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Abstract. The study of strong equivalence between logic programs
or nonmonotonic theories under answer set semantics, begunin [18],
is extended to the case where the programs or theories concerned are
formulated in different languages. We suggest that theories in differ-
ent languages be considered equivalent in the strong sense or synony-
mousif and only if each is bijectively interpretable (hence translat-
able) into the other. Since the logic of here-and-there, which provides
a suitable foundation for answer set programming, has the Beth prop-
erty, we can easily give model-theoretic conditions that are equiva-
lent to bijective interpretability. These conditions involve mappings
between the models of the two theories that, in particular, preserve
the property of being an answer set or equilibrium model.

1 Introduction

With the emergence of answer set solvers such as DLV [17],
GnT [15], andsmodels [30], answer set programming (ASP) now
provides a practical and viable environment for tasks of knowledge
representation and declarative problem solving. AI applications in-
clude planning and diagnosis, as exemplified in a prototype decision
support system for the space shuttle [2], the management of heteroge-
nous data in information systems, as performed in the INFOMIX
project,3 the representation of ontologies in the semantic web allow-
ing for default knowledge and inference, as discussed in [5], as well
as compact and fully declarative representations of hard combinato-
rial problems such as n-Queens, Hamiltonian paths, and so on4. In
all these areas it may be important to know when different logic pro-
grams representing a given problem or state of affairs are equivalent
and lead to essentially the same solutions (answer sets). Very often
one would like to know that the equivalence is also robust, since two
programs may have the same answer sets yet behave very differently
once they are embedded in some larger context. For a robust ormod-
ular notion of equivalence one should require that programsbehave
similarly when extended by any further programs. This leadsto the
following concept ofstrongequivalence: programsΠ1 andΠ2 are
strongly equivalent, in symbolsΠ ≡s Π2, if and only if for anyΣ,
Π1 ∪ Σ is equivalent to (has the same answer sets as)Π2 ∪ Σ. The
concept of strong equivalence for logic programs in ASP was intro-
duced and studied in [18] and has given rise to a substantial body of
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further work looking at different characterisations [13, 31], new vari-
ations and applications of the idea [7, 27, 32], as well as developing
systems to test for strong equivalence [27, 8].

Currently, however, the concept of strong equivalence (andvari-
ants) has a rather severe limitation: it tacitly assumes that the pro-
grams being compared are formulated in the same language (vocab-
ulary), or at least that any differences of vocabulary are semantically
unimportant. This is restrictive. Even in basic areas of mathematics,
like algebra and geometry, one is familiar with the idea thattheories
may be presented in different ways with different primitiveconcepts.
Similarly, if one consideres taxonomies, classification schemes, on-
tologies and in general any knowledge-based system, there are often
many different ways to represent apparently the same information.
This motivates the search for a concept of equivalence or synonymy
that applies to logic programs or nonmonotonic theories that are for-
mulated in different vocabularies. This is the topic of the present pa-
per, which proposes and studies a formal concept of synonymyap-
plying to logic programs and theories under answer sets semantics,
more generally under a system of nonmonotonic reasoning called
equilibrium logic. The basic approach is quite similar to one explored
some years ago in the context of monotonic theories in classical (el-
ementary) logic and its extensions [4, 22, 23]. The main novelty here
is to argue that it applies equally well in the new area of ASP and
nonmonotonic reasoning.

The rest of the paper is laid out as follows. We start by considering
formal and informal desiderata that a concept of synonymy should
fulfil. Next we introduce equilibrium logic as a logical foundation for
ASP and extensions, and present the main characterisation of strong
equivalence from [18]. In§4 we propose a definition of synonymy
for propositional theories in equilibrium logic, give different char-
acterisations of it, and show that it fulfils the adequacy conditions
discussed in 2. In§5 we look briefly at how the previous ideas can be
extended to open programs with variables. In§6 and§7 we conclude
by looking at related work and considering topics for futurestudy.

2 Synonymous Theories

What does it mean to say that two programs or theories,Π1 andΠ2,
in different languages,L1 andL2, are synonymous? We consider
six desiderata D1-D6 that we believe should be satisfied by any ba-
sic concept of synonymy. D1-D3 and D5-D6 are quite general and
seem to be applicable to any theories describing or modelling some
knowledge domain; D4 takes account of the special nature of anon-
monotonic or logic programming system.

