
Learning Complex and Sparse Events in Long Sequences
Marco Botta1 and Ugo Galassi 2and Attilio Giordana 3

Abstract. The Hierarchical Hidden Markov Model (HHMM) is a
well formalized tool suitable to model complex patterns in long tem-
poral or spatial sequences. Even if effective algorithms are available
to estimate HHMM parameters from sequences, little has beendone
in order to automatize the construction of the model architecture.
The primary focus of this paper is on a multi-strategy algorithm for
inferring the HHMM structure from a set of sequences, where the
events to capture are present in a relevant portion of them. The algo-
rithm follows a bottom-up strategy, in which elementary facts in the
sequences are progressively grouped, thus building the abstraction
hierarchy of a HHMM, layer after layer. In this process, clustering
algorithms and sequence alignment algorithms, widely usedin do-
mains like molecular biology, are exploited. The inductionstrategy
has been designed in order to deal with events characterizedby a
sparse structure, where gaps filled by irrelevant facts can be inter-
mixed with the relevant ones. Irrelevant facts are modeled by ”gaps”,
i.e., HMMs of the noise. Gaps are hypothesized when there is no sig-
nificant statistical evidence for hypothesizing the existence of a spe-
cific episode. Moreover, gaps can be replaced in a second timeby
a episode model, after new facts have been acquired. The method is
extensively evaluated on artificial datasets.

1 Introduction

Discovering patterns hidden in long temporal or spatial sequences
is a fundamental task in many real word domains, and it is attract-
ing increasing attention in the literature. However, the task is not
easy and the difficulty increases along with the length of these-
quences to be searched and the complexity of the patterns to be
discovered. In this paper we propose a method for discovering the
occurrence of complex events in long sequences. We assume that a
complex event is a partially ordered set of short chains (episodes) of
elementary events (instants), interleaved with gaps whereirrelevant
facts may occur. Moreover, we assume the presence of noise, which
can make episodes hard to recognize. Episodes are represented as
strings of symbols, being a symbol the label assigned to an instant.
Then, noise may be modeled as insertion, deletion and substitution
errors according to a common practice followed in Pattern Recog-
nition. Typical applications where such kind of events are found are
molecular biology and computer security. An approach to deal with
such type of patterns, which reported impressive records ofsuccesses
in speech recognition [8] and DNA analysis [1], is based on Hid-
den Markov Model (HMM) [9]). However, developing applications

1 Dipartimento di Informatica, Universitá di Torino, C.so Svizzera 185, 10149
Torino, Italy email: botta@di.unito.it

2 Dipartimento di Informatica, Universitá Amedeo Avogadro, Spalto
Marengo 33, 15100 Alessandria, Italy email: galassi@mfn.unipmn.it

3 Dipartimento di Informatica, Universitá Amedeo Avogadro,
Spalto Marengo 33, 15100 Alessandria, Italy email: at-
tilio.giordana@mfn.unipmn.it

based on HMM does not reduce to running a learning algorithm but
it may be a very costly process. In general, complex applications re-
quire to construct an ad hoc system, where several partial HMMs are
developed and integrated with procedural knowledge obtained from
experts of the domain. A more formal proposal to design and train
complex HMMs is represented by the Hierarchical Hidden Markov
Model (HHMM) [2]. The problem of estimation HMM and HHMM
parameters has been widely investigated while little has been done
in order to learn their structure. a fiew proposals can be found in the
literature in order to learn the structure of HMM [11], or of avariant
of it called logical HMM [5], but almost nothing has been donewith
respect to HHMM. This paper proposes a multi-strategy method for
automating the construction of HHMM structure by inductionfrom
a set of sequences.

The learning method proceeds bottom-up by constructing step by
step a hierarchy of stochastic automata, and is guided by thestatis-
tical evidence of episodes and of co-occurrence of episodes. One of
the novelties in this paper is represented by a special construct called
gap, used to model the presence of gaps in sequences.

In the framework of the main learning algorithm, classical algo-
rithms for string alignment [1, 4], statistical clusteringand HMM
synthesis (http : //hmmer.wustl.edu/) are used.

