
ACTE of primitive actions, abelief-based program(BBP) is defined
inductively as follows:

• the empty planλ is a BBP;
• for anyα ∈ ACT , α is a BBP;
• if π andπ′ are BBP thenπ;π′ is a BBP;
• if π and π′ are BBP and Φ is a NPDI formula, then

if Φ then π else π′ andwhile Φ do π are BBPs.

Thus, a BBP is a programwhose branching conditions are doxas-
tically interpretable: the agent can decide whether shebelievesto a
given degree that a formula is true (whereas she is generally unable to
decide whether a given objective formula is true in the actual world).
For instance, the agent performing the BPP

π = while ¬(B2r ∨B2¬r) do ask;
if B2r then goright else goleft

performs the sensing actionask until she has a belief firm enough
(namely of degree 2) about the way to follow (notice that this pro-
gram is not guaranteed to stop!).

The execution of a belief program is anondeterministicfunction
mapping a pair consisting of an initial belief state and a program to
a sequence of actions and observations. Each sensing actionα is as-
sociated with anondeterministicfunction feedback : ACTE →
OBS. feedback(α) is the observation obtained after performing
the sensing actionα in a given environment. Ifα is a precise and
reliable truth test (that is,α senses the value of a fluentf ), then
feedback(α) ∈ {obs(f), obs(¬f)} – whereobs(f) = Kf and
obs(¬f) = K¬f ). But generally, there may be any number of pos-
sible outcomes for a given sensing action, including possible void
observations (obs(void) = K>). Since off-line reasoning is outside
the scope of this paper, it is needless to specify formally which obser-
vations are possible (and how likely they are in a given belief state)
after a given sensing action is performed.

9 Such a reinforcement would not be obtained if conjunction were used in-
stead of combination: doingα many times would giveB1x again and
again.



The execution of a BPPπ in an initial belief stateκ is defined as
a nondeterministic notion (that is, there is generally a set of possible
executions ofπ in κ).

Definition 10 Given a BPPπ and a belief stateκ, the execution of
π in κ is the nondeterministic function defined inductively by

• exec(λ, κ) = stop;
• if π = α;π′ withα ∈ ACTP then
exec(π, κ) = do(α); exec(π′, prog(κ, α))

• if π = α;π′ withα ∈ ACTE thenexec(π, κ)
= do(α); obs := feedback(α); exec(π′, rev(κ, obs))

• if π = if Φ then π′ else π′′ then

exec(π, κ) =

{
exec(π′, κ) if κ |= Φ
exec(π′′, κ) otherwise

• if π = (while φ do π′);π′′ then

exec(π, κ) =

{
exec((π′;π), κ) if κ |= Φ
exec(π′′, κ) otherwise

Therefore, the execution of a program in a belief state is
a nondeterministic function whose output (or trace) is a se-
quence of action execution instructionsdo(α) and observations
outcomesobs := feedback(α). For instance, a possible execu-
tion of the programπ above in the initial belief stateκvoid is
〈ask; obs(B1¬r); ask; obs(B1¬r); do(goleft)〉.

A further formalization, along the lines followed by the formal
modeling of on-line execution of Golog programs [8, 13], is a topic
for further study.

6 Related work

6.1 Graded belief

The construction given in Part 2 is not highly original (and is not the
primary goal of the paper). It is very similar to the work on strat-
ified belief bases and possibilistic logic where the duality between
(semantical) belief states and (syntactical) NPDI formulas, as well as
combination operators, exists under a similar form [4]. As to gradual
doxastic logics, [22] who define a gradual version ofKD45 some-
what differet from ours, whereBnϕ expresses thatϕ is true in all
worlds exceptn or less.

6.2 Revision by uncertain observations

The closest work to ours is [6], where observational systems allow-
ing for unreliable observations are modelled using OCFs. Their work
is less specific than ours (notice that in the absence of ontic actions,
our revision process falls in the the class of Markovian observation
systems). The main difference between [6] and our Section 3 is that
the revision functions in [6] remain defined at the semantical level,
which, if computed state by state following the definition, needs an
exponantially large data structure. Our approach can therefore be
viewed as providing a compact representation for a specific class of
observation systems. In another line of work, namely [1], models
noisy observations in a probabilistic version of the situation calcu-
lus (again, compact representation issues are not considered). Belief
transmutations and adjustments [23] are based on OCFs too; how-
ever, like Jeffrey’s rule in probability theory, they consist in chang-
ing minimally a belief state so as to force a given formula to have a
given exceptionality degree, which therefore drastically differs from
a revision rule enabling animplicit reinforcement of belief when the
observation is consistent with the initial belief state, as seen in Ex-
ample 1. See also [9] for a panorama of revision rules in numerical
formalisms, including OCFs.

6.3 Actions with exceptional effects

[12] and [5] study belief update operators with belief states mod-
elled by OCFs, so as to model exceptional effects of actions. These
operators are very similar to our progression for ontic actions from
a semantical point of view – but they do not give any syntactical
characterization of progression. [19] considers physical and sensing
actions in a situation calculus setting, where states are mapped to
a plausibility values; these plausibility values are simply inherited
from plausibility values in the initial belief state (noisy observations
and exceptional effects actions are not considered).
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