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Abstract. The analysis of two heuristic supervised learning algo-
rithms for text categorization in two dimensions is presented here.
The graphical properties of the bidimensional representation allows
one to tailor a geometrical heuristic approach in order to exploit
the peculiar distribution of text documents. In particular, we want
to investigate the theoretical linear cost of the algorithms and try to
push the performance to the limit. The experiments on Reuters-21578
standard benchmark confirm that this approach is an alternative to the
standard linear learning models, such as support vector machines, for
text classification. Moreover, due to the fast training session, this ap-
proach may also be considered as a support for text categorization
systems for fast graphical investigations of large collections of docu-
ments.

1 Introduction

Thevector space modelis one of the most used models in Informa-
tion Retrieval for representing documents into the term vector space.
Documents are represented with aterm vector, where each com-
ponent represents the corresponding dimension of the space. Auto-
mated Text Categorization (ATC) usually considers this model [9, 8].
Processing is extremely costly in computational terms by means of
standard machine learning techniques since the dimensionality of the
space easily reaches hundreds of thousands. Hence, a reduction of
the original space is needed. Recent works with different statistical
methods, such as Naı̈ve Bayes [2], ridge logistic regression [11], and
support vector machines [4], show that it is possible to achieve a
good trade-off between efficiency and effectiveness through a fea-
ture selection approach [10, 3]. A different approach to the problem
is given by projection based methods like: multidimensional scaling
[6], and self-organizing maps [5]. These methods serve mainly for
exploratory tasks by means of visualization maps that present the
overall similarity structure of a corpus of documents.

In this paper we explore the technique in order to project docu-
ments into a two-dimensional space presented in [1]. This novel ap-
proach makes the compact representation of documents possible, as
well as the reduction of complexity from a N-dimensional space to
a 2-dimensional one. In addition, a graphical visualization on a 2-
D plot of the documents of a collection may be used to analyze the
distribution of categories. Our work particularly focuses on the op-
timization of a supervised learning algorithm that exploits the two-
dimensional distribution of documents. We compare the original for-
mulation of the heuristic algorithm, here namedAngular Region,
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and a possible reformulation namedFocused Angular Region. They
both share the same hypothesis that, given a cost function, an opti-
mal separating straight line exists between the sets of positive and
negative documents. This study aims to find the minimum value of
the free-parameters of both algorithms. The experimental results on
the standard Reuters-21578 benchmark confirms the linear compu-
tational training cost for both algorithms, outperforming the support
vector machines in terms of training time, and confirming the two-
dimensional approach a valid alternative.

The remainder of the paper is organized as follows: Section 2
presents the definitions of Two-dimensional Text Categorization; in
Sect. 3 the two heuristic algorithms are presented; in Sect. 4 the ex-
perimental results are shown. The final remarks are given in Sec-
tion. 5.

2 Two-dimensional Text Categorization

Text Categorization may be formalized as the task of approximating
the unknowntarget function Φ : D × C → {T, F} by means of
a functionΦ̂ : D × C → {T, F} calledclassifier, whereC is a
predefined set of categories andD is the set of documents. Being
ci a generic categoryci ∈ C, for everyd ∈ D, if Φ(d, ci) = T ,
then d is calledpositive exampleof ci, while Φ(d, ci) = F it is
called negative exampleof ci (see [8]). ATC is the activity of au-
tomatically building automatic text classifiers by means of machine
learning techniques. According to the supervised learning approach,
an initial corpus of pre-classified documents under some predefined
categories is assumed, hereafter calledΩ. This corpus is split into
two subsets: thetraining setTr and thetestsetTe, whereTe= Ω - Tr.
The wholeTr is used in the experimentation to calculate the statistics
of the collection while the heuristic learning algorithms are trained
according to thek-fold cross validationapproach.