D1. Translatability. The languageL1 of Π1 should be translatable,
via a mapping, sayτ , into the languageL2 of Π2. The translation
τ should be uniform, so we require it to be recursive.



D2. Semantic correspondence. There should be a corresponding cor-
relation between the models ofL1 andL2, in particular a mapping
F fromL2 models toL1 models that respects the translationτ in
the sense that for anyL2-modelM andL1-formulaϕ,

F (M) |= ϕ⇔M |= τ (ϕ).

D3. Equivalence. Under translation,Π1 andΠ2 should be in an ob-
vious sense equivalent.

D4. Intended models. The semantic correlation should respect the
intended models of the two theories. In the present case thismeans
preserving the property of being an equilibrium model or answer
set:M is an answer setΠ2 iff F (M) is an answer set ofΠ1.

D5. Idempotence. IfΠ andΠ2 are synonymous under the previous
mappings, then under corresponding mappings, sayτ ′ andF ′, Π2

should be synonymous withΠ1.
D6. Robustness.Π1 andΠ2 should remain synonymous under the

addition of new formulas, ie. for anyΣ, Π1 ∪ Σ should be syn-
onymous withΠ2 ∪ τ (Σ), similarly Π2 ∪ Γ with Π1 ∪ τ

′(Γ).

The first two conditions provide the cornerstone of any formal ap-
proach to intertheory relations. Different kinds of relations between
theories are obtained by specifying additional conditionsthat the
mappings should satisfy (see eg [23, 26, 29]). In this case were-
quire (D3,D5) that theories are in an obvious sense equivalent once
the translation maps are made available. Since we are dealing here
with logic programs and their generalisations in the ASP framework,
we can understand this either in the weaker sense of having the same
answer sets, or in the sense of strong equivalence explainedearlier.
The problem is that if we choose the weaker variant then we have
virtually no hope to fulfil condition D6 which requires that the theo-
ries remain equivalent when embedded in any richer context.On the
other hand, if we interpret D3 to mean that under suitable translation
manuals,Π1 andΠ2 are strongly equivalent, then we may expect that
Π1 andΠ2 remain synonymous when extended with new rules.

Perhaps somewhat surprisingly we shall approach the problem of
synonymy via the classical theory of interpretations. Briefly we shall
say that theories are synonymous if each is faithfully interpreted in
the other in such a way that the interpretations are idempotent (see
below); this is basically the standard approach followed inordinary
predicate logic, see eg. [4, 28], adapted here to the propositional case.
In the case of a nonmonotonic system like ASP there are several spe-
cial issues to consider. First, to apply the classical theory of inter-
pretations we need to represent programs and theories in a suitable
logical form, which means identifying an underlying base logic. Sec-
ond, we need to cope with nonmonotonicity, including the fact that
only certain models (answer sets) are selected as intended.Third, it
will be advantageous if the chosen base logic has similar metalogical
properties to classical logic, especially the properties of interpola-
tion andBeth that are of special significance in interpretability and
definability theory.

3 Equilibrium Logic

As a logical foundation for answer set programming we use thenon-
classical logic of here-and-thereHT and its nonmonotonic exten-
sion,equilibrium logic[24], which generalises answer set semantics
for logic programs to arbitrary propositional theories, see eg [18];
we give only a very brief overview here, for more details the reader
is referred to [24, 18, 25] and the logic texts cited below.5

5 The standard version of equilibrium logic has two kinds of negation, intu-
itionistic and strong negation. For simplicity we deal herewith the restricted

We denote non-logical vocabularies orpropositional languagesby
L, L′, etc; they are simply sets of propositional variables. TheL–
formulas ofHT are built-up in the usual way using the logical con-
stants:∧, ∨, →, ¬, standing respectively for conjunction, disjunc-
tion, implication, and negation, the elements ofL being theatomsof
the language. A set of formulas is called atheory.

The axioms and rules of inference forHT are those of intuition-
istic logic (see eg [6]) together with: the axiom schema

(¬α→ β)→ (((β → α)→ β)→ β)

which characterises the 3-valued here-and-there logic of Heyting
[12], and Gödel [11] (hence it is sometimes known as Gödel’s 3-
valued logic).