The method has been evaluated on a suite of artificial datasets
constructed in order to encode a progression of induction tasks of
increasing difficulty.

2 The Approach to Learning HHMM

A Hierarchical Hidden Markov Model is a generalization of the Hid-
den Markov Model, which is a stochastic finite state automaton [9]
defined by a tuple〈S, O, A, B, π〉, where:

• S is a set of states, andO is a set of atomic events (observations),
• A is a probability distribution governing the transitions from one

state to another. Specifically, any memberai,j of A defines the
probability of the transition from statesi to statesj , givensi.

• B is a probability distribution governing the emission of observ-
able events depending on the state. Specifically, an itembi,j be-
longing toB defines the probability of producing eventOj when
the automaton is in statesi.

• π is a distribution onS defining, for everyqi ∈ S, the probability
thatsi is the initial state of the automaton.

A first problem that arises, with a HMM defined in this way, is
that, when the set of statesS grows large, the number of parameters
to estimate (A andB) rapidly becomes intractable.

A second problem is that the probability of a sequence being gen-
erated by a given HMM decreases exponentially with its length.
Then, complex and sparse events become difficult to discover.

The HHMM proposed by Fine, Singer and Tishby [2] is an answer
to both problems. On one hand, the number of parameters to estimate

is strongly reduced by assigning a null probability to many transitions
in distributionA, and to many observations in distributionB. On the
other hand, it allows a possibly long chain of elementary events to
be abstracted into a single event, which can be handled as a single
item. This is obtained by exploiting the regular languages property
of being closed under substitution, which allows a large finite state
automaton to be transformed into a hierarchy of simpler ones.

More specifically, numbering the hierarchy levels with ordinals
increasing from the highest towards the lowest level, observations
generated in a statesi

k by a stochastic automaton al levelk are se-
quences generated by an automaton at levelk + 1. Moreover, no
direct transition may occur between the states of differentautomata
in the hierarchy. An example of HHMM is given in Figure 1.

S0

S1

S3 S4

S2

D1

D0

D2

D3

D4

p a r i s
S10 S11 S12 S13 S14

S10’ S11’ S12’ S13’

s40 s41 s42 s43

0.5

0.5

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Figure 1. Example of Hierarchical Hidden Markov Model. Circles denotes
states with observable emission, whereas rectangles denote gaps.

However, it is worth noticing that the hierarchy defined in HHMM
is not essential, but it can always be flattened by replacing astatesi

k

in an automaton at levelk with the graph of the automaton at level
k + 1, which computes the observation generated insi

k (substitu-
tion property for regular languages). Nevertheless, the hierarchical
structure, as defined by [2], may help very much the inferenceof the
entire structure of the automata by part of an induction algorithm.

Up to now the research efforts about HHMM concentrate on the al-
gorithms for estimating the probabilities governing the emissions and
the transition from state to state. In the seminal paper by Fine et al.
[2], the classical Baum-Welch algorithm is extended to the HHMM.
Then, in a more recent work, Murphy and Paskin [7] derive a lin-
ear (approximated) algorithm by mapping a HHMM into a Dynamic
Bayesian Network. Finally, a recent paper by Xie et. al. [12]proposes
a multi-strategy method for incrementally adjusting the structure of
an HHMM by adding and deleting states on line. However, before
starting the incremental learning procedure, an initial structure has
still to be defined.

In this paper we will follow another approach inspired to a practice
widely used to develop complex systems in pattern recognition appli-
cations. The basic algorithm is bottom-up and constructs the HHMM
hierarchy starting from the lowest level. The first step consists in
searching for possible episodes, i.e., short chains of consecutive sym-
bols that appear frequently in the learning sequences, and building a
HMM for each one of them. As episodes are considered indepen-
dently one from another, this phase tends to produce also models for
spurious episodes, which in a second time should be discarded. At
the same time, it may happen that relevant episodes be disregarded

just because their frequency is not high enough. However, such kind
of errors will be fixed at a second time. The HMMs learned so far,
are then used as feature constructors. Each HMM is labeled with a
differentnameand the original sequences are rewritten into the new
alphabet defined by the set of names given to the models. Everysub-
sequence, which can be attributed to a specific HMM, is replaced by
the corresponding name. We will discuss in Section 5 how possible
conflicts are solved.

