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Abstract. Gene networks describe functional pathways in a given
cell or tissue, representing processes such as metabolism, gene ex-
pression regulation, protein or RNA transport. Thus, learning gene
network is a crucial problem in the post genome era. Most existing
works learn gene networks by assuming one gene provokes the ex-
pression of another gene directly leading to an over-simplified model.
In this paper, we show that the gene regulation is a complex problem
with many hidden variables. We propose a semi-fixed model to repre-
sent the gene network as a Bayesian network with hidden variables.
In addition, an effective algorithm to learn the model is presented.
Experiments on artificial and real-life dataset confirm the effective-
ness of our approach.

1 introduction

The physiological functions of organisms are accomplished through
the coordinated regulation of the expression of a large number of
genes. The large number of regulation pathways comprise complex
networks which is called gene network: gene ensembles functioning
in a coordinated manner to provide vital functions, the fine regula-
tion of physiological processes, and the responses to external stim-
uli[18]. The accurate reconstruction of gene networks, indicated by
learning gene network, has many possible benefits and currently is
the focus of much active research[7]. Yet, it is impractical to con-
struct a detailed biochemical model of an organism containing hun-
dreds or even tens of thousands of genes by analyzing each gene and
determining all the binding and reaction constants one by one man-
ually4. Therefore the methods for automatically reconstructing gene
network by computing are needed.

Gene network can be reconstructed by analyzing the gene ex-
pression data, which are extracted from the microarray[1, 4, 5, 7, 11,
12, 16, 17, 19–21, 23–26]. Most works treat gene expression data as
complete dataset and exclusively use this to learn the gene network.
However, the regulation of genes consists of transcription, trans-
lation, splicing, posttranslational protein degradation, active mem-
brane transport, and other processes[18]. Each regulation compo-
nent should be taken into consideration in a correct description of
the gene network. Currently, beside gene expression level(referring
to the mRNA transcription), other types of data are still absence in
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the scale of genome or proteome. Treating all components as hid-
den variables is impractical since learning the structure with so many
hidden variable is difficult.

Based on the biology knowledge, it is observed that the most im-
portant components in the regulation system is the interaction be-
tween DNA ↔ Protein. Therefore, the regulation system can
be simplified as the interaction between genes and proteins, like
DNA → Protein → DNA while other intermediate step be-
tweenDNA ↔ Protein are to change the interaction strengths.
That is, giving the gene expression levels alone, gene regulation is
achieved by proteins, which is regarded as the agent of the regulation
system (we shall describe the process in detail in section 2). Proteins
play important roles in gene network. Therefore, when analyzing mi-
croarray gene expression data, proteins should be included as hidden
variables although their expression levels are still difficult to mea-
sure in large scale. The following are the advantage of an approach
modeling protein as hidden variables:

• The model will become more meaningful, more inter-
pretable and more closer to real-life system[2, 8–10].

• In the model, proteins are decision-relevant. The network
without considering hidden variable may omit some depen-
dencies [2, 8]. Compared to protein, other regulation com-
ponents are less important. A general simplification used by
researchers is to integrate effect of protein into other param-
eters and adjust the regulation strength without treating the
proteins as hidden variables.

Hidden variables introduce advantages as well as learning com-
plexity in the network. Moreover, microarray gene expression
datasets often have missing values. Thus, Bayesian network forms
a natural choice with the advantage of allowing for principled meth-
ods for learning the causal relationships with incomplete data, both
hidden variables and missing values[10]. Successful application of
Bayesian network can be found in domain of learning with hidden
variables for several applications [2, 8–10]. The most widely used
method for structure learning is EM algorithm[10]. In E step, the
algorithm calculates the score of each possible structure using the
structure and parameters learnt from previous iteration. Selection of
the structure and parameters which maximizes the score is done in
M step. The procedure is repeated until convergence criteria are met.
In our problem, such kind of learning is difficult since the algorithm
needs to learn the relationship among the hidden variables and the
observed variables. In addition it is difficult to predetermine the cor-
rect number of hidden variables. To determine optimum number of
hidden variables introduces more complexity in learning algorithm.



We propose a system which models the gene network as a directed
graph with hidden variables. In the model, the number of hidden vari-
ables is predefined by the biology knowledge and the relationships
between hidden variables and observed variables are partially fixed.
Also, we proposed an EM algorithm which can learn such networks
efficiently.