In order to have a coherent symbolism among the formulae, some
general definitions are given here: we assume to have a set of pre-
defined categoriesC = {c1, ..., ci, ..., cn}, and indicate withdj,i

the j-th document that belongs to the i-th category (for example,
c1 = {d1,1, dj,1, ..., dNi,1}), each category having a generic num-
ber of documentsNi. The set of distinct terms of a categoryci is Ti,
while a generic term of thevocabularyis t ∈ ⋃n

i=1 Ti. Moreover,
we indicate withci|t ⊆ ci a subset of categoryci, whose elements
are the documents ofci in which the termt appears at least once (for
example,c1|t = {d2,1, d5,1, d11,1}). The cardinality of this subset
is indicated byNi|t. Finally, the notationci indicates the category
under investigation, andRotW indicates therest of the worldwhich
is the difference setC − ci. The wordsword, term and featureare
synonyms.



2.1 Document Representation

The skeleton idea on which the body of the whole work lies is as fol-
lows: given a set of categories, a generic word may give two different
meanings. One is its importance in a particular category (the category
of interest), the other is its importance in the other categories (the rest
of the world). We often use the termslocal or global in accordance
to the aspect to focus. The projection of documents into the bidimen-
sional space requires a supervised learning criterion that starts with
the estimate of two parameters:PresenceandExpressiveness. The
underlying näıve assumption for the weighting scheme defined here
is: the more a termt appears in the set of documents under investi-
gation (ci or RotW) and does not appear in the rest of the collection,
the higher the importance of the term for this particular set.

Presence and Expressiveness
Given a category of interestci the local Presenceestimates the rel-
ative frequency of the documents which contain a particular termt
with respect to the total number of documents ofci. It is denoted as
P̂ (t, ci). Theglobal Presenceof a termt, denoted aŝP (t, C−ci), is
defined in the following way: for each categorycj belonging to the
RotW, compute the local PresencêP (t, cj) and calculate the arith-
metic mean.

Expressiveness exploits the information given by the local and
global Presence in an inverted way. In particular, thelocal Expres-
sivenesŝE(t, ci) is defined as one minus the global Presence. In this
way it measures how much a termt, given a categoryci, doesnotap-
pear in theRotW. Viceversa, theglobal ExpressivenesŝE(t, C − ci)
is defined as one minus the local Presence. It estimates how much the
same term doesnot appear inci. Table 1 summarizes the definitions
given above.

Table 1. Definition ofPresenceP̂ andExpressivenesŝE.

Local Global

P̂ (t, ci) =
Ni|t
Ni

P̂ (t, C − ci) =

n∑

j=1
j 6=i

Nj|t
Nj

n− 1

Ê(t, ci) = 1− P̂ (t, C − ci) Ê(t, C − ci) = 1− P̂ (t, ci)

Both measures range from 0 to 1 and match the numerical value
with the meaning of the words “presence” and “expressiveness”: the
more a term appears (is “present”) in the documents of a category (or
in the rest of the world) the higher the Presence; the more a termt
is representative (is “expressive”) of a particular category (or for the
RotW) the higher the value of Expressiveness.

Local and Global Term Weighting
The problem of how to weight a word is seen from two points of
view: how to compute thelocal importanceof a term in a categoryci

with respect to theRotW, and how to compute theglobal importance
of the same term in theRotW with respect to theci.

The local weight of a term is defined as the product of the local
Presence and Expressiveness:

LW (t, ci) = P̂ (t, ci) · Ê(t, ci) . (1)

The global weight of a term may be seen as the dual problem:
consider the rest of the world as our category of interest, and the
categoryci as the newRotW . The weight is then defined as:

GW (t, C − ci) = P̂ (t, C − ci) · Ê(t, C − ci) . (2)

Both weights follow the näıve assumption that a term is more impor-
tant in a category (or in theRotW) if it is present and expressive at
the same time. Another interpretation may be: the Presence of a term
is penalized by a factor proportional to its Expressiveness.

Local and Global Energy of a Category
The local and global energy are two fictitious measures that summa-
rize the contribution of all the terms in the category. Following the
same reasoning of the twofold point of view, the definition of the lo-
cal energy functionLE is defined as the sum of all the local weights.
Using Eq. (1):

LEi =
∑

t

P̂ (t, ci) · Ê(t, ci) =
∑

t

LW (t, ci) . (3)

The global energy functionGE is defined as the sum of all the
global weights. Using Eq. (2):

GEi =
∑

t

P̂ (t, C − ci)) · Ê(t, C − ci)) =
∑

t

GW (t, C − ci) .

