
Efficient and Secure Collaborative Filtering through
Intelligent Neighbour Selection

Michael P. O’Mahony and Neil J. Hurley and Guénolé C.M. Silvestre1

Abstract. In this paper, we introduce novel neighbourhood forma-
tion and similarity weight transformation schemes for automated col-
laborative filtering systems. We define profile utility, which models
the usefulness of user profiles for collaborative filtering as a function
of the items they contain. We demonstrate that our approach leads to
more efficient and scalable collaborative filtering when compared to
a benchmark k–Nearest Neighbour approach, while providing sys-
tem accuracy and coverage to the same standard. In particular, we
show that our approach is completely secure against the malicious
attacks outlined in the paper, whereas k–NN proves very vulnerable.

1 Introduction
Memory-based automated collaborative filtering (ACF) [8, 1, 9] is a
recommendation algorithm which makes recommendations to users
based on the ratings of similar users. A key element of the ACF al-
gorithm is the user similarity measurement which is typically used
for two separate purposes. Firstly, it is used in the selection of the
set of neighbours whose ratings are combined to form the recom-
mendation – the most similar users are selected. Secondly, it is used
to form the weights in the computation of the recommendation as a
weighted average of the neighbours’ ratings. It is important to distin-
guish between these two stages of the algorithm and we argue that
different approaches might be appropriate for each. In particular, the
goal of neighbour selection is to select the most useful neighbours on
which to base the prediction. While similarity is one measure of use-
fulness when considering the accuracy of the algorithm, the notion
of neighbour utility can be extended to include issues such as effi-
ciency and robustness. For example, the on-line efficiency of ACF is
directly proportional to the number of similarity measurements that
are made. To form a neighbourhood based on similarity, the similar-
ity of all potential neighbours must be calculated. Basing neighbour
selection on a less costly utility measure can lead to improved effi-
ciency. In other work, clustering [10] and dimension-reduction [9, 2]
are two approaches that have been proposed to improve efficiency.

In previous work [6, 5], we have identified robustness as another
important performance measure of an information retrieval system.
In the case of ACF, we have shown that it is possible for a malicious
user to significantly manipulate the recommendations of the system
by inserting small numbers of specially-tailored attack profiles into
the system. These attack profiles are based on popular items (i.e.
items that have been rated by many users in a system), on the basis
that a profile containing such items is in the neighbourhood of a large
number of users and that popular items tend to be positively rated.
Therefore it is possible to predict the likely correlation of an attack

1 University College Dublin, Belfield, Dublin 4, Ireland email:
michael.p.omahony@ucd.ie

profile with other users. In [5] we have proposed a neighbourhood
filtering mechanism to defend against attack, but this mechanism is
not completely robust against more sophisticated attacks.

It is well recognised that frequently occurring words are not a good
basis for calculating the similarity between documents in informa-
tion retrieval. Indeed, an inverse user frequency approach has been
proposed for ACF [1], which seeks to penalise the ratings given to
popular items. Here, we go a step further by proposing a profile util-
ity measure based on certain characteristics of the items contained in
a profile. Users with the highest utilities are selected as neighbours.

In this paper, we demonstrate that such filtering does not adversely
affect accuracy or coverage (the percentage of predictions sought
which a system is able to deliver), but dramatically improves the
robustness of the system against the attacks that we have consid-
ered. Another important advantage of this neighbour selection policy
is that profile utility can be calculated offline and is easily updated
when new items are added. Hence neighbourhoods can be formed in
a very efficient manner regardless of database size.

2 Memory-Based Collaborative Filtering
We base our analysis on the widely used GroupLens [8] algorithm,
in which a prediction, pa,j , for user a (the active user) and item j is
calculated from the ratings of similar users (neighbours) as follows:

pa,j = v̄a +

∑n

i=1
w(a, i)(vi,j − v̄i)

∑n

i=1
|w(a, i)|

(1)

where n is the (fixed) neighbourhood size, vi,j is the rating of user i

for item j and v̄a is the mean rating for user a. The weights, w(a, i),
are calculated using a similarity metric – we use Pearson correla-
tion [8] which has been shown to give good performance [1].

