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Abstract. This paper presents the clustering algorithm PoBOC
(Pole-Based Overlapping Clustering). It has two main characteris-
tics: the number of final clusters is unknown a priori and PoBOC al-
lows an object to belong to one or several clusters. Given a similarity
matrix over a set of objects, PoBOC builds small and homogeneous
sets of objects (the poles), and then it assigns the objects to the poles.

The clustering method is evaluated on two different research areas.
First, on the Rule-Based Learning (RBL) task: classification rules are
generated by organizing the instances of a class so that each cluster
is covered with a single rule ; PoBOC is compared with different
clustering methods and usual classifiers, on traditional datasets from
the UCI repository. Otherwise, we observe the behaviour of PoBOC
on the structuring of textual data in a semantic way. The efficiency of
the proposed method on the two applications leads to conclude that
PoBOC is also a general algorithm.

1 Introduction

Clustering is the task that consists in organizing a set of objects into
classes, so that similar objects belong to the same cluster and dis-
similar ones belong to different clusters. Several ways of cluster-
ing have been explored in the past (hierarchical, partitioning, graph-
based, density-based methods,...) in various perspectives of appli-
cation as for instance image segmentation and document clustering
tasks [7]. Most of the clustering algorithms are hard-clustering tech-
niques, each object is assigned to a single cluster. Conversely, the
fuzzy-clustering methods [2] propose an organization in which each
object participates to the definition of each cluster. This last approach
is well-known for the richness of its description compared to hard-
clustering methods, however, hard clusters are usually prefered for
the simplicity of their definitions in a post-processing perspective.

We propose in this study a method which can be viewed as a com-
promise between hard and fuzzy-clustering approaches. Rather than
assigning an object to only one cluster, this approach allows an ob-
ject to belong to one or several clusters ; final clusters thus intersect.
This type of algorithm is sometimes denoted as soft-clustering but
we prefer using the term of overlapping-clustering. Most of cluster-
ing algorithms concern hard or fuzzy-clustering methods, neverthe-
less various overlapping clustering ones have been proposed. We can
mention: partitioning methods with the axial-k-means algorithm [9],
hierarchical methods with the pyramidal clustering [14] or clustering
based on probabilistic models such as AutoClass [5]. The axial-k-
means method concerns only data observed in a numerical space,
pyramidal clustering does not allow a cluster to overlap with more
than two other clusters and the clusters induced with Autoclass are
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often essentially elliptical in shape. The algorithm PoBOC (Pole-
Based Overlapping Clustering) does not present the previous limi-
tations, furthermore the number of clusters is not given a priori, like
for Autoclass.

The evaluation of clustering algorithms is a difficult task which
is usually solved by graphical validations or using quality criterion
such as inter/intra-cluster similarities. We propose here an evaluation
on two different applications. In the first one, PoBOC is used to orga-
nize events of a class in a supervised learning perspective. Thus, the
proposed method is evaluated on the semantic clustering task which
consists in structuring lexical units in a semantic perspective.

The paper is organized as follows: Section 2 presents a formal de-
scription of the clustering algorithm PoBOC ; Section 3 and 4 are re-
spectively devoted to classification rules learning and semantic terms
structuring. Finally, Section 5 presents a conclusion of this study and
proposes perspectives of research.

2 PoBOC : Pole-Based Overlapping Clustering

2.1 The clustering algorithm PoBOC

The algorithm PoBOC (Pole-Based Overlapping Clustering) takes as
input a similarity matrix and builds a hierarchy of concepts in which
an object may belong to several concepts. The four main steps are:
(1) the search for poles, (2) the construction of a membership matrix
of objects to poles, (3) the assignment of objects to one or several
poles and (4) a hierarchical organization of the obtained groups.

The notion of pole is central in our approach: given a set of objects
X = {x1, . . . , xn}, a pole is a subset corresponding to an home-
geneous area appearing in a region having an uniform density. The
construction of poles is perfomed from the similarity graph:

Definition 2.1 Let X = {x1, . . . , xn} and S a similarity matrix
defined on X ×X . The similarity graph, denoted by GS(X,V ), is
the graph defined by the set of verticesX and the set of edges V such
that (xi, xj) ∈ V iff:

s(xi, xj) ≥ max{ 1

n

∑

xk∈X
s(xi, xk),

1

n

∑

xk∈X
s(xj , xk)} (1)

We say that xi is connected to xj if (xi, xj) ∈ V .