The model theory ofHT is based on the usual Kripke semantics
for intuitionistic logic (see eg. [6]), butHT is complete for Kripke
framesF = 〈W,≤〉 (where as usualW is the set of points or worlds
and≤ is a partial-ordering onW ) having exactly two worlds sayh
(‘here’) andt (‘there’) with h ≤ t. As usual amodelis a frame to-
gether with an assignmenti that associates to each element ofW a
set of atoms, such that ifw ≤ w′ then i(w) ⊆ i(w′); an assign-
ment is then extended inductively to all formulas via the usual rules
for conjunction, disjunction, implication and negation inintuitionis-
tic logic. It is convenient to represent anHT model as an ordered
pair 〈H,T 〉 of sets of atoms, whereH = i(h) andT = i(t) under
a suitable assignmenti; by h ≤ t, it follows thatH ⊆ T . If M
is aHT model andϕ is a formula, we denote byM(ϕ) the set of
worlds whereϕ is true (either∅ or {t} or {h, t}); iew ∈ M(ϕ) iff
M, w |= ϕ.

A formula ϕ is true in aHT modelM = 〈H,T 〉 in symbols
M |= ϕ, if it is true at each world inM. A formulaϕ is said to be
valid in HT, in symbols|= ϕ, if it is true in allHT models. Logical
consequence forHT is understood as follows:ϕ is said to be anHT

consequence of a theoryΠ, writtenΠ |= ϕ, iff for all modelsM and
any worldw ∈ M,M, w |= Π impliesM, w |= ϕ. Equivalently
this can be expressed by saying thatϕ is true in all models ofΠ.

LetL be a proper sublanguage ofL′, ieL ⊂ L′; for anyHT L′-
modelM = 〈H,T 〉 we denote byM↾L theHT L-model formed
by omitting the interpretation of all atoms inL′

r L and we call
this thereductofM to L. We can regard↾L as a (reduct) function
mappingL′-models ontoL-models.

Equilibrium models are special kinds of minimalHT models. We
first define a partial ordering� onHT models.

Definition 1 Given any two models〈H,T 〉, 〈H ′, T ′〉, we set
〈H,T 〉� 〈H ′, T ′〉 if T = T ′ andH ⊆ H ′.

Equivalently,M�M′ if for every atomp the following conditions
hold: (i) if M, h |= p thenM′, h |= p, and (ii)M, t |= p iff
M′, t |= p.

Definition 2 LetΠ be a set of formulas and〈H,T 〉 a model ofΠ.
(i) 〈H,T 〉 is said to betotal if H = T .
(ii) 〈H,T 〉 is said to be anequilibriummodel if it is minimal under
� among models ofΠ, and it is total.

In other words a model〈H,T 〉 of Π is in equilibrium if it is total
and there is no model〈H ′, T 〉 of Π with H ′ ⊂ H . Equilibrium
logic is the logic determined by the equilibrium models of a theory.

version containing just the first negation and based on the logic of here-and-
there. So we do not consider here eg logic programs with strong or explicit
negation.



It generalises answer set semantics in the following sense.For all
the usual classes of logic programs, including normal, disjunctive
and nested programs, equilibrium models correspond to answer sets.
The ‘translation’ from the syntax of programs toHT propositional
formulas is the trivial one, eg. a ground rule of a disjunctive program
of the form

K1 ∨ . . . ∨Kk ← L1, . . . Lm, notLm+1, . . . , notLn

where theLi andKj are atoms corresponds to theHT sentence

L1 ∧ . . . ∧ Lm ∧ ¬Lm+1 ∧ . . . ∧ ¬Ln → K1 ∨ . . . ∨Kk

Proposition 3 ([24, 18]) For any logic programΠ, an HT model
〈T, T 〉 is an equilibrium model ofΠ if and only ifT is an answer set
of Π.

Two theories,Π andΠ′ are said to belogically equivalent, in symbols
Π ≡ Π′, if they have the sameHT models, and simplyequivalentif
they have the same equilibrium models.Strongequivalence is defined
as in section 1. The main result we need is the following.

