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Abstract. The ability to learn a model of a system from ob-
servations of the system and background knowledge is central
to intelligence, and the automation of the process is a key
research goal of Artificial Intelligence. We present a model-
learning system, developed for application to scientific discov-
ery problems, where the models are scientific hypotheses and
the observations are experiments. The learning system, Qoph
learns the structural relationships between the observed vari-
ables, known to be a hard problem. Qoph has been shown
capable of learning models with hidden (unmeasured) vari-
ables, under different levels of noise, and from qualitative or
quantitative input data.

1 Introduction

The development of intelligent tools to aid in the process of
Scientific Discovery, particularly in the construction of ex-
planatory models, is an important goal of AI; and qualitative
modelling provides an ideal representation. This is the ul-
timate in adaption, and a hybrid system merging Inductive
Logic Programming and Qualitative Simulation is a suitable
tool for acheiving it. Bioinformatics is an ideal domain for
applying this technology: the data are sparse (making it un-
suitable for numerical techniques), they are noisy and they
require the construction of models which will inevitably in-
clude unobserved variables. Work on constructing models of
systems in molecular biology is in the early stages of devel-
opment and so, given the above stated challenges any useful
results emerging will be of tremendous practical value.

The ultimate goal in this scientific quest is the production of
quantitative models; however, the discovery of suitable struc-
tural models (qualitative differential equations) can be the
means of directing the scientist as to which experiments to
carry out next in the path towards this goal. In this paper we
present Qoph a learning system which combines Inductive
Logic Programming (ILP) with QSIM in order to construct
qualitative models of physical and biological systems contain-
ing unmeasured variables.

2 Background

2.1 Qualitative Simulation

QSIM [8] is a constraint based qualitative simulation engine
and utilises an equational representation which is an abstrac-
tion of ordinary differential equations. It is the most highly
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developed constraint based Qualitative Reasoning (QR) sys-
tem available.

In QSIM, each model consists of a set of variables linked
together via a set of constraints, called a qualitative differen-
tial equation (QDE). Each variable consists of a 〈qmag, qdir〉
pair. Here, qmag is the qualitative magnitude of the vari-
able. It has a quantity space of varying resolution consist-
ing of alternating points (called landmark values) and inter-
vals; typically the quantity space is divided into the regions
[−∞ . . . 0), [0], (0 . . .∞], where infinity is treated as a value.
A qdir is the qualitative rate of change of the variable, which
has a fixed, three valued resolution (the three quantities being
inc, for increasing; dec, for decreasing; and std, for steady).
Each constraint has only one operation and is defined between
two or three variables.

There are several kinds of constraint which can appear in
a QSIM model. There are predicates, implemented as rela-
tions, representing the usual algebraic operations of addition,
multiplication, and sign inversion; plus a derivative predicate
stating that one variable is the derivative of another.

One of the attractive features of QSIM is that it is designed
to handle incompleteness in the knowledge of the model. The
incompleteness here takes the form of a lack of knowledge
concerning functional relations in the system. This situation
is captured by the monotonic function constraints M+ and
M− between two variables, which declares that one variable
monotonically increases (+) or decreases (-) with respect to
another variable, covering families of relations.

The conjunction of qualitative relations models the rela-
tionships between a set of measured variables, plus a number
of unmeasured variables. There may be zero, one or more un-
measured variables, which we term the model’s intermediate
variables. Where there are sufficient intermediate variables,
the method described here can discover hidden relations that
relate only intermediate variables; this is a novel feature of
the learning system presented here.

2.2 Inductive Logic Programming (ILP)

The general model learning problem can be represented de-
ductively as follows: if we term the observations (evidence) E,
the background knowledge B, and the hypothesis to be learnt
H, then given that:

B 6|= E (1)

find a hypothesis H so that

B ∧H |= E (2)

Many solutions to this problem are possible, e.g. the trivial
solutions of E, or B → E. The problem is therefore how to



restrict solutions to suitable ones. In abduction [3] solutions
are restricted to ground facts; in ILP more general solutions
are allowed [11], although there are still typically syntactic re-
strictions on what form solutions can take. For most scientific
discovery problems it is clear that ILP is advantageous, as we
wish to learn general theories; and for similar reasons ILP is
a sensible choice for learning QSIM models.

ILP is distinguished from other machine learning tech-
niques by using first-order predicate logic (specifically logic
programs) to represent background knowledge, observations,
and hypotheses [10]; and we have previously applied ma-
chine learning and ILP to many scientific problems with suc-
cess(e.g. [6]).