In this definition, an edge exists between xi and xj if their simi-
larity is greater than both the average similarity between xi and the
whole set of objects and the average similarity between xj and the
whole set of objects. This definition avoids to specify a threshold
corresponding to a minimum similarity value and allows to take into
consideration the density around each object.



Definition 2.2 Let GS(X,V ) be the similarity graph over a set of
objects X . A pole Pk is a subset of X such that the sub-graph
GS(Pk, V (Pk)) is a clique-graph, i.e. ∀xi ∈ Pk,∀xj ∈ Pk
(xi, xj) ∈ V (Pk)).
(V (Pk) is the set of vertices (xi, xj) such that xi ∈ Pk and
xj ∈ Pk).

Given : X = {x1, . . . , xn} the set of objects
S the similarity matrix over X ×X

Initialization : Build the similarity graph GS(X,V )

Step 1 : Build the set of poles P = {P1, . . . , Pl}
with ∀i ∈ {1, . . . , l} Pi ⊆ X

Step 2 : Build the membership matrix U
where u(Pi, xj) = 1

|Pi|
∑

xk∈Pi
s(xj , xk)

Step 3 : For each xj ∈ X , call assign(xj ,P)

Step 4 : Let C be the set of groups {C1, . . . , Cl} such that :
Ci = {xj ∈ X|xj has been assigned to Pi}
Build a hierarchical organization of C

Table 1. PoBOC : soft-clustering algorithm.

Table 1 summarizes the PoBOC algorithm. We can notice that the
membership function (u(Pi, xj)) is not a probabilistic function (the
sum of the membership values of an object to all the poles can be
6= 1). In the following section, we detail the heuristics for the con-
struction of poles, the assignment method and the construction of the
hierarchical organization of the obtained groups.

2.2 Heuristics in PoBOC
Heuristics for the construction of poles
Our definition of pole is close to both the notion of core proposed in
[3] and the notion of fuzzy-center (centroid or medoid) used in fuzzy
clustering. The construction of poles requires to build a set of cliques
in the similarity graph. Searching for maximal cliques in a graph is a
NP-complete problem, so we propose to use the “Best-in” heuristic
[4]: a clique is obtained starting from a single vertex and repeatedly
adding the nearest neighbor (vertex) until it is not possible to find a
vertex x connected to each vertex of the clique under construction.
By the way, the clique-graph obtained is an approximation of the
maximal complete sub-graph which contains the given vertex.

The construction of the set of poles is obtained by repeating the
construction of a pole: this process requires to choose a starting ver-
tex and then to add connected vertices.

The first vertex chosen x1 is the one having the lower average
similarity with other objects, among the set of vertices having at least
one connected vertex. Let GS(X,V ) be the similarity graph:

x1 = Argminxi∈E
1

|X|
∑

xj∈X
s(xi, xj) (2)

where E is the set of vertices having at least one connected vertex.
The next vertices {x2, . . . , xl} are chosen in order to reduce the

similarity with poles previously built:

xk = Argminxi∈E
1

k − 1

∑

m=1,...,k−1

1

|Pm|
∑

xj∈Pm

s(xi, xj) (3)

The process stops when the sum in the previous equation is greater
than the average similarity of the whole set of objects. This heuristic
determines the number of poles and then, the number of clusters.

The“soft” assignment method
This multi-assignment step (objects are assigned to poles) plays
an important role in the construction of “overlapping-clusters” in
PoBOC. The advantage of assigning an object to several clusters is
well-known, the assignment method is often based on an arbitrary
threshold applied on a fuzzy membership matrix obtained with a
fuzzy-clustering method [8]. In this paper, we propose a new ap-
proach based on the relative similarity between objects and poles,
defined as follows:

Definition 2.3 Let X = {x1, . . . , xn} be the set of objects, let P =
{P1, . . . , Pl} be the set of poles and U be the membership matrix on
P ×X as defined in Table 1. Given an object xj , we write Pj,1 the
most similar pole for xj(Pj,1 = ArgmaxPi∈P u(Pi, xj)), Pj,2 the
second most similar pole for xj and so on, Pj,l is the least similar
pole for xj . The following condition ASSIGN(xj ,Pj,k) is used to test
whether the object xj is assigned to the pole Pj,k:
ASSIGN(xj ,Pj,k) iff one of the following properties is satisfied :

i) k=1,
ii) 1 < k < l , u(Pj,k, xj) ≥ u(Pj,k−1,xj)+u(Pj,k+1,xj)

2

and ∀k′ < k , ASSIGN(xj ,Pj,k′ ).