Proposition 4 ([18]) Any two theories,Π andΠ′ are strongly equiv-
alent iff they are logically equivalent, ie.Π ≡s Π′ iff Π ≡ Π′.

4 Interpretability and Synonymy

Let L be a propositional language andp 6∈ L a new propositional
variable. LetΠ be a theory inL∪{p}. Explicit and implicit definabil-
ity are understood as follows (α↔β simplifies(α→ β)∧(β → α)).

Definition 5 (i) p is said to beexplicitly definablein Π, if there is
anL-formulaϕ such that

Π |= ϕ↔ p

(ii) p is said to beimplicitly definablein Π if for any modelsM and
M′ of Π such thatM↾L =M′↾L we haveM(p) =M′(p).

In other words, an atomp is implicitly definable if whenever the in-
terpretation of theL atoms in models ofΠ is fixed, the interpretation
of p becomes fixed also. The above definitions are readily extended
to the case where several new variables are definable in a theory.

It is well-known that the logicHT, like any extension of intu-
itionistic logic, has theBeth property, ie. if L, p and Π are as in
Definition 5 above, thenp is explicitly definable inΠ if and only if it
is implicitly definable inΠ.6

Let L1 andL2 be disjoint languages.7 By an interpretationof L1

in L2 we mean a mappingτ from L1-formulas toL2-formulas de-
fined recursively as follows:τ (ϕ∧ ψ) = τ (ϕ)∧ τ (ψ), τ (ϕ∨ ψ) =
τ (ϕ) ∨ τ (ψ), τ (ϕ→ ψ) = τ (ϕ)→ τ (ψ), τ (¬ϕ) = ¬τ (ϕ).

Any interpretationτ of L1 in L2 induces a mappingFτ fromL2-
models toL1 models:Fτ (M)(p) = M(τ (p)); in terms ofHT

models,Fτ (M) is the model such that for anyL1–formulaϕ and
anyw ∈ {h, t}

Fτ (M), w |= ϕ ⇔ M, w |= τ (ϕ) (1)

6 In [20] it is shown thatHT has the stronger property of projective Beth,
which allows that definability may be with respect to a specific sublan-
guage. This holds in far fewer logics. Note that in the literature on nonclas-
sical logics implicit definability is often formulated as in[20] in a proof-
theoretic style. The equivalence to the above semantic version can be shown
via the compactness and completeness theorems forHT.

7 Any languages can be made disjoint by renaming. Alternatively we can
allow thatL1 andL2 have a common sublanguage which any translations
simply leave untouched, ie the sublanguage is always translated by the iden-
tity map.

Therefore the following property holds

Fτ (M) |= ϕ ⇔ M |= τ (ϕ) (2)

Let Π1 andΠ2 be theories inL1 andL2 respectively and letτ be an
interpretation ofL1 in L2. Thenτ is said to be aninterpretation of
Π1 in Π2 if for all L1–formulaϕ,

Π1 |= ϕ ⇒ Π2 |= τ (ϕ). (3)

In this case it is evident that

M |= Π2 ⇒ Fτ (M) |= Π1. (4)

An interpretation ofΠ1 in Π2 is said to befaithful if the converse
of (3) also holds, ie we haveΠ1 |= ϕ iff Π2 |= τ (ϕ). As in classi-
cal interpretability theory, further special cases of interpretation can
be obtained by imposing additional conditions on the syntactic and
semantic translations.

Proposition 6 Let τ be an interpretation ofΠ1 in Π2. Then the fol-
lowing are equivalent.
(i) For everyL2-formula ψ there is anL1-formula ϕ such that
Π2 |= ψ↔ τ (ϕ); ie τ is surjective.
(ii) There is an interpretationσ ofL2 in L1 such that for everyL2-
formulaψ, Π2 |= ψ↔ τσ(ψ).
(iii) The mappingFτ from models ofΠ2 into models ofΠ1 is an
injection.

Proof sketch. (ii) implies (i) and (i) implies (iii) are straightforward.
To show that (iii) implies (ii), one applies the Beth property. In partic-
ular one observes that inL2∪L1 the theoryΠ2∪{p↔τ (p); p ∈ L1}
implicitly defines the atoms ofL2. Therefore there is an interpreta-
tion, sayσ of L2 in L1 which moreover satisfiesΠ2 |= ϕ↔ τσ(ϕ).