It has been noted in [3] that weights calculated on the basis of
small numbers of co-rated items may not reflect the true similar-
ity between users. Thus, if n is the number of co-rated items, we
modify the weights calculated using Pearson correlation as follows:
w′

a,i = wa,i ×
n
N

if n < N , where N is a constant (set to 50 in our
experiments as per [3]). The weight remains unchanged if n ≥ N .

We compare our scheme as described in Section 4 against the
above k–NN algorithm. In [6], we compared the performance of k–
NN against a neighbourhood thresholding approach using a variety
of similarity measures. We found that k–NN using Pearson corre-
lation provided the best performance in terms of predictive accuracy
and coverage, although robustness against attack was poor. Neverthe-
less, we feel that this algorithm represents a sound benchmark since
any new approach should achieve comparable accuracy and cover-
age, while, of course, offering greater efficiency and scalability and
improved robustness against attack.

3 Robustness & Attacks
In previous work [6, 5], we have successfully implemented malicious
attacks on ACF systems and have proposed robustness as an addi-
tional performance measure as a complement to existing measures –
predictive accuracy, coverage, etc. We define robustness as follows:

DEFINITION 1. Robustness is the ability of a system to provide
accurate predictions given some degree of noise present in the data.

In general, one must expect a certain level of noise to be present
in all systems. When explicit rating entry is required by the user,
for example, noise is likely to be introduced through carelessness,
human error or when rating scales do not provide users with sufficient
options. These are examples of unbiased noise. It is also possible that
biased noise, entered with a specific motive in mind, may be present
in a system. Such malicious attacks are the focus of this paper.

In our work to date, we have focused on three attack types: prod-
uct push, product nuke and generalised random attacks. The goals
of product push and nuke attacks are to promote or demote the pre-
dictions made for targeted items, respectively. For example, consider
an author who wishes to increase his own sales by forcing a recom-
mender system to output artificially high ratings for his work (push),
while reducing predictions made for his competitors work (nuke). In
random attacks, the objective is to reduce the overall performance of
a system as a whole in an attempt to compromise the system’s in-
tegrity. As recommendation quality deteriorates, users will begin to
loose trust in the system and seek other solutions. As a potential real-
life scenario, consider a recommender system owner who wishes to
attract additional customers by attempting to undermining the output
quality of rival systems. In this paper, due to limitations of space, we
analyse product push attacks only, noting that our approach is also
effective against these other attacks as outlined in our previous work.

3.1 Product Push Attack: Strategy
The attack is implemented by creating bogus or attack user profiles
and inserting this data into a system through the normal user interface
– no other access to a system database is assumed for attackers.

From the attacker’s perspective, there are several criteria that need
to be satisfied if attacks are to be successful. Firstly, if attack profiles
are to influence predictions, they need to be present in the neighbour-
hoods of targeted users. Since it is not tractable to create separate at-
tack profiles to target every genuine user in a system, attack profiles
need to a strong similarity with as many genuine users as possible.
Our approach is to build attack profiles using popular items since, by
definition, many genuine profiles contain these items and in addition,
the ratings for these items are likely to be consistent and high.

Secondly, for the Pearson similarity metric, attack profiles need to
correlate in the same direction (i.e. either positively or negatively)
with targeted users if predictions made for items are to be pushed. (If
this is not the case, the opposite effect will be achieved, and items
will instead be nuked). Thus, along with the item to be pushed, the
attack profiles are constructed from two “groups” of items. The first
group consists of items that are generally rated higher than average
in the database (i.e. liked items), and the second group consists of
items that are generally rated lower than average (disliked items).
By assigning a higher rating to the liked items, an attacker can be
confident that attack profiles will correlate in the same direction with
the majority of genuine users in the database.

Referring to (1), the contribution of any potential neighbour to
a prediction depends on the magnitude or the term (vi,j − v̄i).

For attack profiles, the obvious strategy is to choose ratings for the
item groups that will maximise this term. Thus, the minimum rat-
ing, Rmin , is assigned to each of the disliked items and ratings of
Rmin +1 to the liked items. The item being pushed is set to the max-
imum rating, Rmax. While this strategy requires a certain knowledge
of the data contained in databases, it is not unreasonable to assume
that such knowledge is possible to estimate (e.g. in movie domains)
or to mine (e.g. on Amazon.com, using feedback provided by users).