For each object, the set of poles is ordered with respect to its aver-
age similarity with the object. The property i) allows to assign each
object to at least one pole (the most similar). The propertie ii) al-
lows to assign an object xj to a pole Pj,k by considering the sim-
ilarity with the previous pole (Pj,k−1) and the next pole (Pj,k+1)
w.r.t the order associated to xj . Thus, the assignment is not relative
to a threshold but is based on the relative position (similarity) of the
object w.r.t. the poles previously obtained. In the following, we call
“group” the set of objects assigned to one pole.

Hierarchical organization of groups
The hierarchical organization allows to control the number of final
clusters obtained from the set of groups. We will use this represen-
tation in our experiments in order to find a better characterization of
the groups, and then to get a better set of clusters.

To get a hierarchical organization, we propose to apply the hier-
archical agglomerative clustering method “single-link”[7], starting
with the groups previously built C = {C1, . . . , Cl} where Ci = {xj
assigned to Pi}. Since the similarity matrix is normalized, we have
∀xi ∈ X, s(xi, xi) = 1 and we define the similarity between two
groups by

sim(Ck, Cm) =
1

|Ck|.|Cm|
∑

xi∈Ck

∑

xj∈Cm

s(xi, xj) (4)

The organization is built as follows: the two most similar groups
are agglomerated and this process is repeated until we get only one
group. This organization is represented by a binary tree where the
leaves correspond to the initial set of groups.

2.3 Discussion about PoBOC
The time complexity of PoBOC can be considered w.r.t. the 4 main
steps of the algorithm given in Table 1 ; Step 4 is the most expensive



one, with a o(k.n2) complexity where n is the number of objects and
k is the number of groups obtained after Step 3. This complexity is
greater than the complexity of fast algorithms such that k-means or
fuzzy-k-means (o(k.n.t)) but is lower than other methods such that
the “max-link” agglomerative algorithm (o(n2.log n)).

One of the advantages of PoBOC w.r.t. methods based on centroids
(or medoids) is that each group is represented by a pole, i.e. a set of
objects (instead of groups represented by one object for centroid-
based metods), which is a less specific representation of a group.
Moreover, we do not need to specify the expected number of groups.

3 Learning of classification rules with PoBOC

3.1 Motivations

Classification rules learning is a task which has already been long
studied in the supervised learning field. It consists in generating,
directly or not, a set of decision rules from a training set such as
for each new event a prediction of a class is proposed according to
learned rules. We can distinguish two main approaches constructing
rules in the “attribute-value” formalism: decision lists and decision
trees.

The first two methods are strongly based on an iterative search of
a good selector which allows to separate positive observations from
negative ones, with respect to a target class. In the case of decision
trees methods (for instance C4.5 [13]), each attribute of the descrip-
tion space is viewed as a selector and is a candidate for the construc-
tion of a node. A rule corresponds to a path from the root to a leaf in
the decision tree. On the other hand, the rules which appear in a de-
cision list are generated directly, iteratively adding [attribute]value]
selectors, where ] stands for a relational operator such as =, 6=, <...
A well-known algorithm for decision list learning is CN2 [6]. The
construction of a rule via the best selector heuristic does not allow to
consider combination of two or more features as selectors, because of
complexity problems. The combination of several features is usually
better, all the same.

In the following, we E denotes the event space, E the set of
training events, Ei the set of positive events for the class i and
X = {x1, . . . , xn} the feature space over E .
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Figure 1. Multiple feature combination as selector.

Let us consider the set of events in the two dimensional space,
proposed in Figure 1. The “+” denotes positive events and the “-”
negative ones. The target class is clearly composed of two separated
concepts C1 and C2. The search of the best selector [attribute]value]
over X = {x1, x2} leads to x1 < 2 or x1 < 5 with most of usual
quality measures2. In this way, final rules will not reveal the inside
structure of the target class.

A method to avoid this problem is to consider the internal struc-
ture, by first clustering the positive events. Each cluster is then treated

2 With the information gain and gain ratio measures for instance.

separatly and one rule has to be proposed for each cluster. On the pre-
vious example, the two clusters C1 and C2 can lead respectively to
rules x1 < 3 ∧ x2 < 3 and x1 > 3 ∧ x2 > 3.