The subsequences between two episodes, not attributed to any
model, are considered gaps and will be handled by means of spe-
cial construct calledgap. We will call this last operationsequence
abstraction. After this basic cycle has been completed, an analogous
procedure is repeated on the abstracted sequences. Models are now
built for sequences ofepisodes, searching for long range regularities
among co-occurrent episodes. In this process, spurious episodes not
showing significant regularities can be discarded. The major differ-
ence, with respect to the first learning step, is that the models built
from the abstract sequences, are now observable markov models.
This makes the task easier and decreases the computational com-
plexity. As explained in the next section, in this step, models (gaps)
are built also for the long intervals falling between episodes.

In principle, we can think to apply again an abstraction stepto
the learning sequences and repeat the cycle, building a third level of
the hierarchy, and so on. However, up to now, we considered only
problems where two levels are sufficient.

After building the HHMM structure in this way, it can be refined
using standard training algorithms like the ones proposed in [2, 7].
However, we propose other two refinement methods.

The first method concerns the recovery of episodes that have been
lost in the primary learning phase because they did not have asuf-
ficient statistical evidence. As said above, this missed information
has actually been modeled bygaps. A nice property of the HHMM is
that sub-models in the hierarchy have a loose interaction with one an-
other, and so their structure can be reshaped without destroying the
global structure. This means that the model of a gap can be turned
into the model of an episode later on, when further data will be avail-
able. This is actually done on demand: all sub-sequences attributed
to a givengap are collected, creating a new learning set where the
learning process is repeated. If there is now evidence for anepisode,
a model is built up and replaced to thegap.

The second method consists in repeating the entire learningcy-
cle using as learning set only the portion of the sequences where the
instance of the previously learned HHMM has been found with suf-
ficient evidence. Repeating the procedure allows more precise mod-
els to be learned for episodes, because false episodes will no longer
participate to the learning procedure. In Section 6 we will give an
example of the practical benefits due to this kind of refinement.

3 Dealing with gaps

A problem to solve in order to apply HMM to sparse events in very
long sequences is the presence of long gaps filled by noise. Infact,
the entire sequence including the gaps has to be explicitly modeled
[1]. Moreover, the presence of long gaps tends to decrease the prob-
ability of events containing long gaps in favor of events contain-
ing short or no gaps. This may be in contradiction with many real
world phenomena, where temporal intervals are required in order to
let physical processes be completed.

We will exploit HHMM architecture to specifically model gaps.
Gapsare HMMs designed (or inferred from data), allowing the dis-
tribution of gap durations to be tailored according to the position in

(b)

0 1 2 3 4 5

0.2 0.3

0.50.8 1.0
1.0 1.0

0.2

0.3

0.5

3 4 5 t

Pr

0 1 2

(a)

Figure 2. Hidden Markov Model for gaps. (a) Example of a probability
distribution over the duration of a gap due to a physical process. (b) The

left-right automaton that correctly models distribution (a).

the sequence.Gapscan be explicitly bound by supplying temporal
constrains.

In many applications gap models have been used [1]. Typically
they correspond to states with a self-loop where the emission is ran-
dom, or no emission exists, depending on whether the gap contains
noise or is it an empty interval. The drawback of this model isthat
the distribution probability on the gap length decays exponentially. In
fact, this may be unrealistic when the gap duration reflects the time
required in order to complete some physical process. In thiscase,
the distribution tends to have a bell shape as, for instance,in Figure
2-(a). It is immediate to verify that left-to-right HMMs of the form
described in Figure 2-(b) are able to model distributions ofthis type.
In the following, we will consider two variants build on thisstruc-
ture. In the first variant, the emission in a state is a symbol randomly
selected inO. This variant still has the drawback that the probabil-
ity distribution of the gap length depends on a term that decreases
exponentially with the duration. Nevertheless, the advantage is that
this model can be immediately integrated in the HHMM and han-
dled by the existing training algorithms. In the second variant, the
emission is represented by the symbol ’*’ that means ’any’ symbol
in O. In other words, the probability of the emission ’*’ is 1 in all
states, so that the probability distribution will completely be deter-
mined by the probability values of matrixA. This model can exactly
capture a distribution like the one in Figure 2-(a), but it has the dis-
advantage of requiring special care during the training phase. In fact,
increasing the length of a gap will implicitly increase the probability
of the entire event, so that gap tend to be dominant. The solution that
we adopt in this case consists in preventing Baum-Welch algorithm
from training gaps, which will be estimated separately in a second
time.