3.2 Metrics
We adopt two metrics to evaluate system robustness which are de-
liberately independent from system accuracy. We feel that this is an
important requirement as the following example illustrates. The met-
ric commonly used to evaluate predictive accuracy is Mean Absolute
Error or MAE, which measures the absolute difference between true
and predicted ratings. Suppose that the true rating for a particular
item given by a certain user is 3 and that the pre- and post-attack
predictions for this item are 2 and 4 respectively. In this scenario,
MAE remains unchanged following the attack even though a signif-
icant prediction shift has occurred. As this simple example shows,
MAE is not an adequate metric to measure system robustness.

3.2.1 Mean Absolute Prediction Error (MAPE)

We define our first metric, MAPE, as the absolute difference between
pre- and post-attack predictions. Let Ai be the set of users over which
we evaluate an attack on item i. We calculate MAPE for item i as

MAPE(i) =
1

|Ai|

∑

a∈Ai

|p′

a,i − pa,i| (2)

where p′

a,i is the post-attack prediction. We then calculate the overall
robustness of a system by taking the average MAPE over all items
attacked. A low value of MAPE indicates that a system is robust to a
particular attack. With this metric, the prediction shift evident in our
example above is captured, giving the desired result of 2.

3.2.2 Percentage of Good Predictions

Another approach to measure attack success is to calculate the per-
centage of good predictions that are made for targeted items at var-
ious attack strengths. We define a good prediction as either the best
or second-best rating on a particular scale. For a (successful) product
push attack, we would expect to observe an increase in the number
of good predictions that are made for targeted items. This represents
a useful measure of attack success since users are more likely to act
on recommendations made for items with high predicted ratings.

4 Neighbour Selection Strategies
In ACF, neighbours are typically selected on the basis of similarity to
the active user. Cosine similarity, Spearman Rank and in particular,
Pearson correlation, have been widely used to calculate similarity
based on the co-rated items between users.

In previous work [1, 7], it has been recognised that certain items
may be of greater importance when calculating similarities. For ex-
ample, unpopular items (i.e. items that have not been rated by many
users in a system) and items that receive diverse ratings by the user
population may be of more use in distinguishing between users and
in identifying users’ tastes. In the next section, we expand on these
observations to formulate a novel neighbour selection strategy.

4.1 Profile Utility
In our approach, we assign to each user profile a global weight that
models a profile’s usefulness as a potential neighbour, based on cer-
tain characteristics of the items that are contained in the profile. In
general, we define the profile utility of user a as follows:

U(a) = f(j1, j2, ..., jn) (3)

where ji ∈ Ia is the set of items user a has rated. Firstly, we con-
sider profile utility in terms of item popularity, and posit that users
who have rated predominantly popular items are unlikely to serve as
good predictors. Specifically, we rate utility as the summation of the
inverse popularity of items contained in a profile as follows:

U(a) =
1

|Ia|

∑

j∈Ia

InvPop(j) (4)

We define the inverse popularity of an item as:

InvPop(j) =

{

1 − n(j)
m

if n(j) < m

0 otherwise
(5)

where n(j) is the number of users who have rated item j and m is
a threshold popularity. Profiles containing unpopular items are thus
assigned a higher weight, and the parameter m can be used to control
the set of possible neighbours by assigning a zero contribution from
items that exceed the specified popularity threshold. Neighbourhoods
are formed by simply selecting k users with the highest utility that
contain the item for which a prediction is being sought. Once neigh-
bours have been selected, predictions are calculated as in (1).

In a similar manner, utility can also be defined in terms of item
rating distribution. The greater the variation of ratings across items,
the more likely it is that such items are useful to the prediction pro-
cess. Thus, we can define utility in terms of the entropy of items in a
user’s profile, where the entropy of item j is defined as:

H(j) = −
∑

i

pi,j log2(pi,j) (6)

where pi,j is the probability of ratings on item j valued i. Profile
utility can now be defined as:

U(a) =
1

|Ia|

∑

j∈Ia

H(j)

H(j)max

(7)

where H(j)max is the maximum entropy of item j which assumes
that the distributions over all classes of ratings are identical. In addi-
tion, other measures of profile utility may be considered – for exam-
ple, thresholds may be applied to item entropy, item popularity may
be combined with entropy data, etc.