(4)

Bidimensional Coordinates
At this point, each term of the vocabulary has two weights repre-
sented by the local and global weight; two measures indicate the local
and global energy of a category. The final step of the representation
of documents we are looking for should answer the following ques-
tions: what is the energy of a documentd in the category of interest
ci; and what is the energy of a documentd in theRotW?

Denoting a generic term that appears in a documentd asṫ, the co-
ordinateXi(d) of a document which answers the first point is defined
as:

Xi(d) =

∑
ṫ∈d P̂ (ṫ, ci) · Ê(ṫ, ci)

LEi
, (5)

where the energy of the documentd in the categoryci is computed
by the sum

∑
ṫ∈d P̂ (ṫ, ci) · Ê(ṫ, ci). Accordingly, the second point

is answered by theYi coordinate of documentd:

Yi(d) =

∑
ṫ∈d P̂ (ṫ, C − ci) · Ê(ṫ, C − ci)

GEi
, (6)

where the energy produced byd in the RotW is the sum∑
ṫ∈d P̂ (ṫ, C − ci) · Ê(ṫ, C − ci)).
BothXi(d) andYi(d) are defined from 0, whend does not contain

any term of categoryci (or any term of the rest of the world), to 1
whend contains all the terms of the category (or all the terms of the
RotW ). The coordinatesXi andYi form a two-dimensional space
that is named here asspace of categoryci. Figure 1 shows the train-
ing documents of Reuters-21578 projected into the space of category
acquisitions. The stars are the documents that belong to the category
of interest, the circles are theRotWdocuments while the solid line
represents the point of the space whereXi = Yi. The peculiar dis-
tribution of positive and negative documents, which looks like a “V”
rotated 45◦ clockwise, is common to all the categories. Positive doc-
uments are almost all below the lineYi = Xi while some of the
negative documents are above the same line and some others overlap
with the positive ones.



Figure 1. The space of categoryacquisitionReuters-21578

3 Focusing on the Angular Region

Two supervised learning heuristic algorithms are presented here: the
Angular Region(AR) algorithm and theFocused Angular Region
(FAR) algorithm. The main hypothesis which lies behind both al-
gorithms is that, given a cost function (in the experiments theF1

measure defined in Eq. (7)), an optimal separating straight line exists
between the sets of positive and negative documents.

The general idea may be stated as follows: letp(0, q) be a point
close to the origin,|q| < 0.1. Let Yi,pos be the interpolating line
of categoryci (positive documents) constrained to pass through the
point p(0, q) (note that the interpolating lines of positive/negative
documents are found by means of standard vertical least squares fit-
ting procedures):

Yi,pos = mpos ·Xi + q ,

and letYi,neg be the interpolating line of theRotW(negative docu-
ments) constrained to pass through the pointp(0, q)

Yi,neg = mneg ·Xi + q .

Consider the angular region whose vertex is the pointp(0, q),
bounded by the semi-linesYi,pos andYi,neg. Within this region the
optimal separating straight line should be found, being theF1 mea-
sure the cost function. The equation of the line would be:

Yi,opt = mopt ·Xi + qopt ,

wherempos ≤ mopt ≤ mneg and|qopt| < 0.1. Figure 2 shows two
example of angular regions obtained withp(0, 0) andp(0,−0.05)
using the same training documents of Fig. 1. The dotted lines are
some possible optimal separating line with different angular coeffi-
cients.

The pseudo-code of AR algorithm is presented in Algorithm 1.
The cost of finding the best solution depends on both the resolu-
tion of the intervalQ = [q−, q+] and the resolution of the interval
M = [mpos, mneg] . We use the notation|Q| and |M |, with an
abuse of notation, for the resolution of respectively the intervalQ
andM . Studying the distribution of documents of all the categories
of Reuters-21578, we found that the intervalQ may be reduced to
[−0.04, 0.0].