The learning of qualitative models from examples is a great
challenge for current machine learning methods since the
search space is very large. The problem is also interesting
because the data are positive only, i.e. when identifying a sys-
tem, nature only provides positive examples of states of the
system, not examples the system can not be in. This hinders
machine learning as there are no negative examples to restrict
over-generalisation.

2.3 Related Work

Automated model construction is an important and growing
area of research which has as a central aim the provision of ap-
propriate models for scientific and industrial tasks. The ideal
situation would be for a learning system to be supplied with
only positive data for some of the variables of the system of
interest plus some background knowledge and then produce
a model which explains the data in a physically meaningfully
manner, identify any hidden (unmeasured) variables and not
be overconstrained. This is the hard to achieve target at which
researchers are aiming. Previous work in the area has tended
to either require that all variables be measured (e.g. [5]), re-
quired negative data (e.g. [1]), generate models that were over-
constrained (e.g. [7, 12]) or models that were logically but not
physically equivalent to the plant being modelled (e.g. [1]). In
addition there has been no comprehensive testing of the con-
ditions under which learning of qualitative models is possible.
For further details see Garrett et al [4].

3 Model Learning Methodology - The
Qoph Method

The Aleph ILP system [13] was used as a wrapper for the
Qoph implementation, which was written separately. As with
[1], we used a subset of QSIM, implemented in Prolog, as
background knowledge for ILP. The task of the model learning
method is to induce a model given example values for a known
set of qualitative variables (a set of qualitative states), and the
model language of qualitative relations that can be applied to
those variables.

ILP, like much of learning, can be considered to be a search
through a space of possible solutions. In the case of learn-
ing QSIM models, this space is the set of all possible QSIM
models, partially ordered by generality. The relation-variable
lattice is traversed by best-first search, and the search of
this space can be constrained by the use of various heuris-
tics. These heuristics can be generated from a number of

sources: for example systems theory or the domain knowl-
edge of the areas under investigation. In the former case the
heuristics consist of general principles from systems theory
such as: models must be parsimonious, operate under inte-
gral causality, and contain no algebraic loops (although these
latter are preferences rather than absolute rules - since for
some systems it is not always possible to achieve them). Also,
for example, if one is working in the biological area some of
the domain knowledge may consist of a set of rules regarding
legal chemical reactions that may take place.

3.1 Testing the QOPH method

The Qoph system was developed as a tool to aid in the con-
struction of structural models of systems in molecular biol-
ogy. This is a domain in which data are sparse and inherently
noisy; therefore it was important that Qoph be thoroughly
tested under these conditions in order to ascertain its poten-
tial as such a tool; and the following set of experiments were
devised for this purpose.

1. Starting with a complete envisionment (containing N
states) every combination of N − K states from the en-
visionment (for K = 0 . . . N) was created (giving an ex-
periment space of 2N − 1 experiments) and the ability of
Qoph to learn the target model from each set of states was
tested. This set of experiments measures the sensitivity of
Qoph to sparcity of data alone.

2. For the complete envisionment of N states, experiments
were run (termed inverse noise) in which the total number
of states used to by Qoph to learn from was kept constant
(at N) with the number of real states being progressively
replaced by a number of qualitative noisy states; from 0 (no
noise) to N (only noise). A noisy qualitative state is defined
as a state that is not part of the complete envisionment but
is of the same form, containing the same number and type
of variables. This tests the supposed effect of noise intro-
duced in the quantitative to qualitative conversion process.

3. For a selection of the experiments used in (1) a random
number of qualitative noisy states were added to the real
ones and the effect on learning measured. This was done to
simulate the effect of converting noisy signals.

4. Finally experiments were run to test the whole process
(from data acquisition and interpretation to model con-
struction) for both clean and noisy quantitative data.

In order to illustrate the approach used and the results
obtained we will utilise a coupled two compartment model,
since compartmental models are oftem used to represent
metabolic systems. Details of the full set of tests and results
can be found in [?]. In this system the input, inflow1, is
the input to compartment 1 and the output, outflow2, is
the elimination to the environemnt from compartment 2 (see
Fig. 1). The model of this system is:

DERIV(conc1, netflow1),
DERIV(conc2, netflow2),
ADD(conc2, concDiff , conc1),
M+(concDiff , flow1−2),
M+(conc2, outflow2),
ADD(netflow2, outflow2, flow1−2),
ADD(flow1−2, netflow1, inflow1).
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Figure 1. The coupled system (a) compartments; (b) QSIM

Here there are three unmeasured variables: ‘netflow1’,
‘netflow2’, and ‘concDiff ’. For the system to be correctly
learned these variables will have to be induced. Variable
‘inflow1’ (the input) is exogenous to the model and so ap-
pears only once.