4.2 Similarity Weight Transformation
In addition, it is necessary to reduce similarity weights for attack
profiles to zero to protect predictions made for new or less popular
items – i.e. where the number of genuine users who have rated such
items is less than the neighbourhood size. In these circumstances, at
least some attack profiles created to target such items would influence
predictions if they were not filtered from neighbourhoods. This ob-
servation motivates the following similarity transformation scheme:

w
′

a,i = wa,i ×
1

|Ia ∩ Ii|

∑

j∈Ia∩Ii

InvPop(j) (8)

where the inverse popularity of items is calculated as before. By
choosing a low value for the popularity threshold m, the transformed
weights for attack profiles (that consist primarily of popular items)
will approach zero. By combining this scheme with that of Sec-
tion 4.1, a system is much more likely to be robust against the type
of attacks considered in this paper. As before, weights can also be
transformed using item entropy, etc.

5 Evaluation
We used three datasets in our evaluation. The MovieLens dataset [4]
consists of 943 users, 1, 682 movies and contains 100, 000 transac-
tions in total. Movies are rated on a scale of 1 to 5.

The EachMovie dataset, provided by Compaq Equipment Corpo-
ration, has some 72, 916 users who entered a total of 2, 811, 983
numeric ratings for 1, 628 different movies. From this, we selected a
random sample of 1, 399 users, containing 91, 982 transactions on a
rating scale of 1 to 6 (modified from the original 6-point scale of 0
to 1).

Finally, the Smart Radio dataset, provided by the Department of
Computer Science, Trinity College Dublin, contains 4, 075 ratings
by 63 users on 1, 055 songs. The rating scale is from 1 to 5. This
dataset contains significantly less users than those above.

The experimental procedure adopted in all cases was to remove a
single user-item pair from the dataset, and a prediction for this pair
was then made using all remaining data. In all cases, we present av-
erage results over all items contained in the respective datasets. For
each dataset, the optimal neighbourhood size was chosen by exper-
iment, with k set to 60 for both MovieLens and EachMovie and 18
for Smart Radio. The number of items in each attack profile was
approximately 50 for MovieLens and EachMovie and 20 for Smart
Radio. In this paper, we present results for profile utility and similar-
ity weight transformation in terms of inverse popularity only – see
Section 7 for comment on the the other approaches discussed ear-
lier. Due to limitations of space, we do not present results for the
EachMovie dataset – note, however, that the trends observed for this
dataset closely matched those of the MovieLens dataset.

5.1 Performance of Benchmark k–NN Algorithm
To begin, we evaluate the effect of the product push attack using the
benchmark k–NN algorithm. In Table 1 we present MAPE against
attack strength for the MovieLens and Smart Radio datasets. For both
datasets, significant prediction shifts were achieved by the attack. For
example, an MAPE of 2.10 resulted for MovieLens for an attack
strength of 50 attack profiles inserted. Note that greater than 98% of
these prediction shifts were positive, as required for a product push
attack. Given that MovieLens operates on a rating scale of 1 to 5, a
shift of 2 is sufficient to change a prediction from “dislike” to “like”.
A similar result obtained for Smart Radio when 8 attack profiles were
inserted. For both datasets, MAPE remained constant after particular
attack strengths – these points coincide with the neighbourhood sizes
used by the algorithm (k was set to 60 for MovieLens and 18 for
Smart Radio). In our experiments, we used the same attack profile
repeatedly and therefore no additional effect could be achieved by
inserting more than k attack profiles into the system.

The change in the number of good predictions versus attack
strength for k–NN is also presented in Table 1. For MovieLens, when
only 1 attack profile inserted into the database, the average percent-
age of good predictions achieved across all dataset items was 28%,
compared to 18% pre-attack – a percentage increase of 57%. For

Table 1. The robustness provided by the benchmark k–NN algorithm
when subjected to a product push attack.

MovieLens Smart Radio

Attack MAPE % Good # Attack MAPE % Good
Profiles Preds. Profiles Preds.