Figure 2. Example of two angular region withp(0, 0) andp(0,−0.05)

Algorithm 1 : Angular Region

Require: q−, q+, |Q|, |M |, k
Return: mopt, qopt

for j = 1 to k do
for q = q− to q = q+ stepq+−q−

|Q| do
computempos andmneg

for m = mpos to m = mneg stepmneg−mpos

|M| do
for everyd ∈ D do

calculate whetherd belongs toci or toRotW
end for
calculate the actualF1 measure

end for
end for
storemopt(j) andqopt(j)

end for
returnmopt =

∑k
j=1 mopt(j)/k and qopt =

∑k
j=1 qopt(j)/k

The computational cost for Algorithm 1 isO(|Q| × D + |Q| ×
|M | × D), whereD is the number of documents of the training
set. The first part of the cost,O(|Q| × D), relates to the calcula-
tion of the parametersmpos andmneg. When k-fold cross validation
is performed the computational cost is multiplied, on a theoretical
level, by a factor proportional to the number of subsetsk, let us say
O(k × (|Q| ×D + |Q| × |M | ×D)).

During a k-fold cross validation approach, at thej-th iteration the
AR algorithm searches thej-th optimal separating line among all the
possible values forq andm. Since this line is always close to the final
optimal solution, one may think to reduce the size and the resolution
of the intervalQ andM in order to improve efficiency without de-
grading performance. For this reason, the FAR algorithm is proposed.
At each iteration, this algorithm keeps trace of the average of the pa-
rametersq andm of the previous (sub-)optimal solutions in order to
“focalize” the space of search; in addition, the reduction of the reso-
lution of Q andM is performed. The pseudo-code of the algorithm
is presented in Algorithm 2

4 Experimental Results

The evaluation was carried out on a notebook equipped with an AMD
Athlontm XP 1600+ processor, 256 MB of DDR RAM, on a Mi-



Algorithm 2 : Focused Angular Region

Require: q−, q+, |Q|, |M |, k
Return: mopt, qopt

for j = 1 to k do
if j > 1 then

if |Q| > 4 then |Q| = round(|Q|/2)
if |M | > 4 then |M | = round(|M |/2)
maver =

∑j−1
i=1 mopt(i)/(j − 1)

qaver =
∑j−1

i=1 qopt(i)/(j − 1)
mpos = maver − 0.2 ; mneg = maver + 0.2
q− = maver − 0.01 ; q+ = maver + 0.01

end if
for q = q− to q = q+ stepq+−q−

|Q| do
computempos andmneg

for m = mpos to m = mneg stepmneg−mpos

|M| do
for everyd ∈ D do

calculate whetherd belongs toci or toRotW
end for
calculate the actualF1 measure

end for
end for
storemopt(j) andqopt(j)

end for
returnmopt =

∑k
j=1 mopt(j)/k and qopt =

∑k
j=1 qopt(j)/k

crosoft Windows XP Professional OS with Service Pack 1. The al-
gorithms have been implemented in Matlab code (version 6.5 release
13).

The Reuters-215783 corpus was chosen as a benchmark. The top
10 most frequent categories of ModApte split were used for exper-
imentation such that the training set was composed of 7193 docu-
ments and the test set of 2787 documents. Some text preprocessing
was done: a first cleaning was done removing all the punctuation
marks and all the numbers and converting all the letters to lowercase.
A stoplist of 232 words and contractions (that is, ’re, don’t, etc.) was
used to remove the most frequent words of the English language. Fi-
nally the English Porter stemmer4 was used as the only method to
reduce the space of terms.

Standard IR evaluation measures have been computed. Recallρi

and Precisionπi are defined for each categoryci as (using the same
notation of [8]):

ρi =
TPi

TPi + FNi
, πi =

TPi

TPi + FPi
,

whereTPi (true positive) is the number of documents correctly clas-
sified under categoryci, andFNi (false negative) andFPi (false
positive) are defined accordingly. The performance of the classifier
for the whole set of categories was estimated according to the theFβ

function, and in particular whenβ = 1:

Fβ =
(β2 + 1) · π · ρ

β2 · π + ρ
, F1 =

2 · π · ρ
π + ρ

. (7)

Then, both the two methods ofmicro-averaging and macro-
averagingwere used to average the performances (see [8]).