In the case of conceptual clustering [12], rules are generated by
successive steps of specialization or generalization. From one event,
or a small set of events, the general procedure consists in searching
all the maximally general complexes3 covering the positive events
and not covering any negative one. Complexes are then reduced in
order to find a disjoint clustering of the collection of events. One can
notice that the quality of a conceptual clustering is usually measured
with respect to the simplicity of the description and the fitting with
training data. An other criteria is the inter-cluster difference which
aims at favouring disjoint concept descriptions.
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Figure 2. Example of conceptual clustering result.

In Figure 2, a possible result from conceptual clustering over the
set of events leads to the two clusters C1 and C2 with the following
descriptions : x2 ≥ 3∧x2 ≤ 5 and x2 ≥ 1∧x2 ≤ 2. These two com-
plexes satisfy the quality criterion : descriptions are simple, disjoint
and “fit well” with the training dataset. However, C1 and C2 do not
match with the intuitive organization of positive events we observe.
A pre-clustering step could allow to consider first the two separated
clusters {C ′1∪C ′2} and {C ′3∪C ′4} and then, the four non-disjointed
clusters C ′1, C

′
2, C

′
3 and C ′4. This clustering better corresponds to the

natural structure of the target class.

3.2 Method for class decomposition
We propose an algorithm to learn rules based on a class decomposi-
tion by clustering. For each class it proceeds as follows. If a single
rule covering all positive events and covering no negative one exists,
this rule is thus retained, else the process of decomposition starts.
First, a similarity matrix is built over the set of positive events from
the target class, then, clustering is performed over the set of positive
events. Each cluster which can be covered by a single rule is consid-
ered as a natural concept for the class and the rule is stored. Clusters
which do not satisfy to constraint are merged and a new clustering
step is done over this subset of events. This procedure iterates until
each cluster is covered. A formal presentation of this algorithm is
proposed in Table 2.

The similarity measure (step 1) used in our experiments has been
presented in [10]. It is based on the definition of a new language
of description from the original one. This language is composed of
[attribute]value ∧ . . . ∧ attribute]value] terms. In [10], the au-
thors have shown that this measure provides good performances on
nearest neighbour classifiers, whatever the type of features (quantita-
tive and/or categorical).

Let us consider a set of positive events Ci, the test of the existence
(step 3) of a single rule covering all the events of Ci and no negative

3 A complexe is a conjunction of selectors.



events, is based on the search of all the selectors [attribute]value]
which cover Ci. If the conjunction of all these selectors covers no
negative event, such a rule exists and it is then generated by an itera-
tive addition of the best selectors.

Input : E the event space,
E the set of training events,
Ei the set of positive events for class i,

Initialization : R = ∅ (the set of learned rules)
C0 = Ei (the set of events to process)
j = 0 (an iteration identifier)

Step 1 Build S, the similarity matrix over Ei,

do

Step 2 Cluster(Cj ,S)→ {C1, . . . , Cnj },
j = j + 1 and Cj = ∅,

Step 3 for s = 1, . . . , nj−1 do,
if ∃R| ∀e ∈ Cs, e ∈ COV (R) and
∀e ∈ E\Ei, e /∈ COV (R) thenR← R∪R,
else Cj ← Cj ∪ Cs,

While Cj 6= ∅

Output : R the set of learned rules.

N.B. COV (R) corresponds to the set of events covered by the rule R.

Table 2. Decomposition algorithm, for one class.

Finally, when none of the clusters Ci is generalized with a rule
(step 3), each cluster Ci is independently decomposed by the same
algorithm. This last remark avoids the algorithm to get stuck in a
loop, even if this situation is very rare.

3.3 Experimental results

We first compare the rule-based classifiers induced by six different
clustering algorithms (Table 3). The classifier induced by PoBOC
uses exactly the previous decomposition algorithm (Table 2) and,
at each call of the Cluster function, the number of clusters is not
given as output. Conversely, PoBOC is compared with k-medoids and
soft-k-medoids. The last clustering approach corresponds to the well
known fuzzy-k-medoids algorithm with a post-assignment4 stage. Fi-
nally, the three last columns in Table 3 concern hierarchical agglom-
erative clustering methods for which a hierachical tree is built and
scrolled through from the root to the nodes which are covered by a
rule.