0 0 18 0 0 41
1 0.35 28 1 0.92 73
5 0.88 49 2 1.31 83
10 1.20 62 4 1.73 90
30 1.79 77 8 2.12 94
50 2.10 79 12 2.32 95
70 2.20 79 18 2.55 95

100 2.20 79 24 2.55 95

Smart Radio, the attack was even more successful when, again, just
1 attack profile was inserted. In this case, the percentage of good
predictions increased by 77% – from 41% to 73%. These results in-
dicate that there is a substantial benefit for potential attackers. It is
reasonable to assume that users are more likely to act on recommen-
dations that receive high predicted ratings. Thus, in the context of a
product push attack, the insertion of only a few attack profiles has the
potential to convert a significant number of “browsers” into “buyers”.

The trends observed using both metrics were similar. Further, it is
apparent that the cost/benefit ratio (from the attacker’s perspective)
began to fall as attack strength increased. If we model attack cost by
simply the number of attack profiles inserted, we can see that there is
little additional gain for the attacker by inserting more than 30 attack
profiles into the database (MovieLens). At this attack strength, the
percentage of good predictions achieved across all items was 77% –
only a further increase of at most 2% was achieved at greater attack
strengths. Since attack profiles were designed to cause maximal pre-
diction shifts, the presence of even low numbers of attack profiles in
neighbourhoods resulted in significant prediction shifts.

While these results are encouraging for would-be attackers, they
clearly present a real cause for concern for recommender system op-
erators. Thus having established that certain malicious attacks are
indeed feasible and the need for a robustness performance measure
for ACF, we now evaluate our approach, designed to secure systems
against attack, as outlined in Section 4.

5.2 Performance of Profile Utility/Similarity
Weight Transformation Algorithm

In this section, we compare our approach against the benchmark k–
NN algorithm using several performance criteria and discuss the se-
lection of a suitable value for the popularity threshold value m.

5.2.1 Efficiency and Scalability

In our approach, we simply choose as neighbours the k users with
the highest profile utility who have rated the item for which a pre-
diction is being sought. For k–NN, similarities must be computed
between the active user and all other users who have rated the item in
question before neighbours can be selected. Since profile utility can
be computed offline and is easily updated when new items are rated,
it represents a considerable increase in efficiency when compared to
k–NN. Formally, the profile utility algorithm is O(j) compared to
O(r.j) for k–NN, where j is the average number of items co-rated
by the active user and neighbour profiles and r is the number of users

who have rated the item for which a prediction is sought. In contrast
to k–NN, the efficiency of our approach is independent of r and thus
does not suffer from scalability problems as a system grows in size.

5.2.2 Accuracy and Coverage

In Tables 2 and 3, we compare the performance of our approach to
that of the benchmark k–NN algorithm. The data shows how the pre-
dictive accuracy and coverage provided by our approach varied with
the threshold value m. Accuracy is measured according to Mean Ab-
solute Error (MAE). Note that the performance of the benchmark k–
NN algorithm is not effected by m and thus accuracy and coverage
values presented for this algorithm remain constant in the tables.

The data presented for k–NN relates to an attack strength of 0. In
contrast, the data presented for our approach is independent of attack
strength – i.e. the same results were obtained for all attack strengths
shown in Table 1, including the case where no attack was present.

The trends observed for both datasets were similar. We can see
that the accuracy and coverage provided by our approach matched
that of k–NN for m ≥ 150 for MovieLens and m ≥ 24 for Smart
Radio – thereby validating our neighbour selection strategy in choos-
ing neighbours that contain less popular items. At lower values of m,
many test users were unable to form neighbourhoods (or only small-
sized neighbourhoods) and thus the accuracy and coverage provided
our by approach was diminished.