2 Model Gene Network as a Semi-Fixed Network
with Hidden Variables

In the gene regulation system, the regulation process can be de-
scribed as:gi → ri → pi → gj , wheregi and gj are genes in
which gi regulatesgj , ri is the mRNA(messenger RNA) generated
by gi andpi is the protein translated byri. Here,gi → ri → pi

is the central dogma which describes the gene expression, where a
mRNA is a messenger to transform the genetic information from a
gene to a protein. Thus, there are two main steps in the gene regula-
tion procedure: the first step is gene expression and the second step
is the regulation. The expression is to generate the protein to regulate
the target gene. Therefore, we can simplify the gene regulation pro-
cedure as follows:gi → pi → gj where genes and proteins are the
most important components in the regulation system and other com-
ponents such as splicing and protein degradation are the intermedi-
ate components to adjust the expression and regulation strengths. Let
Pa(gj) = {g1, ..., gk} denote a parent set of genegj such that each
gi ∈ Pa(gj) expresses genegj . An example network is shown in
Figure 1(a). If a genegj is regulated a set of genesPa(gj), all pro-
teins{p1, ..., pk} generated byPa(gi) act in a combinative manner
and it is not necessary to model the influence individually. Consid-
ering a single node representing the combined proteins influence as
the directed regulator to regulate the target gene, the model can be
further simplified as shown in Figure 1(b).
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Figure 1. Simplified gene regulation system. (a) Gene expression system
can be simplified as the interaction of genes and proteins. (b) The system can
be further simplified since the combined proteins are the direct regulator to

the target genes.

Based on the above discussion, for each genegj , we propose a
hidden variablehj , which is the combination of a set of proteins ex-
pressed fromPa(gj). Thereupon,Pa(gj) regulatehj , thenhj reg-
ulatesgj . Based on the simplified regulation system, each gene is
regulated by at most one hidden variable and the hidden variables
are regulated by one or more than one genes. Such model means the
interaction exists only betweenGene ↔ Protein and there is no
edges from gene to gene or hidden variable to hidden variable. This
model is termed as semi-fixed network and is formally defined as
follows:

• A semi-fixed networkN =< V, E > whereV = O ∪ H
(O is a set of observed variables andH is a set of hidden

variables) andE is the edge set.

• For eachek ∈ E, ek = (oi, hj) or (hj , oi). Thus,N is a
bipartite graph on two partitionsO andH.

• For eachoi ∈ O, there is exactly one incoming edge(hi, oi)
while there can be many outgoing edges.

• For each hi ∈ H, it has exactly one outgoing
edge (hi, oi) while there can be many incoming
edges{(oi1, hi), (oi2, hi), ..., (oik, hi)}. We define
Pa(hi) = {oi1, oi2, ..., oik}.

Compared to learning general network with hidden variables,
learning the semi-fixed network is easy since the number of hidden
variables is fixed and the relationship between hidden variables and
observed variables are partially known.

3 Semi-Fixed Structure EM Learning Algorithm

In previous studies, the gene expression datasets are treated as com-
pleted datasets (i.e., without missing values and hidden variables).
An important property is the decomposability in presence of full data,
which means that the probability of a network can be expressed as the
production of the probabilities of all independent sub-network:

P (X1...Xn : No, D) =
∏

i

P (Xi|Pa(Xi) : D) (1)

whereX1 to Xn are observed variables andNo denotes the net-
work without hidden variables.D is a complete dataset.

This property reduces the learning difficulty: with score func-
tions such as minimum description length(MDL) and Bayesian scor-
ing metric, learning the structure of a network can be decom-
posed to learn each independent sub-network independently[10, 13].
Whereas, in the presence of incomplete data, the decomposability
property is not valid and this makes the learning difficult[10]. How-
ever, if all parameters of all hidden variables are assigned, hidden
variables are observed and thus in a sense, the incomplete dataset
becomes “complete”.

A useful property of semi-fixed network is that with all parameters
been assigned to hidden variables(Note that we know the number of
hidden variables and partial relationships of hidden variables and ob-
served variables. It ensures that all hidden variables can be assigned
parameters.), the network can be decomposed into independent sub-
networks. Each subnetwork comprises of a genegj , a hidden vari-
ablehj and a parent set ofhj (Pa(hj))(as show in Figure 1(b)). The
probability is decomposed as:

P (g1...gn, h1...hn : No,h, D) =
∏

i

P (gj , hj , Pa(hj)) (2)

=
∏

i

P (hi|Pa(hi) : D)
∏

i

P (gi|hi) (3)

whereg1 to gn are observed variables (genes),hi to hn are hidden
variables andNo,h denotes the network with hidden variables.D is
an incomplete dataset.

Based on the different decomposition method, the decomposition
of Scores is also different (Bayesian score is used here [12]):



Score(No) =
∑

i

Score(gi|Pa(gi)) (4)

while

Score(No,h) =
∑

i

Score(hi|Pa(hi)) +
∑

i

Score(gi|Hhi) (5)

The learning procedure tries to maximize the score. Different
score functions lead to different network structures. That is, forgi,
Pa(gi) using score function given by equation 4 may be different
from Pa(Hi) using score function as given in eq. 4.