The distribution encoded by a HMM of the type described in Fig-
ure 2-(b) has inelastic bounds. In some cases, elastic bounds may be
preferable. This can be obtained by adding self-loops to states.

4 Setting Temporal Constraints

Domain knowledge in the form of temporal constraints can be used
to bias the induction process. More specifically,inelasticor elastic
constraints on the duration of an episode, or of a gap, can be stated.
Constraints may be generic, i.e, they apply to all episodes (or gaps),
or specific, i.e., they apply to a specified episode (or gap). The differ-
ent types of constraints are described in Table 1. Generic constraints

Table 1. Temporal constraints. Square brackets denote hard constraints;
angle brackets denote soft constraints.

Hard form Soft form Comment
L(*) = [T1 , T2] L(*) = 〈 T1 , T2 〉 Episodes must/should have length

betweenT1 andT2
D(*,*) = [T1 , T2] D(*) = 〈 T1 , T2 〉 Gaps between two episodes must/should

have a duration betweenT1 andT2
L(E) = [T1 , T2] L(E) = 〈 T1 , T2 〉 The length of EpisodeE musts/should be

betweenT1 andT2
D(E1 ,E2) = [T1, T2] L(E1 ,E2) = 〈 T1 , T2 〉 The duration of gap betweenE1 andE2

must/should be betweenT1 andT2

are used to discard episodes that do not meet the assigned constraints
on episode and gap duration.

Specific constraints can be used, on demand, to bias the structure
of the HMM of an episode or of a gap. As discussed in the previous
section, using left-to-right HMMs, the duration of an event(episode)
is determined by the number of states that can be chained in pro-
cess. Then, a given constraint can be satisfied by properly shaping
the structure of the HMM. Soft constraints are satisfied by adding
self loops to states.

5 The Learning Algorithm

As described in Section 2, the first step of the learning algorithm
consists in searching for frequent episodes, and then building a HMM
for each one of them. This basic step is followed by one or moresteps
in which the higher levels of a HHMM are constructed.

In this process local alignment algorithms [10] based on Leven-
stein’s edit distance [6] are extensively used in order to discover
episodes.

Let L be a set of learning sequences. The basic learning step is as
follows:

1. For every different pair of sequence (l1, l2) in L find all local
alignments betweenl1 and l2, having a sufficient statistical evi-
dence, and collect them into a setS. These will be the potential
episodes.

2. Apply a clustering algorithm to subsequencesS using the Leven-
stein distance as distance measure. Clusters having a cardinality
below a given thresholdtc are discarded.

3. For every retained clusterCi construct a modelMi of the subse-
quences contained in it. To every modelMi give a symbolic name
Mi.

4. Construct an abstract alphabetΣ containing all namesMi given
to the automata constructed in the previous step.

5. Abstract every sequencesli ∈ L using the alphabetΣ.

HMMs of the episodes are constructed following a procedure
widely used in molecular biology: LetCi be a cluster of subsequence
generated by a local alignment algorithm:

1. Construct the multiple alignment MAi among all subsequences in
Ci

2. Convert MAi into a left-to-right hidden markov model HMMi.
Depending on the given constraints a different model type may be
chosen.