The SVMLight package5, a widely used implementation of SVM,
was employed with the default parameters (linear kernel) to compare
performances.

3 http://www.daviddlewis.com/resources/
testcollections/reuters21578/

4 http://www.tartarus.org/ ∼martin/PorterStemmer/
5 http://svmlight.joachims.org/
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Figure 3. Performance of Algorithm 1 on the validation and test sets

Analysis of the Results
The first test run shed light on the word “underfitting” of the title. We
performed a 2-fold cross validation approach for Algorithm 1 using
different resolution ofQ andM from 2 to 10. The results, summa-
rized in Fig. 3, show that the performance on both the validation and
the test set becomes stable, with minor oscillations, when|Q| > 4
and |M | > 4. This means that it is not necessary to have a high
resolution of the two intervals in order to increase the classifier per-
formance. Then we performed 12 runs for each algorithm, varying
the numberk of subsets from 2 to 5, and using the same resolution
of 5, 10 and 15 forQ andM . Each run was repeated ten times using
different categories for a total of 240 training sessions.

Figure 4 shows the averaged performance on the validation sets
of the Algorithms 1 and 2 (upper graphic) and the averaged train-
ing time per category (lower graphic). The combination|Q| = 5,
|M | = 5, k = 5, with the FAR algorithm (dash-dotted line) gives
the best trade-off between performance and training time. Figure 5
shows the macro- and micro-averagedF1 performances. Once again,
the FAR algorithm with the parameters stated above presents the best
results considering both the two measures. Table 2 compares the av-
eraged performance of the 10 training session of the FAR algorithm
with respect to the SVMLight on the bidimensional space (a biased
hyperplane was used in this case), and with respect to SVMLight on
the n-dimensional space using aTfIdf weighting scheme (see [7]),
without feature selection. The average training time in seconds per
category are shown as well.

The results are satisfactory and encourage us to investigate the
bidimensional space more accurately. The positive aspects are that
both of the heuristic algorithms outperform SVM in terms of training
time. Moreover, since SVM are known to optimize theaccuracyon a
given dataset, which is the number of documents correctly classified
over the total number of documents, a number of runs for parameter
optimization are needed in the two-dimensional space. A drawback
is that the average performance is a little bit lower than the state-
of-the-art n-dimensional SVM approach. Nevertheless, a category-
by-category investigation shows that the performance of the FAR is
comparable, if not superior, to the state-of-the-art on seven out of
ten categories. Only three categories,acq, wheatandgrain, present a
bad performance which degrades the overall effectiveness. This pe-
culiar behavior suggests that it may be possible to further improve
the performances with a better understanding of the local and global
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5 Conclusions

Two heuristic supervised learning algorithms have been investigated
in this paper using a new bidimensional representation of documents.
These algorithms use the geometrical distribution of documents in
order to reduce the search for the optimal separating line. The first
algorithm,Angular Region, performs a complete investigation in the
range of the two parameters (angular coefficient and intercept). The
second algorithm,Focused Angular Region, is optimized for a k-fold
cross validation; at each iteration it uses the sub-optimal parameters
given by the previous iteration in order to focalize the range of pa-
rameters in a more limited interval. The trade-off between efficiency
and effectiveness obtained with these solutions opens new perspec-
tives for fast graphical investigations of large collections of docu-
ments for text categorization.

Table 2. F1 performance comparison among the bidimensional
representation and the state-of-the-art. The top 10 categories of

Reuters-21578 have been used as benchmark

Bidimensional Space N-dimensional space

FAR SVMLight SVMLight(TfIdf)

earn .946 .911 .986
acq .855 .830 .962

money-fx .759 .650 .742
grain .889 .522 .920
crude .824 .719 .904
trade .797 .672 .852

interest .750 .603 .725
wheat .784 .380 .828
ship .845 .601 .844
corn .596 .311 .867

F1 Macro .807 .620 .866

F1 micro .868 .777 .929

av. secs/cat. 0.37 2.20 4.07
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