5.2.3 Robustness

The strategy underlying our product push attack was to choose
popular items to build the attack profiles to (a) ensure a high degree
of similarity between genuine and attack profiles and (b) minimise
the number of different attack profiles required to target as many
genuine users as possible. However, neighbour selection using
profile utility favours profiles that contain less popular items. Even
if attack profiles contained some unpopular items, the effect is not
likely to be significant since, by definition, unpopular items have
proportionally less probability of being co-rated by users. In our
simulations, all attack profiles were filtered from neighbourhoods for
the range of threshold values m presented in Tables 2 and 3. Thus,
our approach was completely robust against attack with MAPE = 0.
For m > 400 for MovieLens and m > 50 for Smart Radio, the
systems were no longer robust because attack profiles began to
appear in neighbourhoods, underlining the importance of including
the threshold value m in the computations.

Choosing a threshold value. The value we select needs to ensure
robustness against attack and provide accuracy and coverage compa-
rable to k–NN. Our results indicate a trade-off exists between these
criteria: low values for m offer increased robustness while higher
values achieve the desired accuracy and coverage. For MovieLens,
we see that a range of values for m exists that satisfies these criteria:
i.e. 150 ≤ m ≤ 400. If we express this range of values as a ratio
of the number of users present in the dataset, we obtain the range
(0.16, 0.42). Similarly, for EachMovie and Smart Radio, we obtain
(0.18, 0.43) and (0.38, 0.79) respectively. For MovieLens and Each-
Movie, which are of comparable size, the window is similar. For
Smart Radio, the window is shifted upward, which we suspect is due
to its much smaller size. For these particular datasets, the results indi-
cate that significant windows exist in which to choose suitable values
for m. However, further analysis is required using other datasets to
confirm these findings.

Table 2. MovieLens. Comparison in performance between the benchmark
k–NN algorithm and the profile utility with similarity weight transformation
algorithm for various values of the threshold (m). Note that the performance

of k–NN is independent of m.

k–NN Profile Utility
(Attack Strength=0) (Attack Strength ≥ 0)

Threshold Cov Acc Cov Acc Robust.
(m) (%) (MAE) (%) (MAE) (MAPE)

5 91.6 0.788 32.8 0.981 0
10 91.6 0.788 66.0 0.896 0
20 91.6 0.788 82.9 0.842 0
40 91.6 0.788 89.4 0.809 0
60 91.6 0.788 91.0 0.797 0
80 91.6 0.788 91.4 0.793 0

100 91.6 0.788 91.4 0.790 0
150 91.6 0.788 91.6 0.788 0
250 91.6 0.788 91.6 0.788 0
400 91.6 0.788 91.6 0.788 0

6 Discussion
Various other approaches to neighbourhood formation have been pro-
posed. For example, [10] proposes clustering as an efficient neigh-
bourhood formation strategy. The set of users is partitioned into clus-
ters in an off-line process. To make a prediction for a given user,
the entire cluster containing the user becomes the neighbourhood.
Hence, the performance of the algorithm depends on the (fixed) size
of the clusters. However, this algorithm is prone to attack unless the
clustering algorithm succeeds in clustering all attack profiles into one
cluster. By varying the items which make up the attack profile, a care-
ful attacker can ensure that this is unlikely to occur.

The usefulness of inverse item popularity has also been recog-
nised by other work. In [7], a modified similarity measurement is
proposed which calculates the correlation between users using only
a fixed number of the least popular co-rated items. However, this al-
gorithm does not apply a popularity threshold and therefore attack
profiles are not necessarily excluded from neighbourhoods. In addi-
tion, the efficiency of this algorithm depends on the number of users
in a system and is thus susceptible to scalability problems.

7 Conclusions and Future Work
In this paper, we have proposed novel profile utility and similarity
weight transformation schemes for ACF. We have shown that our
approach provides performance similar to the benchmark k–NN al-
gorithm in terms of accuracy and coverage, while significantly im-
proving efficiency and scalability. In addition, our approach is robust
against the attack considered, whereas k–NN is vulnerable.

In future work, we will investigate securing ACF against other at-
tack types – for example, by probing a system and using the recom-
mendations obtained from a system to build attack profiles. In ad-
dition, we will extend our analysis by considering other techniques
to model profile utility and to transform similarity weight measure-
ments. For example, different approaches to quantify item popularity
and rating distributions are outlined in [1, 7]. However, from our pre-
liminary work carried out to date, profile utility defined in terms of
item entropy did not perform as well as when profile utility was mod-
eled using item popularity. Further analysis is required to understand
these findings, but we believe that the differences in item entropy
across the items in the datasets we evaluated were insufficient to en-
sure robustness against attack.