3. Estimate the parametersλ of HMM i on the sequences inCi.

The algorithm for the abstraction step is as follows. Firstly, every
sequence inL is processed searching for subsequences correspond-
ing to instances of the HMMs constructed in the previous step. Ev-
erywhere an instance of modelHMMi is found, a hypothesishi =
(Mi, b, e, p) is emitted, beingMi the symbol inΣ associated to
HMM i, b the instant wherehi begins in the original sequence, ande

the instance where it ends;p is the probability forhi being generated
by HMMi. In this way, for every sequencel a lattice of hypotheses
is obtained. Afterward, lattices are processed extractingfrom each
one the sequence, which includes the most likely hypothesesand
is compatible with the given constraints. The default constraint is
that hypotheses must not overlap. Finally, every sequence is trans-
formed again in a string of symbols in order to be able to process it
with standard local alignment algorithms in the cycle that will follow.
Gaps between consecutive items in the sequences are represented us-
ing special symbols. In order to account for gap length avoiding to
explicitly introduce numerical information, gaps are subdivided into
broad categories depending on their length. Every categoryis then
labeled with a different symbol. The edit distance measure is defined
in order to account for the numeric distance among the different cat-
egories.

The further steps in order to construct the higher levels in the hi-
erarchy resemble to the basic one, except for the construction of the
model from abstract representation of the sequences. In this case,
as previously noticed, the model is an observable Markov model.
Again, a left-to-right automaton is constructed, which maycontain
self loops, or not, depending on the constraints. The transition proba-
bilities of the automaton are estimated from the sequences.The pro-
cedures currently used for building the multiple alignmentand for
constructing the model are standard ones taken from [4, 1].

The procedure for constructing the automaton also takes care of
gap models. Firstly, an automatonM containing only emission states
is constructed (see Figure 1). Then, for every pair of consecutive
states (si, sj) in M , the gaps occurring in the sequences between
the emission ofsi andsj are collected. In this way the distribution
histogram of the gap duration is obtained and the corresponding gap
HMM is constructed. Finally, the automatonM is extended by in-
serting the states corresponding to gaps.

6 Evaluation

The algorithm has been evaluated using artificial data generated ac-
cording to a specific test procedure in order to monitor its abil-
ity at discovering ”known patterns” depending on the difficulty of
the problem. A problem is represented by a dataset containing se-
quences of symbols, where a complex event, generated by an hand-
crafted HHMM4, is hidden. Random noise and spurious episodes
have been added to the all sequences filling the gaps between con-
secutive episodes.

6.1 Discovering Chains of Episodes

The HHMMs used in a first group of experiments generates se-
quences of names of towns, in a predefined order. The HHMM also
models noise in the data, in form of insertion, deletion and substitu-
tion errors. The gaps between the names are filled by symbols ran-
domly chosen in the alphabet defined by the union of the letters con-
tained in the names. Moreover, random subsequences, up to 15char-
acters long, have been added at the beginning and the end of each
sequence. The global length of the sequences ranges from 60 to 120
characters. The difficulty of the task has been controlled byvarying
the degree of noise. Two sets of experiments have been designed in
this framework. In the first one, a sequence of problems has been gen-
erated varying the number of words (5 ≤ w ≤ 8), the word length
(5 ≤ L ≤ 8) and the noise level (N ∈ {0%, 5%, 10%, 15%}. For

4 HHMMs with a two level structure have only been used in this evaluation.

Table 2. Performances obtained in the first set of experiments. The
sequence length ranges from 60 to 140 characters. The CPU time, for

solving a problem, ranges from 42 to 83 seconds on a Pentium IV2.4Ghz.

Noise Level
w L 0% 5% 10 % 15%
5 5 0.00 0.02 0.02 0.02
5 6 0.06 0.12 0.12 0.09
5 7 0.00 0.01 0.01 0.05
5 8 0.00 0.03 0.02 0.04
6 5 0.06 0.01 0.04 0.04
6 6 0.02 0.10 0.06 0.19
6 7 0.00 0.03 0.02 0.05
6 8 0.00 0.04 0.05 0.05
7 5 0.02 0.05 0.11 0.07
7 6 0.01 0.10 0.05 0.14
7 7 0.00 0.06 0.02 0.05
7 8 0.01 0.06 0.09 0.09
8 5 0.00 0.00 0.01 0.10
8 6 0.03 0.08 0.10 0.14
8 7 0.00 0.01 0.01 0.08
8 8 0.01 0.03 0.08 0.09

every triple< w, L, N >, 10 different datasets has been generated
for a total of 640 learning problems.