Suppose that any of (i)-(iii) hold and additionallyτ is a faithful
interpretation. Thenτ is said to be abijective interpretationof Π1 in
Π2. It is easy to verify that ifτ is a bijective interpretation ofΠ1 in
Π2, then the interpretationσ of Π2 in Π1, defined by condition (ii),
is also bijective and

Π1 |= ϕ↔ στ (ϕ) and Π2 |= ψ↔ τσ (ψ) (5)

for all formulasϕ, ψ. The interpretationσ is called theinverseof τ
and we say that the two programs or theories aresynonymouswith
respect toτ andσ.

Proposition 7 If τ is a bijective interpretation ofΠ1 in Π2 then the
mappingFτ is a one-one correspondence between models ofΠ1 and
models ofΠ2.

Given an inverse interpretationσ, we can map modelsM of L1

to modelsFσ(M) of L2 in the same way as before. It is readily seen
thatFσ(Fτ (M)) =M ifM is a model ofΠ2; however the equality
need not hold for other models (even in the classical case).

4.1 Verifying the adequacy conditions

Let us now consider synonymy in light of the adequacy conditions
D1-D6. First we consider the sense in which two synonymous theo-
ries can be considered equivalent. Given interpretationsτ andσ as
above, letτ be the set of definitions{p↔ τ (p); p ∈ L1}; similarly
let σ be the set{q↔ τ (q); q ∈ L2}.



Proposition 8 Let Π1 and Π2 be synonymous wrtτ and σ. Then
Π2 ∪ τ is strongly equivalent withΠ1 ∪ σ. ThusΠ1 and Π2 have
a common definitional extension, ie there is a theoryΠ in L2 ∪ L1,
such thatΠ2 ∪ τ ≡ Π1 ∪ σ ≡ Π.

Proof sketch. The proof that synonymous theories have a common
definitional extension is a straightforward adaptation of the standard
proofs for classical logic, see eg. [4, 28]. The strong equivalence
claim follows from Proposition 4.

In fact Proposition 8 can be strengthened to an equivalence:two
theories are bijectively interpretable if and only if they have a com-
mon definitional extension. This expresses one way in which the
two theories are in an obvious sense equivalent once enriched with
suitable translation manuals. Notice too that there is a close rela-
tionship betweenΠ2 and the translationτ (Π1) of Π1 (similarly be-
tweenΠ1 and the translationσ(Π2) of Π2). It is already clear that
Π2 |= τ (Π1). Although it is not generally true, even in the classical
case, thatΠ2 ≡ τ (Π1)), we do however have:

Corollary 9 Let Π1 and Π2 be synonymous wrtτ andσ. For any
L2-formulaϕ, Π2 |= ϕ↔τσ(ϕ), andΠ2 |= ϕ⇒ τ (Π1) |= τσ(ϕ).

Next we turn to condition D4.

Proposition 10 Let Π1 and Π2 be theories inL1 andL2 respec-
tively, synonymous wrtτ andσ. Then the bijective mappingFτ from
models ofΠ2 to models ofΠ1 preserves the equilibrium property, ie.
M |=e Π2 iff Fτ (M) |=e Π1.

Proof. LetM be an equilibrium model ofΠ2 and assume that
Fτ (M) is not in equilibrium. So there isM′

� Fτ (M) with
M′ |= Π1 and ϕ such thatM′, t |= ϕ andM′, h 6|= ϕ. For
every q in L2, using (1), and part (ii) of proposition 6 yields that
Fσ(M′), t |= q ⇔ M, t |= q and thusFσ(M′) �M, which
contradicts the equilibrium ofM, becauseFσ(M′) is not total:
M′(p) = M′(σ(τ (p))) = Fσ(M′)(τ (p)). Reciprocally, ifM is
a model ofΠ2 such thatFτ (M) is an equilibrium model ofΠ1 and
M′ ⊳M, thenFτ (M′)⊳Fτ (M), which contradicts the equilibrium
of Fτ (M).

Clearly, condition D5 is satisfied and (5) describes the sense in
which the correspondence betweenΠ1 andΠ2 is idempotent. Lastly
we consider D6.