Classifiers are then evaluated on 10 famous datasets from the UCI
repository [11] : audiology (AD), credit (CE), glass (GL), heart dis-
ease Switzerland (HDs), hepatitis (HE), iris (IR), soybean (SO), thy-
roid (TH), wine (WI) and zoology (ZO). Classification accuracies are
obtained by the average of ten iterations of 10-fold cross-validation,
and each method is evaluated on the same samples. When a test set
is proposed(*), accuracy is computed only on this test sample.

We can observe (Table 3) that the three agglomerative approaches
are not appropriate to the data structuring task in a rules learning per-
spective. This phenomena is explained by a global disproportion be-
tween final clusters ; hierarchical trees are sometimes unbalanced so

4 The same assignment method as in the PoBOC algorithm (cf. section 2)

DOM. PoBOC Soft-k- k- Complete Single Average
medoids medoids linkage linkage linkage

AD* 81.5%1 78.5%4 80.4%3 67.3%5 80.8%2 63.5%6

CE 85.8%2 85.7%3 86.7%1 32.2%5 66.2%4 30.7%6

GL 69.8%1 57.1%3 64.9%2 28.5%6 43.2%4 39.6%5

HE 80.5%1 76.3%3 80.1%2 47.7%6 70.8%4 60.7%5

HDs 84.9%2 84.0%3 85.0%1 65.7%6 73.9%5 83.1%4

IR 95.9%3 95.7%4 95.3%5 81.3%6 96.4%1 96.4%1

SO* 85.2%1 81.4%3 83.9%2 62.1%6 70.4%4 68.3%5

TH 94.4%1 94.4%1 93.4%3 61.1%6 91.2%4 80.4%5

WI 95.8%1 93.7%3 94.7%2 87.9%6 89.7%4 89.3%5

ZO 89.7%3 89.5%5 89.9%1 88.9%6 89.8%2 89.7%3

Pos. 1.6 3.2 2.2 5.8 3.4 4.5

Table 3. Average accuracies and global average position. Superscripts
denote position of the classifier with respect to the five others.

that clusters are not relevant in a conceptual structuring way. Thanks
to its two main characteristics - discovering of an appropriate number
of clusters and overlapping between them - PoBOC seems to be re-
ally more able of finding natural concepts in a dataset. It outperforms
other clustering methods over six of the ten proposed datasets, and is
among the two best methods over 8 domains.

DOM. PoBOC pFOIL C4.5 1-NN
AD 81.5%± - 2 65.4%± - 4 84.6%± - 1 76.9%± - 3

CE 85.8%± - 2 85.2%± - 3 86.1%± - 1 77.7%± - 4

GL 69.8%±9.02 65.1%±10.24 69.2%±9.13 78.1%±9.91

HE 80.5%± - 1 76.8%± - 4 79.5%± - 2 78.6%± - 3

HDs 84.9%±9.93 81.7%±9.64 91.7%±8.91 86.1%±8.22

IR 95.9%±4.71 94.3%±5.14 95.1%±4.92 95.1%±4.52

SO 85.2%± - 2 81.4%± - 3 86.7%± - 1 75.2%± - 4

TH 94.4%±4.82 92.9%±5.34 93.0%±5.03 96.9%±3.41

WI 95.8%±4.91 90.6%±6.94 93.5%±5.83 95.1%±4.92

ZO 89.7%±7.04 90.2%±7.23 90.9%±6.62 94.3%±5.21

Pos. 2.0 3.7 1.9 2.3

Table 4. Average accuracies and standard deviations. Superscripts denote
position of the classifier with respect to the three other classifiers.

Table 4 presents a comparative study of different usual rule-based
and instance-based classifiers. The classifier induced by PoBOC is
first compared to the pFOIL method [1] which is a greedy approach
based on the well-known FOIL algorithm, in first order logic for-
malism. The two first columns show an increase of the accuracy of
the classifier when a data structuring step is proposed before the rule
construction step (PoBOC) or not (pFOIL). One can also obseve that
accuracies of PoBOC-based and decision-tree-based classifiers are
comparable, since the classifier induced by PoBOC is better than
C4.5 over five of the ten domains.

4 Textual data application

4.1 Motivations

In the field of textual data processing, structuring terms or textual
units in a semantic way is difficult, because of the complexity and
the nature of the relations between the terms. Considering a list of
extracted terms from a corpus, an information processing task con-
cerns the construction of themes or topics via a semantic concept
organization. Clustering is thus the main tool which can help to dis-
cover topics, and we claim that PoBOC is appropriated, since seman-
tic concepts are usually not disjoint. In the following experiment, we
show the benefits of using PoBOC in order to identify subdomains
from a list of specialized keywords.