The second set of experiments aimed at monitoring the ability of
the algorithm at discovering hidden events, when relevant sequences
are mixed with irrelevant ones. Starting from the datasets generated
for the first experiment, new detasets are obtained by replacing a per-
centage (from 10% to 50%) of sequences with others not containing
instances of the target event.

The most important results are summarized in Table 2. The error
rate is evaluated as the edit distance (i.e. the minimum number of
corrections) between the maximum likelihood sequence (maximum
consensus) generated by the Viterbi algorithm [3] from the original
HHMM and the one generated from the learned HHMM. When, an
entire word is missed, the corresponding error is set equal to the its
length. Experiments in table 2, reporting an error rate muchhigher
than the others, have missed words. In all cases, the learning cycle
has been iterated twice, as explained in Section 5. The average error
rate after the second swept decrease of about 50% with respect to the
first one.

Table 3. Performances obtained in the second set of experiments. The
noise percentage on single sequence is 10%, whreas the percentage of

irrelevant sequences range from 10% to 50% The values have been averaged
on the word lengthL.

Irrelevant Sequences (%)
w 10% 20% 30% 40% 50%
5 0.24 0.15 0.22 0.06 0.14
6 0.17 0.10 0.11 0.08 0.16
7 0.15 0.18 0.20 0.12 0.19
8 0.14 0.14 0.17 0.21 0.16

From Table 2, it appears that the model extracted from the data
without noise is almost error free. Moreover, the method seems to be
little sensitive with respect to the sequence length while the error rate
roughly increases proportionally to the noise in the original model
(the 15% of noise corresponds to an average error rate of about 19%).

The experimentation related to the second group of experiments is
reported in Table 3. It appears that the algorithm is quite insensitive
to the presence of irrelevant sequences, provided that its proportion
does not dominate the relevant ones.

a

c

b

d e

G

G

G

G

G

0.5

0.5

a’

c’

b’

d’ e’

G

G

G

G

G

0.58

0.35
0.94

0.06
0.08

0.92

0.06

1.0

0.164

0.32

0.67

0.43

0.56

0.9

0.1

a

c

b

d e

G

G

G

G

G

0.63

0.37

(a)

(b)

(c)

Figure 3. Example of HHMM inferred by the algorithm. (a) The higher
level of the target HHMM. (b) The model inferred at the first sweep. (c) The

final automaton after refinement.

6.2 Discovering a Partially Ordered Set of Episodes

A third group of experiments is designed to check the abilityof the
method at discovering partially ordered sets of episodes (i.e. learning
a higher level automata defined by a graph).

The experimentation has been run with many different patterns.
For the sake of space we will restrict to describe an example among
the most significant ones. Every generated dataset contains330 se-
quences. The 90% of the sequences contain an instance of a target
HHMM that should be discovered by the learning program, whereas
the 10% contain sequences of spurious episodes non generated by
the target HHMM. The sequence length ranges from 80 to 120 char-
acters.

The target HHMM used to generate the datasets has a structure
described in Figure 1. In order to make the task misleading, the gaps
have been filled with subsequences containing random noise.To this
purposegap models with random emission in the states have been
used. Both the HMMs of episodes, in the target HHMM, and the
model of the spurious episodes have been constructed in order to
have a measurable distance among them. In this way the difficulty of
the task can be evaluated and predetermined.

The distance measure between two HMMs is the one described by
Rabiner in [9]

D(λ1, λ2) =
1

T |X|

∑

x∈X

[log(p2(x) − log(p1(x))] (1)

In other words the distanceD(λ1, λ2) between two HMMs is given
by the average of the ratio between the probability inλ2 and the
probability inλ1 for sequencesx generated inλ1. T is a parameter
that has been set to the value of the length of sequencex. Notice that
the distance is not symmetric.

