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Abstract.  Facial feature extraction with enhanced discriminatory 
power plays an important role in face recognition (FR) applications. 
Linear discriminant analysis (LDA) is a powerful tool used for 
dimensionality reduction and feature extraction in FR tasks. 
However, the classification performance of traditional LDA is 
often degraded, due to two factors: 1) their classification accuracies 
suffer from the small sample size problem (SSSP), which widely 
exists in FR; 2) their Fisher discriminant criteria are not directly 
related to the classification ability. Recently, so-called direct 
fractional-step LDA (DF-LDA) algorithm has been proposed to 
solve this problem. In this paper, the limitations of DF-LDA are 
discussed and a novel DF-LDA has been proposed to solve those 
problems. The novel DF-LDA has been tested, in terms of 
classification accuracy, on two face databases. Results reveal that 
the proposed method outperforms the existing methods, including: 
the Eigenfaces, Fisherfaces, D-LDA, previous DF-LDA, and EFM 
methods. 
Keywords: Face recognition (FR), feature extraction, linear 
discriminant analysis (LDA), small sample size problem (SSSP). 

1 INTRODUCTION 

Face recognition (FR) technology has wide applications such as 
security, human-computer intelligent interaction, digital libraries 
and the web, and robotics [1]. Interests and research activities in 
FR have increased significantly over the past few years [1]. Feature 
extraction is one of the most popular and fundamental problems in 
FR tasks [1]. One of the popular approaches is principle component 
analysis (PCA) or Eigenfaces [2]. However, PCA is only the 
optimal representation criterion in the sense of mean-square error, 
and does not consider the classifier aspect. It should not be 
expected optimal performance for FR. Linear discriminant analysis 
(LDA), which defines a projection that makes the within-class 
scatter smaller and the between-class scatter larger, generally 
outperforms PCA in FR tasks [3,4,6]. However, the classification 
performance of classical LDA is often degraded by the fact that the 
Fisher discriminant criterion defined in the corresponding LDA is 
not directly related to classification accuracy in the output space. 
For effectively solving this problem, a weighted between-class 
scatter matrix is often constructed for the Fisher criterion, where 
classes, which are closer together in the input space, are more 
likely to result in misclassification and should therefore be more 
heavily weighted in the input space [8]. In addition, recently, 
Kothari et al [8] has proposed a fractional-step linear discriminant 
analysis (F-LDA) to extend this idea further by introducing the 

concept of fractional-step dimensionality reduction, wherein, the 
dimensionality is reduced in small fractional steps making the 
relevant distances be more correctly weighted. As same as classical 
LDA, the F-LDA can not be directly applied to solve the small 
sample size problem (SSSP), which widely exists in 
high-dimensional pattern recognition tasks (such as FR), where the 
number of training samples is smaller than the dimensionality of 
the samples, due to two factors: 1) the eigen-decomposition of the 
between-class scatter matrix is very difficult in the 
high-dimensional space; 2) the singular scatter matrices are caused 
by the SSSP. 

In order to solve the SSSP, which widely exists in FR tasks, a 
very popular technique usually called PCA plus LDA has been 
proposed and verified to be effective by experience [3]. In this 
method, PCA is first utilized for dimensionality reduction before 
the application of LDA [3]. As PCA used in PCA plus LDA usually 
may be not compatible to the Fisher discriminant criterion defined 
in LDA, this technique will lose the null space of the within-class 
scatter matrix of the training samples, where may contain 
significant discriminatory information. To effectively avoid the loss 
due to PCA preprocessing step, some direct LDA (D-LDA) 
methods have been proposed and successfully applied to FR [4,5] 
recently. In addition, a more effective method, called DF-LDA, 
which combines the strengths of the D-LDA of Yu et al [4] and 
F-LDA of Kothari et al [8], has been proposed and successfully 
applied to FR. It not only overcomes the limitation of D-LDA [4] 
that the Fisher criterion function is not directly related to 
classification accuracy in the output space, but also can make the 
F-LDA [8] carried out in high-dimensional spaces. However, 
according to [5,11], it is obvious that the D-LDA algorithm [4], 
which is used in DF-LDA and first compute corresponding 
eigenvectors of the positive eigenvalues of the weighted 
between-class scatter, will discard the null space of the within-class 
scatter matrix of training set, where usually contains significant 
discriminatory information. In addition, the rank of the weighted 
between-class scatter matrix used in the DF-LDA is determined by 
min{ , 1}N c − , as a result that the most number of optimal 
discriminant vectors calculated by DF-LDA is at most 2c − , 
where N is the dimensionality of the training sample vectors 
and c is the number of the classes invoked. 