Using this property, we propose a modification to EM algorithm
known as semi-fixed structure EM(SSEM ) algorithm to learn such
network. The principle of the EM algorithm is: In each iteration,
given an initial network structureNi−1 and a parameter setθi−1

(which includes both the parameters of observed variablesθo
i−1 and

hidden variablesθh
i−1), the missing values and hidden variables to

build a complete dataset are calculated. The next step is to find a
better structureNi and a better parameter setθi based on the new
complete dataset.

In this paper, we apply the algorithm to Boolean state gene net-
work model. The missing values and hidden variables can be filled
up as follows:

GivenN andθ, for a missing value of a variablevi, supposing
the variable is regulated byPa(vi), we compute the value ofvi

by the probability distribution ofvi based onPr(vi|Pa(vi))
given the value ofPa(vi) which is observed from the given
dataset.

Here is an example:

Example: The variablev1 has parentsv2 andv3. As shown
in Table 1 (a), there is a missing value in an instance:
{v1, v2, v3} = {(), 1, 1} where() indicate a missing value.
SupposePr(vi = 0|v2 = 1, v3 = 1) = 0.4 and
Pr(vi = 1|v2 = 1, v3 = 1) = 0.6, we fill up the in-
stance by{v1, v2, v3} = {(0.4, 0.6), 1, 1}. It means, the
filled value adds 0.4 count to the casev1 = 0 and 0.6
count to the casev1 = 1. As shown in Table (b), there
are 1.4 cases for whichv1 = 0 and 2.6 cases for which
v1 = 1. In other words,Pr(v1 = 0) = 1.4/4 = 0.35 and
Pr(v1 = 1) = 2.6/4 = 0.65.

v1 v2 v3

1 1
1 0 1
1 1 1
0 1 1

v1 v2 v3

(0.4, 0.6) 1 1
1 0 1
1 1 1
0 1 1

(a) (b)

Table 1. An example of filling missing values.

The values of hidden variables are treated as missing values too
and computed in similar fashion. Thus, hidden variables have the
same value set as observed variables. Given the filled dataset, the
learning problem is the same as that of learning structure from a com-
plete dataset. The general method to learn the structure from a com-
plete dataset is to decompose the network into independent subnet-
works. Then, learn the structure of each subnetwork independently.

Since we fix partial structure, we decomposed it as the independent
subnetworks, each of which has a target gene, a hidden variable and
a parent set of the hidden variable (similar to Figure 1 (b)). The main
objective is to find the optimal parents for each hidden variable. Gene
network is a sparse network [21]. Learning parents from a big num-
ber of candidates is difficult task. The often used trick is to measure
the dependencies of candidates to target variable and to choose the
bestk genes as candidate parents. Then, we search the parents from
the candidate parents. Friedman et al.[13] proposed to calculate the
dependency by KL-divergence(as Equation 6):

MI(X, Y |M) =
∑
X,Y

P̂ (X, Y ) log
P̂ (X, Y )

PM (X, Y )
(6)

whereMI(X, Y |M) is the mutual information ofX andY with
respect to the networkM andPM (X, Y ) is the estimated joint prob-
ability of X andY givenM .

However, we cannot observe the probability distributionP (gj , hi)
to measure the dependency ofgj and hi. We propose an alterna-
tive way to measure the dependency: in each subnetwork, the target
gene is the only descendant of the hidden variable. The probabili-
ties of the hidden variable is passed to the target gene. Therefore,
MI(gj , hi|M) can be reflect byMI(gj , gi|M). Thus, the MI can
be calculated as following:

MI(gj , gi|M) =
∑
gj ,gi

P̂ (gj , gi) log
P̂ (gj , gi)

PM (gj , gi)
(7)

whereP̂ (gj , gi) is the observed probability distribution of genes
gj andgi while PM (gj , gi) is the estimated probability distribution
of genegj andgi in networkM . Performing inference on joint prob-
abilities in a big dataset is quite time intensive. Thus, we approximate
the joint probability ofgi andgj as follows:

• If gj ∈ Pa(gi), then gj → hi → gi. PM (gj , gi) =
PM (gi|gj)PM (gj) ≈ PM (gi|hi)PM (hi|gj)PM (gj). Note
that in this case,PM (gj , gi) 6= PM (gi, gj).

• Otherwise,gi and gj are conditionally independent and
PM (gj , gi) can be approximated asPM (gj)PM (gi).

The detail of the iterative algorithm is as follows:



• In iteration i, give Ni−1, θi−1, the original incom-
plete datasetD0 and a decomposable score function
Score(N : θ, D) where D is a complete dataset.