Table 3. Smart Radio. Comparison in performance between the
benchmark k–NN algorithm and the profile utility with similarity weight

transformation algorithm for various values of the threshold (m). Note that
the performance of k–NN is independent of m.

k–NN Profile Utility
(Attack Strength=0) (Attack Strength ≥ 0)

Threshold Cov Acc Cov Acc Robust.
(m) (%) (MAE) (%) (MAE) (MAPE)

3 71.8 0.986 63.7 1.041 0
6 71.8 0.986 70.9 0.996 0
9 71.8 0.986 71.7 0.992 0

12 71.8 0.986 71.8 0.988 0
15 71.8 0.986 71.8 0.987 0
18 71.8 0.986 71.8 0.987 0
21 71.8 0.986 71.8 0.987 0
24 71.8 0.986 71.8 0.986 0
27 71.8 0.986 71.8 0.986 0
30 71.8 0.986 71.8 0.986 0
40 71.8 0.986 71.8 0.986 0
50 71.8 0.986 71.8 0.986 0

A limitation of our approach is that sophisticated attackers, famil-
iar with our algorithm, might attempt to defeat the system by insert-
ing large numbers of unpopular items into attack profiles. Additional
work needs to be carried out to quantify this threat. However, given
our algorithm, such a strategy does not guarantee success and, im-
portantly, imposes a substantially increased cost on the attacker.

REFERENCES
[1] John S. Breese, David Heckerman, and Carl Kadie, ‘Empirical analysis

of predictive algorithms for collaborative filtering’, in Proceedings of
the Fourteenth Annual Conference on Uncertainty in Artificial Intelli-
gence (UAI ’98), San Francisco, CA, USA, pp. 43–52, (July 1998).

[2] John Canny, ‘Collaborative filtering with privacy via factor analysis’,
in Proceedings of the 25th annual international ACM SIGIR confer-
ence on Research and development in information retrieval, Tampere,
Finland, pp. 238 – 245, (2002).

[3] Jonathan Herlocker, Joseph Konstan, Al Borchers, and John Riedl, ‘An
algorithmic framework for performing collaborative filtering’, in Pro-
ceedings of the 22nd annual international ACM SIGIR conference on
Research and development in information retrieval, Berkeley, CA, USA,
pp. 230–237, (August 1999).

[4] http://movielens.umn.edu/.
[5] Michael P. O’Mahony, Neil J. Hurley, and Guenole C. M. Silvestre,

‘Collaborative filtering – safe and sound?’, in Proceedings of the 14th
International Symposium on Methodologies for Intelligent Systems (IS-
MIS), 2003, Maebashi City, Japan, (October 2003).

[6] Michael P. O’Mahony, Neil J. Hurley, and Guenole C. M. Silvestre,
‘An evaluation of the performance of collaborative filtering’, in Pro-
ceedings of the 14th Irish International Conference on Artificial Intel-
ligence and Cognitice Science (AICS), 2003, Dublin, Ireland, pp. 164–
168, (September 2003).

[7] Rachael Rafter and Barry Smyth, ‘Item selection strategies for collabo-
rative filtering’, in Proceedings of the the 18th International Joint Con-
ference on Artificial Intelligence (IJCAI-03), Acapulco, Mexico, (2003).

[8] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J.Riedl, ‘Grou-
plens: An open architecture for collaborative filtering of netnews’, in
Proceedings of the ACM Conference on Computer Supported Cooper-
ative Work, Chapel Hill, NC, USA, pp. 175–186, (October 1994).

[9] Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John Riedl,
‘Analysis of recommendation algorithms for e-commerce’, in Proceed-
ings of the 2nd ACM Conference on Electronic Commerce (EC-00),
Minneapolis, MN, USA, pp. 158–167, (October 2000).

[10] B.M. Sarwar, G. Karypis, J. Konstan, and J. Riedl, ‘Recommender sys-
tems for large-scale e-commerce: Scalable neighborhood formation us-
ing clustering’, in Proceedings of the Fifth International Conference on
Computer and Information Technology (ICCIT 2002), (2002).