Recently, Yang et al [5] has proposed a novel D-LDA, which is 
a complete PCA plus LDA algorithm essentially, and the 
performance of this algorithm is superior to that of the previous 
D-LDA in FR, including D-LDA utilized in DF-LDA. Based on the 
D-LDA of Yang et al [5] and F-LDA [8], this paper introduces a 
novel FD-LDA for FR. This method combines the strengths of the 
F-LDA and D-LDA of Yang et al [5], which at the same time 
overcomes the limitations of the previous methods. As similar as 1 College of Computer Science, Zhejiang University, Hangzhou, 310027, 
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the previous DF-LDA [6], the novel DF-LDA will first lower the 
dimensionality of the raw input space by using D-LDA of Yang at 
al [5] that leads to a low-dimensional subspace where the most 
discriminant features are preserved. In addition, a weighted 
between-class scatter also replaces the normal between-class 
scatter matrix in the algorithm of D-LDA of Yang et al [5], so that a 
subsequent F-LDA step can be directly applied to the 
low-dimensional subspace obtained by D-LDA of Yang et al [5] 
leading to a set of optimal discriminant features for face 
representation. 

2 NOVEL DIRECT FRACTIONAL-STEP 
(DF-LDA) 

Feature extraction in FR involves the derivation of salient features 
from the raw input data in order to reduce dimensionality of facial 
vectors for classification and simultaneously provide enhanced 
discriminatory power. LDA has been considered as one of the most 
effective approaches in the feature extraction of FR, and the 
problem of feature extraction by LDA in FR tasks can be described 
as follows. Its basic objective is to calculate the Fisher optimal 
discriminant vectors on the condition that the Fisher criterion 
function takes extremum, then project high-dimensional facial 
feature vectors on the obtained optimal discriminant vectors for 
constructing a low-dimensional facial feature representation. 

2.1 Direct LDA (D-LDA) 

Suppose there are c known pattern classes, bS , wS , and tS denote 
the between-class scatter matrix, within-class scatter matrix, and 
popular scatter matrix, respectively. The traditional Fisher criterion 
function is generally defined by: 
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In the case of the SSSP, the latter one is usually adopted. The 
tradition solution to the SSSP, called PCA plus LDA, leads to loss 
of some significant discriminatory information [6]. Recently, Yu et 
al [4] has proposed a direct LDA algorithm that can effectively 
compensate this limitation at a certain extent, and has been 
successfully applied to FR. Their basic idea generally believes that 
the significant discriminatory information only exists in the 
intersection space 1(0) (0)w bS S −∩ , where (0) { | 0,wwS x S x= =  

}nx R∈   , and 1(0) { | 0, }n
b bS x S x x R− = ≠ ∈ . In order to obtain 

this intersection space, D-LDA of Yu et al [4] first calculated the 
corresponding eigenvectors of all positive eigenvalues of bS to 
obtain the space 1(0)bS − , and then calculated the corresponding 
eigenvectors of at most 1c − smallest eigenvalues of WS , which is 
the projection of wS in the space 1(0)bS − , to obtain the space (0)wS . 
In fact, according to the procedure of D-LDA of Yu et al [4], it is 
clear that 1( (0)) 1bR S c− = − , and 1( (0) (0)) 1w bR S S c− < −∩ , where 

( )R i denotes the dimensionality of the space’ i ’. However, 
according to [5,11], we have 1( (0) (0)) 1w bR S S c− = −∩ in the case of 
the SSSP. As a result, the algorithm of D-LDA of Yu et al [4] may 
discard some significant discriminatory information. 