To generate a HMMλ2 having a predefined distance from another
HMM λ1 the following procedure has been used. LetD be a prede-
fined distance value. Let moreover̂X a stochastic sampling of the set
X of observations that can be generated byλ1. Model,λ2 is modi-
fied by performing the gradient ascent/descent in the parameter space
of λ2 until the desired valueD is obtained.

In the test reported in Figure 3, six different models have been
used, generated by the above algorithm starting from slightly differ-
ent structures. Models A, B, C, D, E are used to build up the target
HHMM. Model F is used to generate pseudo episodes in misleading
sequences.

The distance matrix among the HMMs is reported in Table 4

Table 4. distance matrix among the HMMs used to generate episodes. A,
B, C, D, E model the episodes in the corresponding states a, b,c, d, e in

Figure 3. F is the model of the episods in pseudo sequences.

A B C D E F
A 0.0 ∞ 2 2 0.47 0.7
B ∞ 0.0 0.94 1.16 1.80 2.48
C ∞ 0.50 0.0 0.14 2 2.9
D ∞ 0.23 ∞ 0.0 1.43 2.6
E 0.04 ∞ 1.8 1.58 0.0 0.6
F 0.8 ∞ 2 2.1 0.75 0.0

As it appears from Figure 3, the structure of the hidden model
already emerged after the first sweep, and has been reconstructed
with a reasonable approximation after a refinement step. TheCPU
time ranges from 395 to 1370 seconds on a Pentium IV 2.0 GHz
depending on the problem instance.

7 Conclusion

We have proposed a method for inferring, from data and domain
knowledge, a HHMM for complex events. The learning algorithm
is multi-strategy, and is guided by statistical evidence and regulari-
ties discovered in sequences, and is easy to integrate with existing
algorithm for training HHMM parameters. In preliminary tests on
artificial datasets, the method succeeded in reconstructing two level
HHMMs without the help of domain knowledge.

REFERENCES
[1] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison,Biological sequence

analysis, Cambridge University Press, 1998.
[2] S. Fine, Y Singer, and N. Tishby, ‘The hierarchical hidden markov

model: Analysis and applications’,Machine Learning, 32, 41–62,
(1998).

[3] G. D. Forney, ‘The viterbi algorithm’,Proceedings of IEEE, 61, 268–
278, (1973).

[4] D. Gussfield,Algorithms on Strings, Trees, and Sequences, Cambridge
University Press, 1997.

[5] K. Kersting, T. Raiko, and L. De Raedt, ‘A structural gem for learning
logical hidden markov models’, inWorking Notes of the Second KDD-
Workshop on Multi-Relational Data Mining (MRDM-03), Washington,
DC, USA, (August 2003).

[6] V.I. Levenstein, ‘Binary codes capable of correcting insertions and re-
versals’,Soviet. Phys. Dokl., 10, 707–717, (1966).

[7] K. Murphy and M. Paskin, ‘Linear time inference in hierarchical
hmms’, inAdvances in Neural Information Processing Systems (NIPS-
01), volume 14, (2001).

[8] L. Rabiner and B. Juang,Fundamentals of Speech Recognition, Pren-
tice Hall, Englewood Cliffs, NY, 1993.

[9] L.R. Rabiner, ‘A tutorial on hidden markov models and selected appli-
cations in speech recognition’,Proceedings of IEEE, 77(2), 257–286,
(1989).

[10] T.F. Smith and M.S. Waterman, ‘Identification of commonmolecular
subsequences’,Journal of Molecular Biology, 147, 195–292, (1981).

[11] A. Stolcke and S. Omohundro, ‘Hidden markov model induction by
bayesian model merging’,Advances in Neural Information Processing
Systems, 5, 11–18, (1993).

[12] L. Xie, S. Chang, A. Divakaran, and H. Sun,Learning hierarchical hid-
den Markov models for video structure discovery, volume Tech. Rep.
2002-006, ADVENT Group, Columbia University, December 2002.