4 Results

Since any given experiment will induce its models from a finite
number of states, it is possible to plot the average reliability
for all the experiments for a particular number of states, from
one state up to the number of states in the complete envi-
sionment. This ‘Average reliability’ is given in the range [0 1].
For the noise experiments, the noise dimension is projected
on the comparative 2-D plot (this assumes an average noise
for each point on the state dimension) to allow comparison
with clean data experiments, but a 3-D plot is also presented
for the noise experiments that includes the noise dimension.

The plots of the number of states used against average re-
liability for the coupled tanks are shown in Fig. 2.
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Figure 2. Coupled compartments reliability graphs

We analysed the performance of subsets of the complete
envisionment to test whether certain subsets helped Qoph to
learn the correct model more reliably than others. If this were
the case then there would a a number of minimal subsets that
contained the lowest number of states that reliably lead to
the correct model being found. Subset analysis of the clean
data experiments for the coupled tanks give the following

states as the minimal subsets.

[1,6], [6,8], [6,9] (state 6 with 1, 8 or 9)
[2,8], ([6,8]), [7,8] (state 8 with 2, 6 or 7)
[1,2,3], [1,2,4], [1,2,5] (states 1 and 2 with 3, 4 or 5)
[1,3,7], [1,4,7], [1,5,7] (states 1 and 7 with 3, 4 or 5)
[3,7,9], [4,7,9], [5,7,9] (states 2 and 9 with 3, 4 or 5)
[2,3,9], [2,4,9], [2,5,9] (states 7 and 9 with 3, 4 or 5)

Fig. 3 shows the relationship of these states in the envision-
ment graph. A comparison with Table 1 reveals two key fea-
tures: a selection of states from different behaviours and the
use of the critical points of the system are the key to inducing
the correct model reliably (see Discussion section below).
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Figure 3. The envisionment graph for the coupled two
compartment model

The results from the numerical data experiments are pre-
sented in Fig. 4. The legend in the top right corner associates
initial values of the state variables (given as two concatenated
digits) to a plot; ‘all’ is the case where the union of states from
all initial conditions were used in learning. These results show
that it is possible to learn models from clean and noisy numer-
ical data. As discussed above, the qualitative states generated
from the clean numerical data contain a number of unavoid-
able data transformation errors, and the resulting qualitative
states form at most a single behaviour of the system under
investigation. The set of states gleaned from quantitative to
qualitative conversion did not form a full behaviour for the
coupled two compartment model, which makes the ability to
learn a model from them even more impressive.
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Figure 4. Reliability of learning the correct model from
numerical data vs. 1000ths of full Gaussian noise for coupled tanks

5 Application to Biological Systems

As well as exploring the effects of sparcity of data and adding
noise it was important to test the scalablilty of the Qoph



State levelA levelB crossflowAB outflowB

0 < 0, std > < 0, std > < 0, std > < 0, std >

1 < 0, inc > < (0,∞), dec > < (−∞, 0), inc > < (0,∞), dec >

2 < (0,∞), dec > < 0, inc > < (0,∞), dec > < 0, inc >

3 < (0,∞), dec > < (0,∞), dec > < (0,∞), dec > < (0,∞), dec >

4 < (0,∞), dec > < (0,∞), dec > < (0,∞), std > < (0,∞), dec >

5 < (0,∞), dec > < (0,∞), dec > < (0,∞), inc > < (0,∞), dec >

6 < (0,∞), dec > < (0,∞), std > < (0,∞), dec > < (0,∞), std >

7 < (0,∞), dec > < (0,∞), inc > < (0,∞), dec > < (0,∞), inc >

8 < (0,∞), std > < (0,∞), dec > < 0, inc > < (0,∞), dec >

9 < (0,∞), inc > < (0,∞), dec > < (−∞, 0), inc > < (0,∞), dec >

Table 1. The envisionment states for the coupled compartmental system.

learning method. So far we have only described models con-
structed from the basic QSIM primitives; to improve scali-
bility it was useful to be able to use the well-established AI
principle of chunking [9].

Metabolic pathways essentially contain only two types of
molecule: metabolites and enzymes, we therefore designed two
Metabolic Components, built from standard QSIM relations,
to model metabolites and enzymes. Concentrations of metabo-
lites vary over time as they are synthesised or utilised by enzy-
matically catalysed reactions. This means that their concen-
tration at time t is a function of their concentration at time
t−1, and the amount that they are used or created by various
enzyme reactions. This can be expressed as a simple summa-
tion in QSIM. The qualitative equation for the metabolite
components is therefore:

dM

dt
=

n∑
i=0

(enzm flowi). (3)