A novel D-LDA, which builds a theoretical foundation for the 
PCA plus LDA method in essence, has been proposed by Yang et al 
[5] recently. They believe that the optimal discriminant vectors 
only exist in 1(0) { | 0, }n

t tS x S x x R− = ≠ ∈ ; otherwise, if 

(0)tx S∀ ∈ =  { | 0, }n
tx S x x R= ∈ , then 0T T

t b
x S x x S x= = , i.e. 

the between-class distance equals 0, which means that the optimal 
discriminant vectors in (0)tS are meaningless for classification. 
The D-LDA of Yang et al [5] can be described as follows. The 
number of the optimal discriminant vectors is d . 
1) In order to obtain 1(0)tS − , the PCA is carried out in essence. 

bS , wS , and tS are the corresponding projection of bS , wS , 
and tS in this PCA transformed space mR , respectively; 

2) Calculate the wS ’s orthonormal eigenvectors 1 , , mγ γ… , suppose 
the first q ones are corresponding to positive eigenvalues, then 
the PCA transformed space mR can be divided into two sub 
-spaces: (0) { | 0, }m

wwS x S x x R= = ∈ and 1(0) { | 0,w wS x S x− = ≠  
}mx R∈ ; 

3) Let 1 1( , , )q mP γ γ+= … and 1 1
T

b bS P S P= , calculate bS ’s 
orthonormal eigenvectors 1 , , lZ Z… , then, the first l  optimal 
discriminant eigenvectors contained in 1 (0)wS −  are 1j jY PZ= , 
( 1, , )j l= … . In the case of the SSSP, 1l c= − , c is the 
number of classes; 

4) Let 2 1( , , )qP γ γ= … and 2 2
T

b bS P S P= , 2 2
T

t tS P S P= , calculate 
corresponding d l− eigenvectors 1 , ,l dZ Z+ …  of the d l−  
leading eigenvalues of 1( )b tS S− . Then, the remaining d l−  
optimal discriminant vectors contained in 1(0)wS − are 2j jY P Z= , 
( 1, , )j l d= + … ; 

5) The , ( 1, , )
j

Y j d= … constitute the d optimal discriminant 
vectors in the PCA transformed space mR . 

In fact, this whole intersection space 1(0) (0)w bS S −∩ can be 
obtained in the step (3) above, and the space 1 1(0) (0)w bS S− −∩ , 
where some discriminatory information may exist, can be obtained 
in the step (4) above too. Yang et al has successfully applied this 
algorithm to FR tasks, and the comparative results in [5] have 
shown that the performance of this D-LDA is more effective than 
that of the D-LDA of Yu et al [4]. Hence, it is reasonable to assume 
that a novel DF-LDA that combines the strengths of D-LDA [5] 
and F-LDA [8] can effectively overcome the limitations of 
previous DF-LDA [6]. 

2.2 Novel Direct Fractional-Step LDA (DF-LDA) 

As same as the classical LDA, the Fisher discriminant criterion 
defined in the D-LDA above is not directly linked to classification 
accuracy. A weighted Fisher discriminant criterion, where a 
weighted between-class scatter matrix replaces a conventional 
between-class scatter matrix, can effectively avoid those classes 
that close in input space and can potentially result in 
misclassification in the output space. According to [9], a weighted 
between-class scatter matrix can be defined: 

1
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where
,i j

d is the Euclidean distance between the means of 
class i and class j , the weighting function ( )ijw d is generally a 
monotonically decreasing function, iP and jP  are the prior 
probabilities of class i and class j respectively, im and jm are the 
means of class i and class j  respectively. According to [8], the 
weight should drop faster than the Euclidean distance between the 
means of class i and class j ; as a result only constraint of the 
weighting function is ( ) pw d d −= , where p is integer and 3p ≥ . 