Proposition 11 Let Π1 and Π2 be theories inL1 andL2 respec-
tively synonymous wrtτ and σ. Let Γ a set ofL1-formulas. Then
Π1 ∪ Γ is synonymous withΠ2 ∪ τ (Γ) wrt τ andσ.

Proof. IfΠ1∪Γ |= ϕ andM |= Π2∪τ (Γ), thenFτ (M) |= Π1 and
Fτ (M) |= Γ; thusFτ (M) |= ϕ andM |= τ (ϕ). Thereforeτ is an
interpretation ofΠ1 in Π2. If Π2 ∪ τ (Γ) |= τ (ϕ) andM |= Π1 ∪Γ,
thenM = Fσ(Fτ (M)), Fσ(M) |= τ (Γ) andFσ(M) |= Π2;
thusFσ(M) |= τ (ϕ), M |= σ(τ (ϕ)) andM |= ϕ. Therefore
τ is faithful. Finally we prove thatFτ is injective: ifM andM′

are models ofΠ2 ∪ τ (Γ) such thatFτ (M) = Fτ (M′) then for all
formulaϕ we haveM′(ϕ) = Fτ (M′)(σ(ϕ)) = Fτ (M)(σ(ϕ)) =
M(ϕ).

5 More Realism

In this paper we have dealt with propositional theories in equilibrium
logic. In virtue of proposition 3, we have therefore coveredthe case
of ground, propositional logic programs under answer set semantics.
In answer set programming, however, one usually deals with open

predicates containing free variables which become instantiated dur-
ing the process of grounding. In this case, to deal with the transla-
tion of an open predicate,P (x), we need to add further conditions
on the mappingτ . To give a simple example, suppose in one lan-
guage, say for speaking about graphs, we have a primitive predicate
Connected(x, y) expressing that two nodes are connected, while
in another language we have a predicatePath(x, y) to express that
there is a directed path fromx to y. Then we translate from the for-
mer vocabulary into the latter by means of the definition

Connected(x, y)↔ Path(x, y) ∨ Path(y, x). (6)

When our programs are grounded (6) becomes instantiated, sofor
example ifτ is the translation respecting (6) anda, b are nodes, we
haveτ (C(a, b)) = P (a, b) ∨ P (b, a), whereC andP abbreviate
Connected andPath respectively. Similarly, for anyc, d the trans-
lation of the atomC(c, d) will take the same form. This uniformity
of translation across all instantiations of a predicate canbe added to
our requirements for synonymy. We sketch this idea as follows. Sup-
pose thatL1 andL2 contain disjoint sets of predicate symbols, no
function symbols and a shared set of individual constants ornames.
Let Π1 andΠ2 be logic programs (of any kind) inL1 andL2 respec-
tively. Let τ be a set of definitions of the following form

P (x1, . . . , xn)↔ ϕ(x1, . . . , xn), (7)

one for eachn-place predicateP (x1, . . . , xn) of L1, whereϕ is an
L2-formula whose free variables are amongx1, . . . , xn. Likewise
suppose thatσ is a set of definitions

Q(x1, . . . , xm)↔ ψ(x1, . . . , xm), (8)

one for eachL2-predicateQ, in terms ofL1-formulas. Let the ground
versions ofΠ1 andΠ2 beg(Π1) andg(Π2) respectively. The set of
all ground instances of definitions inτ , σ of form (7) and (8) give
rise in the obvious way to corresponding translationsτ , from the lan-
guage ofg(Π1) into that ofg(Π2) andσ from the language ofg(Π2)
into that ofg(Π1). We can then say thatΠ1 andΠ2 aresynonymous
with respect toτ, σ if τ is a bijective interpretation ofg(Π1) into
g(Π2) with inverseσ. Clearly, if Π1 andΠ2 aresynonymouswith
respect toτ, σ then the common definitional extension ofg(Π1) and
g(Π2) is equivalent tog(Π2 ∪ τ) andg(Π1 ∪ σ).8