4.2 Keywords structuring

A list of 38 keywords, proposed by the authors, has been extracted
from scientific articles about three interconnected domains : Arti-
ficial Intelligence (AI), Web Technologies (WT) and Natural Lan-
guage processing (NL). The three respective information resources
are: the Journal of Japanese Society for Artificial Intelligence (1997),
the International World Wide Web Conference (2002) and the Inter-
national Conference on Language Resources and Evaluation (2000).

C1

C2

C3
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Pull (WT)
Push (WT)
Scalability (WT)

Quality Control (NL)
Integration (AI)

HTTP (WT)

World Wide Web (WT)

Data consistency (WT)
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Dynamic data (WT)
HTTP (WT)
Protocol design (WT)

Classification Rule (AI)
Macro Rule (AI)
Colored Digraph (AI)
Logic Programming (AI)
Problem solving (AI)
Program transformation (AI)

Machine Learning (NL)
Tagging (NL)
Knowledge−Rich NLP (NL)
Parallel Corpora (NL)
Natural Language Processing (AI)
Robust parsing (AI)

Machine Learning (NL)
Classification Rule (AI)
Concept Learning (AI)
Constructive Induction (AI)
Logic Programming (AI)
Problem solving (AI)
Program transformation (AI)

Content distribution networks (WT)
Dynamic Data (WT)
HTTP (WT)
Leases (WT)
Protocol design (WT)
Scalability (WT)
TCP Splice (WT)
Web proxy (WT)
World Wide Web (WT)

Annotation Guidelines (NL)
Bracketed Corpus (NL)
Chinese Language Processing (NL)
Combining Systems (NL)
Machine Learning (NL)
Knowledge−Rich NLP (NL)
Multilingual Corpora (NL)
Parallel Corpora (NL)
POS Tagging (NL)
Integration (AI)

Scalability (WT)
TCP Splice (WT)
Integration (AI)

Figure 3. Hierarchical structuring of keywords with PoBOC

Then, a similarity matrix is built from the co-occurrences of the
keywords on the web [15]. From this matrix, the keywords are or-
ganized in a totally unsupervised manner. Figure 3 gives the seven
clusters obtained with PoBOC, organized in a hierarchical tree.

For each keyword, we give the corresponding domain to help the
reader evaluation, although this information has not been used in the
clustering process. We observe that the seven leaves of the tree cor-
respond to rather pure clusters. Furthermore, some keywords such as
natural language processing or machine learning have been put back
in their correct context. Finally, the three initial topics are to be found
in the top of the tree : C1, C2 and C3 corresponding respectively to
the Web Technologies, Artificial Intelligence and Natural Language
domains. The average purity in the leaves is 88% and 86% in the
three top nodes. A similar experiment with the k−medoids cluster-
ing algorithm (k = 3) gives only about 69% of average purity5.

Another interesting remark is about the nature of the intersections
between clusters. Two different types of keywords are shared by sev-
eral clusters : the inter-domain terms which are general and thus ap-
pear in many clusters (for instance integration) and the intra-domain
ones which are general in only one domain and thus appear in several
clusters about this topic (for instance HTTP).

5 Conclusion and perspectives

In this paper, we present the clustering algorithm PoBOC. This
method can be seen as a compromise between hard-clustering and
fuzzy-clustering approaches, providing an appropriate number of
clusters which overlap. Furthermore, PoBOC combines advantages
of the two previous mentioned approaches since it proposes simpler

5 This percentage corresponds to an average over 50 iterations.

classes than fuzzy-clusters and the final organization is richer than
hard-clustering structuring.

In order to evaluate the method, we propose two really different
application domains : the pre-processing of data in the perspective
of classification rules learning, and the organization of textual data.
Thus, we can observe that the clusters provided by PoBOC lead to a
learning step more efficient than with other traditional hard or soft-
clustering algorithm. It should be noticed that this pre-processing
step allows to outperform greedy rules learning methods so that
the accuracy of the classifier is comparable to decision-tree perfor-
mances. Finally, PoBOC is also efficient for the textual data pro-
cessing, because overlapping clusters enable to take account of the
semantic complexity of the data.

A more complete study about overlapping clustering of words
for text classification is under progress. Other research perspectives
could be considered, one can notice for instance: clustering on spatial
data and image processing.
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