In FR tasks, where the SSSP widely exists, the weighted Fisher 
criterion function can be expressed as: 
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where ˆ ˆ
t w bS S S= + , and ˆ

bS is the weighted between-class scatter 
matrix defined in (2). According to the algorithm of the D-LDA of 
Yang et al [5], we start by calculating the orthonormal bases of 

1ˆ ˆ(0) { | 0, }n
t tS x S x x R− = ≠ ∈ . However, it is intractable to directly 

calculate the orthonormal bases of 1ˆ (0)tS − , which is a large matrix 
in FR tasks. For example, a typical face pattern of (112x92) used in 
this paper leads to a scatter matrix of size 10304x10304. 
Fortunately, we can proof the following lemma to solve this 
problem (The procedure of the proof of this lemma is very intricate, 
and it is omitted in this paper, due to space limitations.): 
 
Lemma 1 Suppose

1
, ,

k
ϕ ϕ… are a set of orthonormal bases of 

1
{ , , }

N
span x x… , then 1ˆ ˆ(0) { | 0, }T m

t tS Qy Q S Qy y R− = ≠ ∈ , where 
ˆ

tS is defined in (3), 
1

( , , )
k

Q ϕ ϕ= … , and 1 , , Nx x…  are the 
training samples. 

 
From this lemma, we can see that not only the orthonormal bases 

of 1ˆ (0)tS − can be obtained, but also the number of these orthonormal 
bases is no more than the number of the training samples. As a 
result, the SSSP can be effectively solved. Suppose 1[ , , ]mQ ϕ ϕ= …  
is all orthonormal bases of 1ˆ (0)tS − . Let all raw input vectors project 
on 1ˆ (0)tS − and obtain the m -dimensional transformed space mR . 
Suppose the wS , bS and tS are the corresponding projection of 

wS , ˆ
bS and ˆ

tS in the transformed space mR . In the transformed 
space mR , split the within-class scatter matrix T

w wS Q S Q= into its 
null space 1(0) { ,qwS span γ +=  , }mγ… and its orthonormal 
complementary space 1

1(0) { , , }w qS span γ γ− = … , where 1 ,γ  , mγ…  
are all orthonormal eigenvectors of wS and the first q ones are 
corresponding to positive eigenvalues. According to [5], it is clear 
that the Fisher criterion function ˆ( )J Y can be replaced by 
ˆ ( ) T

b bJ Y Y S Y= in (0)wS . So the first l  optimal discriminant 
vectors in (0)wS can be obtained by calculating bS ’s orthonormal 
eigenvectors iZ  and the first l  optimal discriminant vectors 
contained in raw input space are 1 ( 1, , )iQPZ i l= … , where 

1 1
T

b bS P S P= is the corresponding projection of bS in (0)wS , and 
1 1( , , )q mP γ γ+= … . Generally, 1c l= − , c is the number of 

classes. The reminding d l− optimal discriminant vectors in the 
raw input space can be obtained by calculating the d l− optimal 
discriminant vectors in 1(0)wS − . It is clear that tS is nonsingular 
in 1(0)wS − , so the d l− optimal discriminant vectors in the 
space 1(0)wS −  can be obtained by calculating the corresponding 
eigenvectors of the d l− leading eigenvalues of 1( )t bS S− , where 

2 1( , , )qP γ γ= … , 2 2
T

b bS P S P= , and 2 2
T

t tS P S P= . As a result, the 
2 ( 1, , )iQP Z i l d= + … constitute the remaining d l− optimal 

discriminant vectors in raw space. 
A low-dimensional SSSP-free subspace has been obtained by the 

enhanced D-LDA step of Yang et al [5] discussed above, without 
losing the significant discriminatory information. Then, an F-LDA 
step will be directly applied to further reduce the dimensionality of 
SSSP-free subspace from d to 'd . In fact, when a pair of classes are 
well separated in the input space, it is possible that the weight of 
the pair of classes in computing weighted between-class scatter 
matrix ˆ