The other form of high-level metabolic component in a
metabolic pathway are enzymes. Each enzyme is assumed to
have one or two inputs and one or two outputs. If there are
two inputs or outputs these are considered to form an input or
output complex, such that the amount of the complex is pro-
portional to the amount of the inputs or outputs multiplied
together. The input complex is converted into the output com-
plex which then disassociates into the output metabolites, and
vice versa. The overall flow through the enzyme is the amount
of input complex formed minus the amount of output complex
formed. The qualitative equation for the enzyme components
is therefore3:

flow = M+(

n∏
i=1

Mi)︸ ︷︷ ︸
inputcomplex

−M+(

m∏
j=1

Mj)︸ ︷︷ ︸
outputcomplex

. (4)

This is an abstraction of standard kinetic equations [2] and
is an expression of the collision probabilities of the metabo-
lites and enzyme. We assume for simplicity that enzymes are
taken to exist in constant amounts; although this is clearly a
simplification this assumption is also used in ODE modelling.
These metabolic components are shown in Fig. 5.

3 Note the distinction between M and M+, the amount of a
metabolite and the monotonically increasing relation respectively.
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Figure 5. Metabolic components for metabolic system
modelling

A model of glycolysis in Trypanasoma brucei constructed
from these Metabolic Components is shown in Fig. 6. The
qualitative model is easier to understand than an ODE since
it extracts out detail and allows a complete envisionment of
the states.
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Figure 6. The glycolysis metabolic pathway, built from
metabolic components

Using the states from the model, the metabolic components,
described above, and general backgound knowledge about bio-
chemical interactions between molecules, it was possible to



learn a model of the first half of the glycolysis pathway in
only a few hours.

Learning a model of this sort represents a major step for-
ward because the learned system is equivalent to a QSIM
model consisting of 36 relations, It was calculated that in-
troducing high level components has more than doubled the
complexity of the models that can be learned, as well as mak-
ing the resulting models easier to read.

6 Discussion and Conclusions

The first general point to note is that for all the experiments
the number of measured variables from which learning took
place remained constant and was less than the total number of
variables in the target model. Thus in all circumstances the
learning system had to find the intermediate variables and
their relationships to the other variables of the model.

Analysis of the clean data experiments showed that given
the complete envisionment of a system the correct model was
always reliably found. As one would expect there was a grad-
ual deterioration in the reliability as the number of states
presented as data was reduced. However, a closer analysis of
the results in conjunction with the envisionment graphs for
the target models reveals that there is a strong relationship
between the reliability of the learning process and the num-
ber, and type, of states used in an experiment.

An interesting result from this analysis is the observation
that models can be reliably learnt from a minimal number of
qualitative states (two in the case of the coupled two compart-
ment system) if the states come from different branches in the
envisionment graph. So we can hypothesise first of all that in
order to reliably learn a system the data used should come
from experiments yielding qualitatively different behaviours
(that is behaviours which would appear as distinct branches
in an envisionment graph).

However, this hypothesis only provides a necessary, but not
a sufficient condition for learning. It was noted during the
analysis that in each case where the model was reliably learnt
with a minimal number of states, at least one of the states
is a critical point of the first derivative of at least one of
the state variables: indicating the importance of these critical
point states to the definition of a system. What this means
is that if an experiment were set up in which all the state
variables were exactly at their critical points then the experi-
ment could be run for a very short time and the correct model
structure identified. Of course, it is impossible to set up such
an experiment, especially in the situation where the structure
of the system is completely unknown. Another alternative is
to set up multiple experiments with the state variables set
to their extremæ: from these initial conditions all the states
of the envisionment will eventually be passed through. The
downside of this is that the experiments may be difficult to
set up and could take an very long time to complete. These
two scenarios form the ends of a spectrum within which the
optimal experimental setting will lie; the identification of the
the best strategies is an important area of research arising
from the results of the present work, but it is beyond the
scope of this paper.

The main results from testing Qoph on benchmark prob-
lems, as illustrated here by the coupled compartmental sys-
tem, can be summarised as:

• The benchmark models could be induced from their com-
plete envisionments.

• As the number of states chosen from the complete envi-
sionment increases so does the frequency and reliability of
finding the correct model.

• The correct model can always be reliably found given a
relatively small subset of the total envisionment. There is a
set of these subsets such that other state subsets are either
supersets of one member of this set, or do not reliably give
rise to the correct model.

• Even though subsets containing very few states can reliably
give rise to the correct model, it is possible to select subsets
containing almost all the states that do not reliably lead to
the correct model.

• Qualitative models can be leart from data containing noisy
qualitative states, though the overall reliability is reduced.

• Models can be learned from noisy simulated real data for
the benchmark systems.

In addition to the results presented here we have also used
Qoph to learn a qualitative model representing the complex
biological process of glycolysis [4].
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