6 Literature and Related Work

In classical logic there is a large and well-developed body of work on
interpretability dating from the 1950s. The first systematic treatments
of synonymous theories in this context can be found in [3, 4],a more
algebraic approach can be found in [16]. The classical version of
Proposition 6 is essentially contained in [3], though a moredetailed
statement and proof can be found in [28]. Outside the field of mathe-
matics, the classical theory of interpretability and definitional equiv-
alence was extended and applied to empirical forms of knowledge in
[22, 26, 23]; see also [29] for a more recent account of translatability
issues in such contexts. The theory of interpretations and equivalence
in nonclassical logics is less developed, however especially in the
case of superintuitionistic logics much is known about key proper-
ties, such as interpolation and Beth, on which interpretability theory

8 Note that ifΠ1 andΠ2 are disjunctive programs and the formulasϕ, ψ in
all definitions of form (7) and (8) are implication-free, then Π2∪τ ,Π1∪σ
have the form of logic programs with nested expressions.



depends, see eg. [19, 20]. In the context of nonmonotonic logic pro-
gramming the study of different kinds of equivalence between pro-
grams is relatively new (see references in section 1) and until now
has not, to our knowledge, considered the case of programs indif-
ferent languages. In two recent works, [14, 10], there has been some
discussion of the role and properties of definitions in ASP.

7 Concluding Remarks

We have tried to show how formal approaches to intertheory rela-
tions developed for mathematical and scientific knowledge might be
applied to systems of logic programming and nonmonotonic reason-
ing used for practical problem solving and knowledge representation
in AI. In particular, we have argued that the classical theory of in-
terpretability and definitional equivalence can be appliedin the con-
text of propositional logic programs under answer set semantics and
more generally in the system of equilibrium logic. In this setting we
regard theories as synonymous if each is bijectively interpretable in
the other, and we have characterised this relation in different ways.
We also showed that this reconstruction satisfies a number ofintu-
itive, informal adequacy conditions. The applicability ofwhat is es-
sentially a classical logical approach in a nonclassical context relies
on two essential features: first, our underlying logic has several prop-
erties such asBeththat help to relate the syntax to the semantics of
definitions and translations; secondly, in ASP and equilibrium logic
the strong concept of equivalence between theories is fullycaptured
in the underlying monotonic logic (here-and-there). This allows us
to define a robust or modular concept of equivalence across different
languages.

Many avenues are left open for future exploration. For example,
for a more realistic treatment of the translation of open predicates
one may want to relax the restriction that the languages concerned
share the same set of individual constants or that the defining formu-
las (ϕ,ψ in (7), (8)) may contain no new free variables. Eventually
a full first-order treatment would be desirable. Secondly, one might
search for simple structural properties on the models of twoprograms
or theories that are equivalent to or sufficient for synonymy. Thirdly,
based on these or other properties of the theories concerned, it would
be useful to develop systems for checking synonymy, therebyex-
tending current methods for checking strong equivalence inthe case
of programs in the same language [8, 27].

REFERENCES

[1] C. Baral Knowlewdge Representation, Reasoning and Declarative
Problem SolvingCambridge University Press, 2003.

[2] M. Balduccini, M. Gelfond, R. Watson and M. Noguiera. TheUSA-
Advisor: A case study in answer set planning. InLogic Programming
and Nonmonotonic Reasoning, LPNMR 2001, Springer LNAI 2173,
2001.

[3] K. de Bouvère. Logical Synonymity.Indagationes Mathematicae27
(1965), 622-629.

[4] K. de Bouvère. Synonymous Theories. In J. Addison, L. Henkin and
A.Tarski (eds),Symposium of the Theory of Models, North-Holland,
Amsterdam, 1965, 402-406.

[5] F. Calimeri, S. Galizia, M. Ruffolo, P. Rullo Enhancing Disjunctive
Logic Programming for Ontology Specification. ProceedingsAGP
2003

[6] D. van Dalen. Intuitionistic logic. InHandbook of Philosophical Logic,
Volume III: Alternatives in Classical Logic, Kluwer, Dordrecht, 1986.

[7] T. Eiter and M. Fink. Uniform equivalence of logic programs under the
stable model semantics. InInt. Conf. of Logic Programming, ICLP’03,
Mumbay, India. Springer, 2003.

[8] T. Eiter, M. Fink, H. Tompits and S. Woltran Simplifying Logic Pro-
grams under Uniform and Strong Equivalence In V. Lifschitz and I.
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