b
S is so small that they would heavily overlap in the 

lower-dimensional space (The weighting function defined in (2) is 
the monotonically decreasing function.). The F-LDA can 
effectively solve this problem [8]. F-LDA, which substantially 
improves the robustness of the choice of the weighting function, 
reduces the dimensionality in small fractional steps making the 

relevant distances be more correctly weighted. 
From the statements above, a novel DF-LDA, where the 

enhanced D-LDA step of Yang et al [5] replaces the enhanced 
D-LDA step of DF-LDA of [6] in fact, can be constructed, and the 
pseudocode implementation of the novel DF-LDA for selecting the 
facial feature has been depicted in Figure.1. 

      
Input: A set of training face images 1{ }

i

N

ix
=

 
Output: A low-dimensional feature y of the face image x with 

enhanced discriminatory power. 
Algorithm: 

Step 1. According to lemma 1, calculate the orthonormal 
bases of 1ˆ (0)tS − :

1
[ , , ]

m
Q ϕ ϕ= … , where m N≤ . 

Step 2. A transformed space mR can be constituted by 
projecting all training face images 1{ }

i

N

ix
=

to 1ˆ (0)tS − , and bS , 
wS and tS are the corresponding projection of ˆ

bS , wS and ˆ
tS  

in this transformed space mR , respectively. 
Step 3. Calculate the wS ’s orthonormal eigenvectors 

1 , , mγ γ… , suppose the first q ones are corresponding to 
positive eigenvalues. 

Step 4. Let 1 1( , , )q mP γ γ+= … and 1 1
T

b bS P S P= , calculate bS ’s 
orthonormal eigenvectors

1
, ,

l
Z Z… , then the first l optimal 

discriminant eigenvectors contained in (0)wS are jV =  
1 ( 1, , )jPZ j l= … . 

Step 5. Let 2 1( , , )qP γ γ= … and 2 2
T

b bS P S P= , 2 2
T

t tS P S P= , 
calculate the corresponding d l− generalized eigenvectors 

1 , ,l dZ Z+ … of the d l− leading eigenvalues of 1( )b tS S− . 
Then, the remaining optimal discriminant vectors are 

2 ( 1, , )j jV P Z j l d= = + … . 
Step 6. 1 ( 1, , )j j jY QV QPZ j l= = = … and j jY QV= =  

2 ( 1, , )jQP Z j l d= + … can constitute the d optimal 
discriminant vectors in raw input space, let 

( 1, , )jY j d= … act as projection axes to form the feature 
extractor 1 1[ , , , , , ]l l dY Y Y Y+Θ = … … . 

Step 7.Project all face images 1{ }N
i ix = to the d -dimensional 

SSSP-free subspace by the optimal discriminant vectors 
1[ , , ]dY YΘ = … obtained in step 6, and result in 1{ }N

i iz = , 
where T

i iz x= Θ . 
Step 8.Further reduce the dimensionality of iz from d  

to 'd by directly applying the F-LDA to 1{ }N
i iz =  and letW be 

the basis of the output space. 
Step 9. The final optimal discriminant feature representation 

of the face image x can be expressed by ( )Ty W x= Θ . 
  

Figure 1.  Pseudocode for the computation of the novel DF-LDA 
algorithm. 

3 EXPERIMENTS 

The comparative experiments are performed using the ORL [12] 
and the UMIST [13] databases, which are the popular testbed for 
FR technologies. The ORL database contains 40 different persons 
and each person has 10 different images, including variations in 
pose, face expression (open or closed eyes, smiling or non-smiling) 
and with glasses or no-glasses. All images were taken a dark 
homogenous background with the subjects in an upright frontal 
position, with tolerance for some tilting and rotation of up to about 



20 degrees. The UMIST database is a multiview database, which 
consists of 575 gray-scale images of 20 persons, each covering a 
wide range of poses from profile to frontal views as well as face 
gender and appearance.  All original face images in both 
databases are sized into 92x112 with 256-level gray scale. Figure.2 
shows some images from the two databases. 
 