• In E step, the missing values and the values of hidden
variables ofD0 are filled up based on the inference of
Ni−1 andθi−1. Then, we obtain a complete datasetDi−1.
The structureNi is learnt based onDi−1 by maximizing
Score(Ni : θi−1, Di−1). Because of the decomposability,
we learn the parents for each genegi independently:

(1) find k genes with best MI score with respect togi to
build the candidate parent setCPS.

(2) find parents PS ∈ CPS which maximum
Score(SSi : θi−1, Di−1), where SSi is a substruc-
turePS → hi → gi.

- repeat the procedure until converging.

• In M step, θi is learnt based onNi which maximum
Score(Ni : θi, Di−1).

• Repeat the procedure until converging or the predefined iter-
ation number is reached.

In the above procedure, the network structure and parameters are
refined iteratively.

4 Experimental results

The model and the algorithm are implemented in MATLAB and
BNT5. We present experimental results on artificial and real life gene
expression datasets.

4.1 Experiment on artificial datasets

D11 andD12 are generated by simulating the gene expression with
hidden variables.D11 contains 5 variables and 6 edges (as shown in
Figure 2(b) whileD12 contains 7 variables and 8 edges (the structure
is not shown).

We compare the learning result with traditional learning algo-
rithm K2 (a Bayesian network learning algorithm[6]) and structural
EM(SEM ) (an algorithm in learning Bayesian network with hid-
den variables[10]). K2 represents the learning algorithm treating the
gene expression dataset as complete dataset.SEM adds some hid-
den variables but does not define the number of hidden variables nor
any prior information of the relationships of hidden variables and
observed variables6. K2 andSEM recovered less than 30% correct
edges whileSSEM recovered more than 75% correct edges in both
datasets. The comparison for artificial dataset is shown in Table 2 and
Figure 2.

It can be seen from the table that SSEM got more correct edges
compared to K2 and SEM.

4.2 Experiment on real-life experiment

The microarray gene expression dataS. Cerevisiaegenome contains
76 gene expression measurements[22]. The expression levels were

5 Bayes network toolbox, http://www.ai.mit.edu/∼murphyk
6 In the experiments, several numbers of hidden variables are predefined for

SEM and the one with best performance is selected as the result.

Algorithm D11 D12

TE CE TE CE
K2 2 0 4 1

SEM 3 1 5 2
SSEM 5 3 9 7

Table 2. TE indicates total learnt edges which is the number of edges the
algorithm learnt from the dataset while CE indicates the correct edges that

are learnt.
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Figure 2. Leaning performance comparison inD11 dataset. (a) Original
structure with hidden variables. (b) Structure with removing hidden

variables. (c) structure learnt by K2. there is no correct edge. (b) structure
learnt by SEM. There is only 1 correct edge. (d) structure learnt by SSEM. 3

correct edges plus 2 false edges.

discretized to discrete values -1, 0 and 1 following the discretiza-
tion policy of [12]. A value is discretized to -1 if it is smaller than
-0.5 and 1 if it is bigger than 0.5, otherwise 0. The real-life gene
network in our work is a Yeast transcriptional cell cycle subnetwork
published in [14], which includes 15 genes and 21 edges. The regu-
lation relationships for the database are verified by YPD (Yeast Pro-
teome Database)7[15] and [14], as shown in Figure 3(a). Since there
are some time delays existing in the regulation system, the task is to
find the edges from consecutivek time slices(k indicates the maxi-
mum time delay). For the purpose of this data, an approach based on
k−DBN [3] is implemented for the comparison purpose. The com-
parison is shown in Table 3 and Figure 2(Only the original structure
and the structure learnt by SSEM are presented.).

Algorithm Yeast gene subnetwork
TE CE

K2 41 2
SEM 16 2

k −DBN 31 6
SSEM 33 14

Table 3. TE(Total learnt edges) indicates the number of edges the
algorithm learnt from the dataset and CE(the correct edges) indicates the

number of correct learnt edge.

The effectiveness of semi-fixed structure EM learning algorithm
can be seen as compared tok − DBN algorithm asSSEM takes
advantage of its semi-fixed structure and effective learning algorithm.

7 http://www.proteome.com/YPDhome.html
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Figure 3. Leaning performance of SSEM in real-life gene network. (a) The
original subnetwork structure. (b) The structure learnt bySSEM . 14 edges

are learnt.

5 Conclusion

The semi-fixed hidden variable model introduces hidden variables to
model the important components of gene network, i.e., proteins. The
model makes the network decomposable and parts of the network
are fixed using biological knowledge. Compared to the current work
on gene network, we integrate the biological knowledge to build the
semi-fixed hidden variable model which is effective and reflects the
real life system. An effective learning algorithm is presented in the
paper suitable to learn such partially fixed network. The main dis-
advantage of the model is that it needs more computing resource to
control the hidden variables and requires more iterations to converge.
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