      
(a)                             (b) 
 

Figure 2.  Some sample images from two databases. (a):ORL. (b):UMIST. 
 

In the following experiments, each one of the two databases can 
be divided into a training set and a testing set with no overlapping 
between the two sets. For the ORL database, we select five training 
images and five testing images per person from this database, and a 
training set of 200 images and a testing set of 200 images will be 
created for the following experiments. For the UMIST database, 
we select five training set of images per person from this database, 
and a training set of 100 images and a testing set of 475 images 
will be created for the following experiments. The number of 
fractional-steps used in DF-LDA is 30 , and the Nearest Neighbor 
Classifier (NNC) rule is used for classification (In fact, the 
classification accuracy of the following experiments will lead to 
being improved if a more sophisticated classifier (such as SVM) is 
used to instead of the NNC [14]; however, this experiment is 
beyond the scope of this paper). In addition, since the recognition 
performance will be affected by the selection of training images, 
we do each experiment on 10 times and the results reported in this 
paper are an average of them. 
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Figure 3.  Comparison of recognition rate obtained by the six methods as 
functions of the feature vectors, where 12( )w d d −=  is used in the novel 
DF-DLA (D-LDA 1 and D-LDA 2 denote the D-LDA of Yang et al [5] and 

the D-LDA of Yu et al [4], respectively). (a):ORL. (b):UMIST1 

 

10 15 20 25 30 35 40
90

91

92

93

94

95

96

number of features

re
co

gn
itio

n 
ra

te
 (%

)

novel DF-LDA p=-8
novel DF-LDA p=-12
novel DF-LDA p=-16
DF-LDA p=-8
DF-LDA p=-12
DF-LDA p=-16

 
 (a) 

6 8 10 12 14 16 18
94.5

95

95.5

96

96.5

97

97.5

98

number of feature

re
co

gn
itio

n 
ra

te
 (%

)

novel DF-LDA p=-8
novel DF-LDA p=-12
novel DF-LDA p=-16
DF-LDA p=-8
DF-LDA p=-12
DF-LDA p=-16

 
   (b) 

Figure 4.  FR performance of the novel DF-LDA method and the previous 
DF-LDA method with the different weighting functions. (a): ORL. 
(b):UMIST. 

For comparison purpose, we first carry out Eigenfaces [2], 
Fisherfaces [3], EFM [10], D-LDA [4], D-LDA [5], and novel 
DF-LDA of this article. The weighting function utilized in the 
novel DF-LDA is 12( )w d d −= . The recognition rate curves 
obtained for the six methods are described in Figure.3 as functions 
of the number of feature vectors. From Figure.3, it can be seen that 
the performance of the novel DF-LDA is overall superior to those 
of the other five methods on the different number of the feature 
vectors. As the Fisher discriminant criterion defined in the novel 
DF-LDA is directly related to classification accuracy, the novel 
DF-LDA can outperform the D-LDA of Yang et al [4] on the 
different number of the feature vectors. In addition, the D-LDA of 
Yang et al [5] effectively avoid the loss of discriminatory 
information in D-LDA of Yu et al [4], so the D-LDA of Yang et al 
[5] can be overall superior to the D-LDA of Yu et al [4] on both 
databases. It is not surprising that the D-LDA can not outperform 
the EFM on the ORL database, because the EFM method can 
effectively improve the generalization ability of the standard LDA 
based classifiers as they overfit to the training samples. 

The following experiment will exploit the performance of the 
novel DF-LDA of this article and the previous DF-LDA [6] with 
the influences of the different weighting function. The comparative 
results are obtained in Figure.4 as functions of the number of 
feature vectors. From Figure.4, it can be seen that the performance 
of the novel DF-LDA can be overall superior to that of the previous 
DF-LDA with the different weighting functions 

8 12 16( ) { }, ,w d d d d− − −= recommended in [8]. In fact, for the ORL 
database, the maximum recognition rate of the novel DF-DLA in 

                                                        
1 The recognition rate of the Eigenfaces method is so low on the UMIST 

database that it is not depicted in the Figure.3 (b). 



one of the testing groups can reach 99.5% only using a weighting 
function of 12( )w d d −= and a set of 12N = feature vectors; for the 
UMIST database, the maximum recognition rate of the novel 
DF-DLA in one of the testing groups can reach 99.6% only using a 
weighting function of 12( )w d d −= and a set of 8N = feature vectors. 
It is a result comparable to the best results reported previously in 
many literatures. It is clear that the feature extraction of face 
images by the novel DF-LDA is more effective than feature 
extraction of face images by the previous DF-LDA. In fact, the 
classification performance of the DF-LDA [6] is degraded by the 
fact that the algorithm of D-LDA of Yu et al [4] used in the 
DF-LDA will discard some significant discriminatory information, 
and from the experimental results above, we can see that the novel 
DF-LDA can effectively compensate this shortcoming. In order to 

sufficiently illustrate the effectiveness of the novel DF-LDA 
method, we also calculate the average percentages of the error rate 
of the novel DF-LDA over those of other methods above on both 
databases. Let iα and iβ be the average error rates of the novel 
DF-LDA and one of the remaining methods above respectively, 
then the average percentages of the error rate of the novel DF-LDA 
over those of the others are obtained by 38

5 i ii
α β

=∑ for the ORL 
database and 18

5 i ii
α β

=∑ for the UMIST database, where i is the 
number of feature vectors. The results summarized in Table.1 show 
that the novel DF-LDA is more effective than the existing FR 
methods above. From all conclusions above, we can see that the 
novel DF-LDA can effectively overcome the limitations and 
shortcomings of those various methods. 

Table 1.  Average percentages of the error rate of the novel DF-LDA over the others on both databases (O and U denote the ORL database 
and the UMIST database respectively). 

The weighting functions 8( )w d d −=  12( )w d d −=  16( )w d d −=  
Methods O U O+U O U O+U O U O+U 

Eigenfaces [2] 17.77% 5.39% 11.58% 18.09% 5.37% 11.73% 18.12% 5.53% 11.83%
Fisherfaces [3] 35.61% 40.85% 38.23% 36.12% 40.71% 38.42% 36.12% 41.92% 39.02%

EFM [10] 56.48% 32.86% 44.67% 57.13% 32.81% 44.97% 57.09% 33.78% 45.44%
D-LDA [4] 54.36% 53.64% 54.00% 55.16% 53.49% 54.33% 55.17% 55.07% 55.12%
D-LDA [5] 73.39% 90.71% 82.05% 74.62% 90.42% 82.52% 74.70% 93.07% 83.89%

Previous DF-LDA [6] 65.20% 58.18% 61.69% 67.96% 57.92% 62.94% 67.82% 59.68% 63.75%
 

4 CONCLUSIONS 

Feature extraction is one of the most significant and fundamental 
problems in FR tasks, and extracting efficient feature is always the 
key to solving a problem in FR. One of the most effective tools is 
the DF-LDA, which has been proposed and successfully extracted 
the facial feature recently. This paper analyzes the limitations of 
the DF-LDA and introduces a novel DF-DLA, which combines of 
the strengths of the F-LDA and D-LDA of Yang et al [5] to 
effectively compensate those limitations. The efficiency of the 
novel DF-LDA has been tested through experimentation on the 
ORL and UMIST face databases. 

However, all methods compared in this article can not reflect the 
correlation of facial feature well under variations due to facial 
expression and pose changes. The Gabor wavelet representation of 
face images can capture the local structure corresponding to spatial 
frequency (scale), spatial location, and orientation selectivity. As a 
result, the Gabor wavelet representation of face images should be 
robust to variations due to facial expression and changes. Our next 
goal is to further search for a FR system, which combines the 
Gabor wavelet representation of face images and the novel 
DF-LDA of this article, to further improve recognition rate. 
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